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Abstract

Edge intersection graphs of paths on a grid ( EPG graphs) are 
graphs whose vertices can be represented as nontrivial paths on a 
grid such that two vertices are adjacent if and only if the correspond-
ing paths share at least one edge of the grid. When the paths have 
at most one change of direction (bend) these graphs are called B1-

EPG graphs. In this paper, we delimit some subclasses of B1-EPG 
graphs that admit a Helly-B1-EPG representation. It is known that 
B1-EPG and Helly-B1-EPG are hereditary classes, so they can be 
characterized by forbidden structures. In both cases, finding the 
whole list of minimal forbidden induced subgraphs are challenging 
open problems. Taking a step towards solving those problems, we 
describe a few structures at least one of which will necessarily be 
present in any B1-EPG graph that does not admit a Helly represen-
tation. In addition, we show that the well known families of Block 
graphs, Cactus and Line of Bipartite graphs are totally contained in 
the class Helly-B1-EPG.
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1 Introduction

Let P be a collection of non trivial simple paths on a rectangular grid

G. The edge intersection graph of P (denoted by EPG(P)) is the graph

whose vertices correspond to the paths of P and two vertices are adjacent

in EPG(P) if and only if the corresponding paths in P share at least one

edge in G. A graph is called an edge intersection graph of paths on a grid

(EPG graph) if G = EPG(P) for some P and G , and ⟨P, G⟩ is an EPG

representation of G. In [6], it was proved that every graph is EPG, and

started the study of the subclasses defined by bounding the number of

times any path used in the representation can bend. Graphs admitting a

representation where paths have at most k changes of direction (bends)

were called Bk-EPG. In particular, when the paths have at most 1 bend

we have the B1-EPG graphs or a single bend EPG graphs. Sometimes we

can refer to a specific path of the representation and its number of bends.

In this particular case, we denote by k-bend the path or the set of paths

that have at most k bends.

A collection of sets satisfies the Helly property when every pair-wise

intersecting sub-collection has at least one common element. When this

property is satisfied by the set of edges of the paths used in a EPG repre-

sentation, we get a Helly-EPG representation.

In [3] were studied the Helly-B1-EPG graphs and it was proved that

not every B1-EPG graph admits a Helly-B1-EPG representation. We are

interested in determining the subgraphs that make B1-EPG graphs that

do not admit a Helly representation. In the present work, we describe some

structures that will be present in any such subgraph, and, in addition, we

present new Helly-B1-EPG subclasses.

2 Preliminaries

The vertex set and the edge set of a graph G are denoted by V (G) and

E(G), respectively. For a subset S ⊆ V (G), G[S] is the subgraph of G
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induced by S. If F is any family of graphs, we say that G is F-free if G

has no induced subgraph isomorphic to a member of F .

A cycle, denoted by Cn, is a sequence of distinct vertices v1, . . . , vn, v1

where vi ̸= vj for i ̸= j and (vi, vi+1) ∈ E(G), such that n ≥ 3. A chord

is an edge that is between two non-consecutive vertices in a sequence of

vertices of a cycle. An induced cycle or chordless cycle is a cycle that has

no chord, in this paper an induced cycle will simply be called a cycle.

A clique is a set of pairwise adjacent vertices and an independent set is

a set of pairwise non adjacent vertices. A path (in the grid) is defined as

a finite sequence of consecutive edges e1 = (v1, v2), e2 = (v2, v3), . . . , ei =

(vi, vi+1), . . . , em = (vm, vm+1), where vi ̸= vj for i ̸= j. A segment is

a path without bends. The notation [xi, xj ] × {y} (resp. [yp, yq] × {x}),
where i < j (resp. p < q), is used to denote the horizontal segment (resp.

vertical segment) between columns xi and xj (resp. between rows yp and

yq), on row y (resp. column x). In B1-EPG representations we use ⌟-

path notation and ⌞-path notation to denote the path that has horizontal

segment and with bend at right to up, and at left to up respectively.

Given an EPG representation of a graph G, we identify each vertex v of

G with the corresponding path Pv of the grid used in the representation.

We say that a vertex of G covers or contains some edge of the grid if

the corresponding path does and, that a set of paths of the representation

induces a subgraph of G if the corresponding set of vertices does.

In a B1-EPG representation, a clique K is said to be an edge-clique if all

the vertices of K share a common edge of the grid (see Figure 1(a)). Note

that the collection of paths of K is Helly (considering edge intersection).

A claw of the grid is a set of three edges of the grid incident into the same

vertex of the grid, which is called the center of the claw. The two edges

of the claw that have the same direction form the base of the claw. If K

is not an edge-clique, then there exists a claw of the grid (and only one)

such that the vertices of K are those containing exactly two of the three

edges of the claw; such a clique is called claw-clique [6] (see Figure 1(b)).

Notice that if three vertices induce a claw-clique, then exactly two of



On Helly-B1-EPG graphs 25

(a) Representation of a

clique as edge-clique.

(b) Representation of a

clique as claw-clique.

Figure 1: Examples of clique representations.

them turn at the center of the corresponding claw of the grid, and the

third one contains the base of the claw. Furthermore, any other vertex

adjacent to the three must contain two of the edges of that claw, then the

following lemma holds.

Lemma 2.1. If three vertices are together in more than one maximal

clique of a graph G, then in any B1-EPG representation of G the three

vertices do not form a claw-clique.

3 Subclasses of Helly-B1-EPG Graphs

In this section, we describe a set of graphs that define Helly-B1-EPG

families. In particular, we present some features of non-trivial families

of graphs properly contained in Helly-B1 EPG, namely Bipartite, Block,

Cactus and Line of Bipartite graphs.

In [1] Asinowski et al. proved the following lemma for C4-free graphs.

Lemma 3.1. [1] Let G be a B1-EPG graph. If G is C4-free, then there

exists a B1-EPG representation of G such that every maximal claw-clique

K is represented on a claw of the grid such that vertices of K are the

unique covering the edges of their base.

We have obtained the following similar result for diamond-free graphs.

A diamond is a graph G with vertex set V (G) = {a, b, c, d} and edge set

E(G) = {ab, ac, bc, bd, cd}.



26 L. Alcón, M.P. Mazzoleni, T.D. Santos

Lemma 3.2. Let G be a B1-EPG graph. If G is diamond-free, then in any

B1-EPG representation of G, every maximal claw-clique K is represented

on a claw of the grid such that vertices of K are the unique covering an

edge of K.

Proof. Since every vertex of K covers two of the three edges of the claw,

if v /∈ K but covers edges of the claw, then it covers exactly one edge and

then we have a diamond, a contradiction. ■

Let S3, S3′ , S3′′ and C4 be the graphs depicted in Figure 2.

Theorem 3.1. Let G be a B1-EPG graph. If G is {S3, S3′ , S3′′ , C4}-free
then G is a Helly-B1-EPG graph.

Proof. If G is not a Helly-B1-EPG graph, then in each B1-EPG represen-

tation of G, there is at least one clique that is represented as claw-clique.

Consider the B1-EPG representation of G that satifies Lemma 3.1 and

let K be a maximal clique which is represented as a claw-clique. Assume,

without lose of generality,K is on a claw of the grid with base [x0, x2]×{y0}
and center C = (x1, y0). Denote by PK the set of paths corresponding to

the vertices of K. By Lemma 3.1, the grid segment [x0, x2]× {y0} is cov-

ered only by vertices of K. For every ⌟-path (resp. ⌞-path ) belonging to

PK , we do the following: if the path does not intersect any path Pt /∈ PK

on column x1, then we delete its vertical segment and add to the path the

segment [x1, x2]×{y0} (resp. [x0, x1]×{y0}). If after this transformation

there is no more ⌟-paths (resp. ⌞-paths) in PK , then we are done since we

have obtained an edge-clique. So we may assume that every ⌟-path and

every ⌞-path in PK intersects some path Pt /∈ PK on column x1 (notice

that we can assume is the same path Pt for all the vertices).

Now, if none of the ⌟-paths belonging to PK intersect a path not in PK

on the line y0, then we can replace the horizontal part of those paths by

the segment [x1, x2]×{y0}, getting an edge representation of the clique K.

Thus, we can assume there exists at least one ⌟-path Pv ∈ PK intersecting

some path Pt′ /∈ PK on line y0. Analogously, there exists at least one ⌞-

path Pv′ ∈ PK intersecting some path Pt′′ /∈ K on line y0. Notice that
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vertex t′ cannot be adjacent to any of the vertices t, v′ or t′′; and, in

addition, vertex t′′ cannot be adjacent to t, or v.

Finally, since K is claw-clique, there is a path Pu ∈ PK covering the

base of the claw. Depending on the possible adjacencies between u and t′

or t′′, one of the graphs S3, S3′ or S3′′ is obtained. ■

Notice that any bull-free graph is {S3, S3′ , S3′′}-free, so our previous

result implies Lemma 5 of [1].

(a) Graph S3. (b) Graph S3′ .

(c) Graph S3′′ . (d) Graph C4.

Figure 2: Graphs on the statement of Theorem 3.

Next theorem has as consequence the identification of several graph

classes where the existence of a B1-EPG representation ensures the exis-

tence of a Helly-B1-EPG representation.

Theorem 3.2. If G is a B1-EPG and diamond-free graph then G is a

Helly-B1-EPG graph.

Proof. Following the same argument given in the proof of Theorem we

have that G[v, v′, u, t] induces a diamond, a contradiction. ■

A graph G is said to be Bipartite if its set of vertices can be partitioned

into two distinct independent sets. There are Bipartite graphs that are

not B1-EPG, for instance K2,5 and K3,3 (see [5]). Clearly, since bipartite
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graphs are triangle-free, any B1-EPG representation of a bipartite graph

is also a Helly-B1-EPG representation. It is trivial that Bipartite graphs

are diamond-free, so we have the following result which is obtained as a

corollary of the previous theorem.

Corollary 3.1. If G is a Bipartite B1-EPG graph then G is a Helly-B1-

EPG graph.

A Block graph is a type of graph in which every biconnected component

(block) is a clique. Block graphs are known to be exactly the Chordal

diamond-free graphs, so by Theorem 19 of [1], all Block graphs are B1-

EPG.

Corollary 3.2. Block graphs are Helly-B1-EPG.

A Cactus graph is a connected graph in which any two cycles have

at most one vertex in common. Equivalently, it is a connected graph in

which every edge belongs to at most one cycle, or (for nontrivial Cactus)

in which every block (maximal connected subgraph without a cut-vertex)

is an edge or a cycle. It is easy to see, by their definition, that Cactus

graphs are diamond-free. In [4], it is proved that every Cactus graph is a

B1-EPG graph.

Corollary 3.3. Cactus graphs are Helly-B1-EPG.

Given a graph G, its Line graph L(G) is a graph such that each vertex

of L(G) represents an edge of G and two vertices of L(G) are adjacent if

and only if their corresponding edges share a common endpoint (i.e. “are

incident”) in G. A graph G is a Line graph of a Bipartite graph (or simply

Line of Bipartite) if and only if it contains no claw, no odd cycle (with

more than three vertices), and no diamond as an induced subgraph [8].

In [9] was proved that every Line graph has an EPG representation with

at most two bends. In [7] it was proved that Line of Bipartite graphs are

B1-EPG graphs. In the following corollary we proved that when restricted

to the Line of Bipartite we can obtain a Helly and 1-bended representation.

Corollary 3.4. Line of Bipartite graphs are Helly-B1-EPG.
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