
Advances in Mathematics 333 (2018) 266–313
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Sigma limits in 2-categories and flat pseudofunctors

M.E. Descotte, E.J. Dubuc, M. Szyld ∗

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 November 2016
Received in revised form 27 April 
2018
Accepted 17 May 2018
Available online 31 May 2018
Communicated by Ross Street

Keywords:
Sigma limits
2-Categories
Flat
Pseudofunctor
Conical limit
Sigma filtered

In this paper we introduce sigma limits (which we write 
σ-limits), a concept that interpolates between lax and pseu-
dolimits: for a fixed family Σ of arrows of a 2-category A, 
a σ-cone for a 2-functor A F−→ B is a lax cone such that 
the structural 2-cells corresponding to the arrows of Σ are 
invertible. The conical σ-limit of F is the universal σ-cone. 
Similarly we define σ-natural transformations and weighted 
σ-limits. We consider also the case of bilimits. We develop 
the theory of σ-limits and σ-bilimits, whose importance relies 
on the following key fact: any weighted σ-limit (or σ-bilimit) 
can be expressed as a conical one. From this we obtain, in 
particular, a canonical expression of an arbitrary Cat-valued 
2-functor as a conical σ-bicolimit of representable 2-functors, 
for a suitable choice of Σ, which is equivalent to the well known 
bicoend formula.
As an application, we establish the 2-dimensional theory of 
flat pseudofunctors. We define a Cat-valued pseudofunctor 
to be flat when its left bi-Kan extension along the Yoneda 
2-functor preserves finite weighted bilimits. We introduce a 
notion of 2-filteredness of a 2-category with respect to a class 
Σ, which we call σ-filtered. Our main result is: A pseudofunc-
tor A −→ Cat is flat if and only if it is a σ-filtered σ-bicolimit
of representable 2-functors. In particular the reader will no-
tice the relevance of this result for the development of a theory 
of 2-topoi.
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0. Introduction

Size issues are in general not relevant in this paper, but we indicate the smallness 
assumption when it applies. The article is concerned with the notion of flat functor 
in the context of 2-categories. Given a 2-functor A P−→ Cat from a 2-category A with 
values in the 2-category Cat of small 1-categories, we want to define when it should be 
considered flat, and prove a theorem that characterizes flatness using appropriate notions 
of filteredness and pro-representability. Recall that a Set-valued functor is flat when its 
left Kan extension along the Yoneda embedding is left exact (this being equivalent to its 
discrete cofibration being a cofiltered category). This notion is considered in [16, § 6] for 
V-enriched categories in general, and in particular for V = Cat.

We emphasize that 2-dimensional category theory is radically different from the theory 
of Cat-enriched categories, which, as well as the theory of V-enriched categories for any V, 
is a part of 1-dimensional category theory.

As is usually the case, the Cat-enriched version of flatness is too strict, and a relaxed 
notion is the important one. This is easily settled, but more difficult and unsolved so far 
is the fundamental equivalence between flatness and appropriate notions of filteredness 
for 2-categories and pro-representability of 2-functors, which is the problem solved in 
this article.

Note that by 2-category, 2-functor, we mean the concepts which are sometimes re-
ferred to as strict 2-category, strict 2-functor. Though our original objective was to have 
results for 2-functors, the notion of pseudofunctor was imposed upon us as the correct 
generality in which to define flatness in the 2-dimensional context. However, for the sake 
of simplicity in many calculations we work primarily with 2-functors. We note that no 
generality is lost since, while we prove our main theorem (Theorem 4.2.7) for 2-functors, 
the corresponding theorem for pseudofunctors (Theorem A.6) follows as a corollary.

We define a pseudofunctor to be left exact if it preserves finite weighted bilim-
its. For a pseudofunctor A P−→ Cat, we define the left bi-Kan extension (as al-
ready considered in [21]) pseudofunctor Homp(Aop, Cat) P∗

−→ Cat along the Yoneda 

2-functor A h−→ Homp(Aop, Cat) (namely, the bi-universal pseudonatural transforma-
tion P ⇒ P ∗h, where Homp(Aop, Cat) is the 2-category of 2-functors, pseudonatural 
transformations and modifications). Note that since weighted bilimits exist in Cat this is 
actually a pointwise bi-Kan extension. Furthermore, bilimits in Cat can be chosen to be 
pseudolimits, and then it follows that when P is a 2-functor, P ∗ can be chosen to be a 
2-functor. Also note that from these definitions it follows that the flatness of a 2-functor 
P , which we define stipulating that P ∗ is left exact, is preserved by pseudonatural equiv-
alences, that is, equivalences in Homp(A, Cat).

Let A P−→ Cat, Aop F−→ Cat be 2-functors, consider the 2-Grothendieck construction 
ElP �P−→ A and the family CP given by the (co)cartesian morphisms, note that we 
abuse the notation and consider this family both in ElP and ElopP . While confronting the 
difficulty posed by the fact that there was no expression in terms of a conical colimit 
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indexed in ElopP for the coend of the 2-functor Aop×A F×P−−−→ Cat, a crucial moment that 
opened the door for the intended research on the 2-dimensional concept of flatness was 
the discovery of the following previously unknown fact:

The category of pseudo-dicones for the 2-functor Aop ×A F×P−−−→ Cat is isomorphic to 

the category of lax cones for the 2-functor ElopP
�op

P−→ Aop F−→ Cat such that the structural 
2-cells corresponding to CP are invertible.

This fact led us to consider a general notion that we call sigma natural transformation, 
and denote σ-natural transformation, already defined in [14]. Let (A, Σ) be a pair where 
A is a 2-category and Σ a distinguished 1-subcategory. A σ-natural transformation is a 
lax natural transformation such that the structural 2-cells corresponding to the arrows of 
Σ are invertible. This notion led in turn to the notion of weighted σ-limit, which became 
an essential tool for our work in this paper. We comment that although the statement 
in italics above follows from Proposition 2.4.11, it also admits a direct proof which we 
encourage the interested reader to do.

It would be appropriate to say that the most transcendental basic result in this paper 
is Theorem 2.4.10 which establishes the following:

Arbitrary weighted σ-limits (or σ-colimits) can be expressed as conical ones.

This fact rescues for 2-dimensional category theory the classical fact of ordinary cate-
gory theory which states that conical limits suffice to construct all weighted limits. As a 
first application we show three statements which are the 2-categorical analogues of the 
respective classical facts of the theory of flat functors.

1. We establish a 2-categorical version of the canonical expression of Set-valued functors 
as colimits of representable functors: Any 2-functor A P−→ Cat is equivalent to the conical 
σ-colimit of the diagram ElopP

�op
P−→ Aop −→ Homp(A, Cat) of representable 2-functors, 

where σ is taken with respect to the class CP of cartesian arrows.

2. We introduce a notion of 2-filteredness for pairs (A, Σ) that we denote by 
σ-filteredness. When A has finite weighted bilimits and P is left exact, the pair (ElopP , CP ) 
is σ-filtered, in other words the σ-colimit in the canonical expression of P is a σ-filtered 
σ-colimit.

3. We prove a key result that establishes that a σ-filtered σ-colimit of flat 2-functors 
is flat. This follows from the commutativity (up to equivalence) of σ-filtered σ-colimits 
with finite weighted bilimits in Cat, established in [9].

Let A P−→ Cat be a 2-functor. Our main result, Theorem 4.2.7, states that the following 
are equivalent:
(i) ElP is σ-cofiltered with respect to the family CP of cocartesian arrows.
(ii) P is equivalent to a σ-filtered σ-colimit of representable 2-functors in Homp(A, Cat).
(iii) P is flat.

If A has finite weighted bilimits, these statements are also equivalent to:
(iv) P is left exact.
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We remark that the concept of σ-limit and the results in this paper should be relevant 
in an intended definition of the concept of 2-topos. In fact, it follows that for a small 
2-category A, a point of the 2-topos Homp(Aop, Cat) of 2-presheaves could be appro-
priately defined as a Cat-valued flat 2-functor A −→ Cat, whose left bi-Kan extension 
determines a morphism of 2-topoi Homp(Aop, Cat) −→ Cat; that is, a left adjoint (i.e., 
having a right adjoint) left exact 2-functor. As A. Joyal pointed to us, a 2-topos could 
be defined as a left exact 2-localization of a 2-category of 2-presheaves.

0.1. Organization of the paper

In Section 1 we fix notation and terminology. Through Sections 2 and 3 we fix an 
arbitrary pair (A, Σ) with Σ a 1-subcategory containing all the objects of a 2-category A.

In Section 2 we develop the theory of σ-limits. In § 2.1 we define σ-natural transfor-
mations between 2-functors A −→ B following [14, § I,2 p.13,14]. These are lax natural 
transformations where the 2-cells associated to the arrows in Σ are invertible. We de-
note the so determined 2-category HomΣ

σ (A, B), and whenever possible we will omit Σ
from the notation. In this way we have a chain of inclusions of categories with the same 
objects:

Homs(A,B) ↪→ Homp(A,B)
(1)
↪→ Homσ(A,B)

(2)
↪→ Hom�(A,B)

where the sub indexes s, p, σ, � indicate strict natural (i.e. 2-natural), pseudonatural, 
σ-natural and lax natural respectively. When Σ is the whole underlying category of A, (1)
above is an equality, and when Σ consists only of the identities (2) is so. This allows for 
a unified treatment of many results known for pseudo and lax natural transformations.

Each choice of a subindex s, p, σ, � gives rise to a notion of weighted limit that we 
study in § 2.2. Note that the three cases s, p, � are considered in [17], but the general 
concept of σ-limit for an arbitrary 1-subcategory Σ is an essential tool to work with 
the notion of flat 2-functor, and we use in this paper σ-limits that are neither lax nor 
pseudolimits.

Notation: In order to avoid repeating statements and, more important, to develop 
unified proofs whenever possible, we will use a letter ε, that can stand for both “s” and 
“σ”, thus also for “p” and “�”.

Warning: we use limit to refer to a general weighted limit, and conical limit to a 
classical limit (i.e., when the weight is the constant 2-functor with value 1).

In § 2.3 we consider for arbitrary ε the corresponding notion of ε-end and ε-coend, 
and establish the ε-end formula for the category of ε-natural transformations between 
2-functors. We consider also tensors and cotensors, and prove the constructions of 
weighted ε-limits in terms of ε-ends and cotensors.

In § 2.4 we study explicitly conical σ-limits and σ-colimits, and show, modifying an 
argument of Street [25], the fundamental property of σ-limits that we mention in the 
introduction. We choose to establish it for colimits: arbitrary σ-colimits can be expressed 
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as conical σ-colimits. We establish then the canonical expression of a Cat-valued 2-functor 
as a conical σ-bicolimit of representable 2-functors. We finish this subsection adapting 
Gray’s construction of σ-colimits in Cat to fit our context, which is a result that we will 
need later.

In § 2.6 we analyze the computation of weighted ε-limits in 2-functor categories, and 
establish a general theorem about pointwise computation. This is an essential theorem 
in the theory of limits, which is used everywhere. In particular, we use it in § 2.7 in order 
to prove properties of interchange of ε-limits and ε-colimits.

In Section 3 we introduce and develop the notion of 2-filteredness for pairs (A, Σ), 
which we refer to by saying that A is σ-filtered (with respect to Σ). In § 3.1 we state the 
basic definition, which is a generalization of Kennison’s three axioms in his definition of 
bifiltered 2-category [19], thus it also generalizes the equivalent Dubuc–Street notion of 
2-filtered 2-category [11]. Their notion corresponds to σ-filteredness when Σ consists of all 
the arrows of A. We consider particular finite diagrams such that their σ-cones suffice 
for σ-filteredness, and show that these σ-cones correspond (up to equivalence) to the 
cones of some particular finite weighted bilimits. In § 3.2 we consider the pair (ElP ,CP ) 
as mentioned in the introduction and we prove that the 2-functor ElP �P−→ A creates any 
conical σ-bilimit which exists in A and is preserved by P (this is a 2-dimensional version 
of a known 1-dimensional result, see [15, Proposition 4.87]). From this result, together 
with the equivalence between cones mentioned above, it follows that if A has finite 
weighted bilimits and P is left exact, then the pair (ElopP , CP ) is σ-filtered. Interestingly 
enough, finite conical bilimits in A do not suffice for this result. In § 3.3 we consider 
σ-cofinal 2-functors and establish some of the usual properties of cofinality that we will 
use in the proof of our main theorem in Section 4. These properties allow us to show 
that the canonical 2-functor ElopP −→ ElopL , where L is a left bi-Kan extension of P , is 
σ-cofinal in the case considered in the theorem.

In Section 4 we consider flat pseudofunctors and we prove our main theorem. In §4.1
we define the bi-Kan extension of a pseudofunctor following [21]. It is defined by the usual 
representation that defines Kan extensions suitably relaxed. We focus on the pointwise
case which holds when the target 2-category has all weighted bilimits, and prove some 
basic results on flat pseudofunctors, analogous (but independent since the two notions 
of flatness are different) to the ones that can be found for a general base category V
in [16, § 6]. In § 4.2 we state and prove the results mentioned in the introduction, in 
particular our main theorem (Theorem 4.2.7), and in Appendix A we generalize them to 
the case of pseudofunctors.

1. Preliminaries

1.1. Basic terminology

Since terminology regarding 2-dimensional category theory varies in the literature, we 
list here some definitions and basic results as we will use them in this paper.
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1. We refer the reader to [18] for basic notions on 2-categories. Size issues are not 
relevant to us here, when it is not clear from the context we indicate the smallness 
condition if it applies.

2. In any 2-category, we use ◦ to denote vertical composition and juxtaposition to 
denote horizontal composition. We consider juxtaposition more binding than “◦”, 
thus αβ ◦ γ means (αβ) ◦ γ. We will abuse notation by writing f instead of idf for 
arrows f when there is no risk of confusion.

3. Given any arrow or 2-cell “x”, we use “x∗”, “x∗” to denote precomposition, post-
composition with “x” respectively.

4. By Cat we denote the 2-category of (small) categories, with functors as morphisms 
and natural transformations as 2-cells.

5. For a 2-category A and objects A, B ∈ A, we use the notation A(A, B) to denote 
the category whose objects are the morphisms between A and B and whose arrows 
are the 2-cells between those morphisms.

6. We use ∼= to denote isomorphisms and ≈ to denote equivalences in a 2-category.
7. A 2-functor F : A −→ B is said to be pseudo-fully-faithful if for each A, B ∈ A, 

A(A, B) FA,B−−−→ B(FA, FB) is an equivalence of categories, 2-fully-faithful if each 
FA,B is an isomorphism and locally-fully-faithful if each FA,B is full and faithful.

8. For a 2-category A, Aop denotes the 2-category with the same objects as A but 
with Aop(A, B) = A(B, A), i.e. we reverse the 1-cells but not the 2-cells. We use the 

notation B
f−→ A for the arrow in Aop that corresponds to the arrow A 

f−→ B, in 
A. 2-cells keep their names.

9. For a 2-category A, Aco denotes the 2-category with the same objects and arrows as 
A, but with Aco(A, B) = A(A, B)op, i.e. we reverse the 2-cells but not the 1-cells.

10. The 2-category Cat has a duality 2-functor Catco D−→ Cat that maps each category C
to its dual Cop. Clearly D is an isomorphism of 2-categories and it is its own inverse.

11. A lax natural transformation between 2-functors A
F

G

B is a family of mor-

phisms and 2-cells of B, {FA 
θA−→ GA}A∈A, {GfθA

θf=⇒ θBFf}
A

f−→B∈A
satisfying 

the following equations:

LN0. For all A ∈ A, θidA
= θA.

LN1. For all A f−→ B
g−→ C ∈ A, θgf = θgFf ◦Ggθf .

LN2. For all A
f

γ⇓
g

B ∈ A, θBFγ ◦ θf = θg ◦GγθA.

An op-lax natural transformation is defined analogously but the structural 2-cells θf
are reversed, i.e. θBFf

θf=⇒ GfθA.
A modification θ

ρ−→ θ′ between lax natural transformations is a family of 2-cells of 
B {θA

ρA=⇒ θ′A}A∈A such that:
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LNM. For all A f−→ B ∈ A, θ′f ◦GfρA = ρBFf ◦ θf .

In this way we have a 2-category Hom�(A, B), with arrows the lax natural transfor-
mations, and similarly Homop�(A, B).
A pseudonatural transformation is a lax natural transformation where all the 2-cells 
θf are invertible, they are the arrows of a 2-category Homp(A, B). A strict, or 
2-natural transformation is a lax natural transformation where all the 2-cells θf
are identities, they are the arrows of a 2-category Homs(A, B). We have locally-
fully-faithful inclusions

Homs(A,B) ↪→ Homp(A,B) ↪→ Hom�(A,B) (1.1.1)

and similarly for Homop�(A, B). A pseudonatural equivalence, or pseudo-equivalence 
for short, is a pseudonatural transformation such that every θA is an equivalence in 
B. This amounts to θ being an equivalence in Homp(A, B).

12. There is a bijective correspondence between 2-functors, where γ is either s, p or �:

B F Homγ(A, C)

A G Homopγ(B, C)

This correspondence is given by the formulas, for A
f

η⇓

f ′

A′, B
g

θ⇓

g′

B′:

FB(A) = GA(B), (Fg)A = GA(g), FB(f) = (Gf)B , (Fg)f = (Gf)g, (Fη)A =
GA(η), FB(θ) = (Gθ)B . All the verifications are straightforward.
The expression H(A, B) = FB(A) = GA(B) does not determine a 2-functor of two 
variables, its structure has been studied in [14, I, 4.1.] under the name of quasifunctor.

13. A lax dinatural transformation θ between 2-functors Aop × A
F

G

B is

a family of morphisms and 2-cells of B, {F (A, A) θA−→ G(A, A)}A∈A,
{G(id, f)θAF (f, id) 

θf=⇒ G(f, id)θBF (id, f)}
A

f−→B∈A
satisfying the following equa-

tions:

LD0. For all A ∈ A, θidA
= θA.

LD1. For all A f−→ B
g−→ C ∈ A, θgf = G(f, id)θgF (id, f) ◦G(id, g)θfF (g, id).

LD2. For all A
f

γ⇓
g

B ∈ A, G(γ, id)θBF (id, γ) ◦ θf = θg ◦G(id, γ)θAF (γ, id).

A morphism ρ between two lax dinatural transformations θ, θ′ is a family of 2-cells 
of B, {θA

ρA=⇒ θ′A}A∈A such that:
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LDM. For all A f−→ B ∈ A, θ′f ◦G(id, f)ρAF (f, id) = G(f, id)ρBF (id, f) ◦ θf .

Note that if a pair of 2-functors A
F

G

B are considered as 2-functors

Aop ×A
F̃

G̃

B constant in the first variable, lax dinatural transformations from 

F̃ to G̃ correspond to lax natural transformations from F to G, and similarly for 
their morphisms.

14. The construction of item 9 defines an isomorphism

Hom�(A,B) (−)co−→ Homop�(Aco,Bco).

15. Combining the previous item with item 10, we have an isomorphism of 2-categories 
Hom�(A, Cat) (−)co−→ Homop�(Aco, Catco) D∗−→ Homop�(Aco, Cat) that maps a 2-functor 
A P−→ Cat to a 2-functor that we will denote by P d, P d = DP co.

16. For a 2-functor A F−→ B, and an object E ∈ B we have isomorphisms of categories

Hom�(A, Cat)(k1,B(E,F−)) ∼= Hom�(A,B)(kE , F )

Hom�(Aop, Cat)(k1,B(F−, E)) ∼= Homop�(A,B)(F, kE)

where k1 and kE denote the 2-functors constant at 1 = {∗}, and E respectively.
For θ in the left side and η in the right side, both isomorphisms are given by the 

formulas ηA = θA(∗) for A ∈ A, ηf = (θf )∗ for A 
f−→ B ∈ A.

1.2. The 2-category of elements

We will make extensive use of the 2-category of elements ElP of a Cat-valued 2-functor 
P . ElP can be defined as a particular instance of a lax comma 2-category ([2, § 1.4], 
[14, § I,2.5]), ElP = [k1, P ], and therefore has the universal property of Proposition 1.2.3
below.

Definition 1.2.1. Let A P−→ Cat be a 2-functor. ElP can be described as follows:

1. Objects: Pairs (x, A) with A ∈ A and x ∈ PA

2. Morphisms: A morphism between (x, A) and (y, B) is a pair (f, ϕ) with A 
f−→ B ∈ A

and Pf(x) ϕ−→ y

3. 2-cells: A 2-cell between (f, ϕ) and (g, ψ) (from (x, A) to (y, B)) is given by a 2-cell 

A

f

θ⇓
g

B ∈ A such that the following diagram commutes in PB:
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Pf(x)

(Pθ)x

ϕ
y

Pg(x)
ψ

4. Compositions in this 2-category are defined as follows: for composable arrows (f, ϕ)
and (g, ψ) we have (g, ψ)(f, ϕ) = (gf, ψPg(ϕ)), and both horizontal and vertical 
composition of 2-cells are computed in A.

We consider the 1-subcategory CP of ElP whose arrows are (f, ϕ) with ϕ an isomor-
phism.

Remark 1.2.2. We note that the canonical projection ElP �P−→ A is the opfibration (in 
the sense of [14, § I,2.5 p.30]) associated to P , and the arrows of CP are the cocartesian 
morphisms of ElP .

Proposition 1.2.3 ([14, § I,2.5 p.29], [2, Proposition 1.11]). The following diagram ex-
presses the fact that (together with �P and the lax natural transformation α defined by 

α(x,A) = x, α(f,ϕ) = ϕ), ElP is the lax pull-back of P along the 2-functor 1 
k1−→ Cat.

For each 2-functor Z F−→ A, and each lax natural transformation k1
θ−→ PF ,

Z
F

∃!T

ElP
�P

α⇒

A

P

1
k1

Cat

such that �PT = F, αT = θ.

The formulas behind this correspondence are, for Z
r

β⇓
s

W in Z, T (Z) =

(θZ , F (Z)), T (r) = (F (r), θr), T (β) = F (β). There is also a 2-categorical part of 
this universal property that we omit since we will not use it, the reader may consult 
[2, Proposition 1.11]. �
Remark 1.2.4. It is well-known (see [25, p.180], or see [2, Proposition 1.14] for a proof) 
that the projection ElP �P−→ A is lax dense, in the sense that for each A 

Q−→ Cat the 
pasting composition with α yields an isomorphism of categories

Hom�(A, Cat)(P,Q) ∼= Hom�(ElP , Cat)(k1, Q�P ).

We make explicit the formulas defining this correspondence on objects:
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P
η=⇒ Q lax natural k1

θ=⇒ Q�P lax natural

PA
ηA

P (f) ⇓ηf

QA

Q(f)

PB
ηB

QB

1
θ(x,A)

θ(y,B)

QA

Q(f)⇓θ(f,ϕ)

QB

(ηf )x = θ(f,id) ηA(x) = θ(x,A) θ(f,ϕ) = ηB(ϕ)(ηf )x

1.2.5. Combining Proposition 1.2.3 and Remark 1.2.4 we have, for each lax natural trans-
formation P

η=⇒ Q between Cat-valued 2-functors, an induced 2-functor ElP
Tη−→ ElQ

given by the formulas

Tη(x,A) = (ηA(x), A), Tη(f, ϕ) = (f, ηB(ϕ)(ηf )x), Tη(θ) = θ.

We note (see [2, Theorem 1.15]), although we will not need this result, that this assign-
ment actually defines a 2-fully-faithful 2-functor Hom�(A, Cat) −→ (2-Cat/A).

1.2.6. Consider now 2-functors A H−→ B P−→ Cat. By the pasting lemma for lax pull-
backs, we may construct the lax pull-back defining ElPH by pasting a (strict) 2-pull-back 
to the lax pull-back defining ElP as in the diagram below:

ElPH

TH

�PH A

H

ElP
�P

αP⇒

B

P

1
k1

Cat

Then we have an induced 2-functor ElPH
TH−→ E lP that is given by the formulas

TH(x,A) = (x,HA), TH(f, ϕ) = (Hf,ϕ), TH(θ) = Hθ.

2. σ-limits

We fix throughout this section a 1-subcategory Σ of a 2-category A which contains all 
the objects (this is often called a wide subcategory). We introduce a new class of natural 
transformations that we call sigma natural, and denote σ-natural. We introduce the use 
of a symbol σ accompanying a concept, it is convenient to think that σ means that the 
concept is to be taken “relative to the arrows of Σ”. Whenever possible, we will omit Σ
from the notation.
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2.1. σ-natural transformations

Definition 2.1.1. Given 2-functors A
F

G

B, a σ-natural transformation F
θ=⇒ G

(with respect to Σ) is a lax natural transformation such that, if A 
f−→ A′ is in Σ, the 

structural 2-cell θf (see § 1.1, item 11) is invertible. There is a 2-category HomΣ
σ (A, B)

with objects the 2-functors from A to B, whose arrows are the σ-natural transformations 
and whose 2-cells are all the modifications between them. We have locally-fully-faithful 
inclusions (see (1.1.1))

Homs(A,B) ↪→ Homp(A,B)
(1)
↪→ Homσ(A,B)

(2)
↪→ Hom�(A,B). (2.1.2)

Note that if Σ′ is another 1-subcategory of A and Σ ⊆ Σ′ then
HomΣ′

σ (A, B) ↪→ HomΣ
σ (A, B).

We recall that σ-natural transformations were already considered by J. W. Gray in 
[14, § I,2 p.13,14]. What we denote by HomΣ

σ (A, B) is, in Gray’s notation,
Fun(A, Σ;B, isoB).

Remark 2.1.3. Consider a 2-category A, its underlying category A0 and the 1-subcategory 
Aid consisting only of the identities. Then, in (2.1.2), (1) is an equality if Σ = A0, and 
(2) is an equality if Σ = Aid. �

Observe that the items 14, 15 and 16 in § 1.1 hold with the same proof for general σ
and opσ-natural transformations, the latter being defined in an evident way. �
Notation 2.1.4. Even though in this paper we will work mainly with σ-limits, in order 
to avoid repeating statements that hold for the σ-case and the strict s-case, we will use 
a letter ε, that can stand for both s and σ (then also by Remark 2.1.3 for p and �). This 
allows for a unified treatment of many results which are known for strict, pseudo and 
lax natural transformations.

2.2. ε-limits

Definition 2.2.1. Given 2-functors A W−→ Cat, A F−→ B, and E an object of B, we de-
note ConesWε (E, F ) = Homε(A, Cat)(W, B(E, F−)). This is the category of w-ε-cones 
(with respect to the weight W ) for F with vertex E. For a w-ε-cone ξ with vertex E, 

W
ξ

B(E,F−) , we have a functor θB = ξ∗ given by precomposition with ξ:

B(B,E) θB−→ Homε(A, Cat)(W,B(B,F−)) (2.2.2)
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B

f

α⇓
g

E 
−→ W
ξ=⇒ B(E,F−)

f∗

α∗⇓

g∗
B(B,F−)

The ε-limit of F weighted by W , denoted {W, F}ε or more precisely ({W, F}ε, ξ), is a 
w-ε-cone ξ with vertex E = {W, F}ε, universal in the sense that θB = ξ∗ in (2.2.2) is an 
isomorphism.

As usual, an equivalent formulation of the universal property is that there is a repre-
sentation θB natural in the variable B (as in (2.2.2)), and ξ is recovered setting B = E, 
ξ = θE(idE).

It is convenient to give an explicit definition of the dual concept, in the notation of 
Definition 2.2.1:

Definition 2.2.3. ε-colimits W ⊗ε F in B are the corresponding limits in Bop; for 
Aop W−→ Cat, A F−→ B we denote ConesWε (F, E) = Homε(Aop, Cat)(W, B(F−, E)) and 
refer to the objects of this category also as w-ε-cones, as it is clear from the context which 
w-ε-cones we are referring to. The ε-colimit of F weighted by W , denoted W ⊗ε F or 
more precisely (W ⊗εF, ν), is a w-ε-cone ν with vertex E = W ⊗εF , W ν B(F−, B)
universal in the sense that the functor θB = ν∗ given by precomposing with ν,

B(E,B) θB−→ Homε(Aop, Cat)(W,B(F−, B)) (2.2.4)

is an isomorphism.

Remark 2.2.5. Considering ε = s, we recover the notion of strict weighted limit ([17, § 2]). 
Considering ε = σ, Σ = A0 and Σ = Aid, we recover the notions of weighted lax and 
pseudolimits ([17, § 5]). In spite of this notation, the reader should be aware that s-limits 
are not σ-limits, as it is the case for weighted lax and pseudolimits.

The general concept of σ-limit for an arbitrary 1-subcategory Σ is an essential tool to 
work with the notion of flat 2-functor, and we will consider in this paper σ-limits that 
are neither lax nor pseudolimits.

Remark 2.2.6. We also consider (but omit to write explicitly) analogous statements 
for opσ-natural transformations, thus defining opσ-limits. Recall § 1.1, item 15. Ev-
ery σ-limit in B is an opσ-limit in Bco, and vice versa. If A W−→ Cat, A F−→ B, then 
{W,F}σ = {W d, F co}opσ. See [2, Proposition 1.5] for a proof for lax natural transforma-
tions, that can be easily adapted to a general σ.

Therefore one can think there is only one main or “primitive” notion between the four 
possible choices in (op)σ-(co)limits, and the other three can be obtained from that one. 
Then, as it is usual in the literature, we can state and prove general results for σ-limits, 
and use them for any of the four choices mentioned above.



278 M.E. Descotte et al. / Advances in Mathematics 333 (2018) 266–313
Remark 2.2.7. If the universal property in Definition 2.2.1 is taken in the weak sense 
(equivalence instead of isomorphism) we have the notion of σ-bilimit bi{W, F}σ (and 
σ-bicolimit W bi ⊗σ F ). Clearly, any σ-limit is in particular a σ-bilimit. Note how-
ever that the defining universal properties characterize σ-bilimits up to equivalence and 
σ-limits up to isomorphism. We abuse nevertheless the language by referring to “the” 
σ-bilimit, or “the” σ-limit, and use equalities to express that a certain object satisfies 
the corresponding universal property, but it is important to be aware that for a given 
data, both a σ-limit and a σ-bilimit may be constructed independently, and they will be 
equivalent objects, but not necessarily isomorphic.

As in [17, (2.5), (5.5)] (see Remark 2.3.13 below for a proof) we have the basic result:

Proposition 2.2.8. The 2-category Cat has all (small) weighted ε-limits. In fact, given 

A W−→ Cat, A P−→ Cat, {W, P}ε = Homε(A, Cat)(W, P ). �
As an immediate corollary, it follows that representable 2-functors preserve weighted 

ε-limits. That is, they “come out of the second variable”. More precisely:

Corollary 2.2.9. Let A W−→ Cat, A F−→ B be 2-functors, then we have the following 
isomorphism (equivalence), 2-natural in the variable B:

B(B, {W,F}ε)
∼=−→ {W,B(B,F−)}ε, B(B, bi{W,F}ε) ≈−→ bi{W,B(B,F−)}ε

Proof. Consider P = B(B, F−) in Proposition 2.2.8 and the Definition 2.2.1 of ε-limit. 
The case of ε-bilimits is analogous. �

It is well known ([15, (3.11)]) that weighted strict limits behave functorially both 
in the weight and the argument. Here we establish the fact that ε-limits (recall that ε
stands for σ or s) behave functorially respect to any natural transformation stronger
than ε-natural, more precisely:

Notation 2.2.10. Let A be any 2-category. Consider the set LA consisting of the label s
and one label σΣ for each 1-subcategory Σ of A. Note that in particular we have labels 
that we denote p = σAid , � = σA0 (see Remark 2.1.3). Consider the order in LA induced 
by the inclusions in (2.1.2), that is s ≤ σΣ for every Σ, and σΣ′ ≤ σΣ if Σ ⊆ Σ′.

Note that if we are considering only one 1-subcategory Σ, and omit it from the nota-
tion, we have s ≤ p ≤ σ ≤ � (cf. (2.1.2)).

Remark 2.2.11. Let α, β ∈ LA, if α ≤ β then weighted β-limits behave functorially 
respect to α-natural transformations. That is:

Let A
V

θ⇓

W

Cat, A
F

η⇓

G

C be α-natural transformations, by (2.2.2), we 

have
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V

θ

ξ
C({V, F}β , F−)

f∗

{V, F}β

W
ξ

C({W,F}β, F−) {W,F}β

∃!f ,

W

ξ

ξ
C({W,G}β, G−)

g∗

{W,G}β

C({W,F}β, F−)
η∗ C({W,F}β, G−) {W,F}β

∃!g

A standard line of reasoning by the uniqueness in the universal properties yields that 
these constructions define 2-functors

(Homα(A, Cat)op)+
{−,F}β−−−−−→ C, (Homα(A, C))+

{W,−}β−−−−−→ C,

(Homα(A, Cat)op ×Homα(A, C))+
{−,−}β−−−−−→ C,

where the subscript “+” indicates the full-subcategories with objects such that the cor-
responding β-limits exist.

2.3. ε-ends and cotensors

ε-ends and ε-coends.
The relation of strict ends (coends) of 2-functors Aop × A T−→ B with weighted 

limits (colimits) is well understood, they are given by the weight Aop ×A 
A(−,−)−−−−−→ Cat

(A ×Aop Aop(−,−)−−−−−−−→ Cat), see [15, 3.10], [28, 5.2.2]. However for general σ the situation is 
not at all the same. Some particular cases have been considered, for example, in [21, 9.6]
the pseudoend of a Cat valued 2-functor, which requires the explicit construction of 
weighted pseudolimits in Cat, in [28, 5.3] the lax coend of a Cat valued 2-functor of the 

form Aop ×A S×T−−−→ Cat, which requires a non-trivial change in the weight.
We will now define the ε-end of a 2-functor Aop × A T−→ B (recall Notation 2.1.4). 

The notion of ε-dinatural transformation is obtained, for ε = σ, by the requirement of 
invertibility on the θf for f ∈ Σ in § 1.1, item 13. The case ε = s yields the notion 
of strict dinaturality, that corresponds to V-naturality when V = Cat, [10, I.3.1, I.3.5],
[15, § 2.1, § 3.10].

Definition 2.3.1. Let T : Aop × A −→ B be a 2-functor and E ∈ B. A ε-dicone θ (with 
respect to Σ) for T with vertex E is a ε-dinatural transformation from the 2-functor which 
is constant at E to T . This amounts to a lax dicone given by a family of morphisms 
{E θA−→ T (A,A)}A∈A and a family of 2-cells {T (A, f)θA

θf=⇒ T (f,B)θB}
A

f−→B∈A
such 

that:
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1. If ε = σ, θf is invertible for every f in Σ.
2. If ε = s, θf = id for every f .

For each E, ε-dicones with vertex E form a category Diconesε(E, T ), whose arrows are 
the morphisms as lax dicones.

The ε-end in B (with respect to Σ) of the 2-functor T is the universal ε-dicone, denoted

{ε
∫
A

T (A,A) πA−→ T (A,A)}A∈A, {T (A, f)πA
πf=⇒ T (f,B)πB}

A
f−→B∈A

.

It is universal in the sense that for each E ∈ B postcomposition with π yields an isomor-
phism of categories

B(E, ε

∫
A

T (A,A)) π∗−→ Diconesε(E, T ) (2.3.2)

Proposition 2.3.3. For the 2-functor Aop × A 
B(E,T (−,−))−−−−−−−−−→ Cat, there is an obvious 

ε-dicone with vertex Diconesε(E, T ). It can be checked that it is universal, therefore 
there is an isomorphism of categories

Diconesε(E, T )
∼=−→ ε

∫
A

B(E, T (A,A)) (2.3.4)

As usual, then, the universal property (2.3.2) defining ε 
∫
A
T (A, A) is equivalent to stating 

that there is an isomorphism of categories

B(E, ε

∫
A

T (A,A))
∼=−→ ε

∫
A

B(E, T (A,A)) (2.3.5)

commuting with the ε-dicones. �
It is convenient to have at hand the explicit definition of the dual concept ε-coend.

Definition 2.3.6. ε-coends are defined as ε-ends in Bop, for T : Aop ×A −→ B we define 

ε 

A∫
T (A, A) = ε 

∫
A

T op(A, A), and we denote the universal ε-dicone by

{T (A,A) λA−→ ε

A∫
T (A,A)}A∈A, {λBT (B, f)

λf=⇒ λAT (f,A)}
A

f−→B∈A
.

A argument dual to the one given for (2.3.5) proves that the universal property defining 
ε 
∫ A

T (A, A) can be stated as
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B(ε
A∫
T (A,A), E)

∼=−→ ε

∫
A

B(T (A,A), E) (2.3.7)

We denote the weak concept of σ-biend of T , where π∗ in Definition 2.3.1 is required 

to be only an equivalence, by σ
∮
A

T (A, A).

The following key formula remains valid for the Homε categories:

Proposition 2.3.8. For 2-functors P, Q : A −→ B, we have the formula

Homε(A,B)(P,Q) = ε

∫
A

B(PA,QA)

Proof. It can be readily checked (by a straightforward but necessary argument) that the 
following data defines a universal ε-dicone with vertex Homε(A, B)(P, Q). Projections 
are given by πA(θ) = θA for ε-natural transformations θ, πA(ρ) = ρA for modifications 
ρ. And the structural 2-cells of the ε-cone are given by (πf )θ = θf : QfθA =⇒ θBPf for 
A 

f−→ B ∈ A, θ ∈ Homε(A, B)(P, Q). �
Tensors and cotensors.

Definition 2.3.9. ε-cotensor (resp. ε-tensor) are ε-limits (resp. ε-colimits) with A = 1. In 
this case the choice of ε is irrelevant, since Homε(1, Cat) = Homs(1, Cat) for any choice 

of ε. We identify 1 C−→ Cat with C ∈ Cat, 1 B−→ B with B ∈ B (note that 1op = 1), and 
denote cotensor products by {C, B} and tensor products by C⊗B. (see also [17, (3.1)]).

Recall that in the base 2-category Cat, cotensors and tensors are given by the internal 
hom and the cartesian product, {C, B} = Cat(C, B), and C ⊗B = C ×B.

As in the case of enriched category theory, from Proposition 2.3.8 and Remark 2.2.11
it easily follows that for any ε the 2-functor categories have cotensors and that they are 
computed pointwise. The proof is very similar to [15, §3.3] so we omit it.

Proposition 2.3.10. Cotensor products are computed pointwise in Homε(A, B). This 
means precisely that for C ∈ Cat, A G−→ B, if {C, GA} exist for each A ∈ A then 
the formula {C, G}A = {C, GA} defines a 2-functor that is the cotensor product of C
and G in Homε(A, B). �

We finish this subsection establishing in the ε case some well known formulas of 
enriched category theory. We omit to explicitly state the corresponding formulas for 
bilimits, which hold with the same proofs.
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Proposition 2.3.11. For A W−→ Cat, A P−→ B, if B is cotensored we have

{W,P}ε = ε

∫
A

{WA,PA}

Proof. We have the following chain of natural isomorphisms

Homε(A, Cat)(W,B(B,P−)) ∼= ε

∫
A

Cat(WA,B(B,PA))

∼= ε

∫
A

B(B, {WA,PA})

∼= B(B, ε

∫
A

{WA,PA})

given in turn by Proposition 2.3.8, definition of cotensor and (2.3.5). Then the statement 
follows by Definition 2.2.1. �

With a dual proof we have

Corollary 2.3.12. For Aop W−→ Cat, A P−→ B, if B is tensored we have

W ⊗ε P = ε

A∫
WA⊗ PA �

Remark 2.3.13. For the case B = Cat, we have

1. For A W−−→ Cat, A P−→ Cat, {W, P}ε
(2.3.11)= ε 

∫
A

Cat(WA, PA) (2.3.8)= Homε(A, Cat)(W, P )

2. For Aop W−−→ Cat, A P−→ Cat, W ⊗ε P
(2.3.12)= ε 

A∫
WA × PA

2.4. Conical σ-colimits

Remark 2.4.1. Let F : A −→ B be a 2-functor, and E an object of B. It is immediate 
to check that the isomorphism in § 1.1, item 16, restricts to an isomorphism (recall that 
kX stands for the functor constant at X)

Homσ(Aop, Cat)(k1,B(F−, E)) ∼= Homopσ(A,B)(F, kE) (2.4.2)

By considering the weight k1 in (2.2.4), it follows
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B(k1 ⊗σ F,E) ν∗

∼=
Homσ(Aop, Cat)(k1,B(F−, E)) ∼= Homopσ(A,B)(F, kE)

Definition 2.4.3. Let F : A −→ B be a 2-functor, and E an object of B. We define the cat-
egory of σ-cones, ConesΣ

σ (F,E) = Conesk1
σ (F,E), see Definition 2.2.1. By Remark 2.4.1, 

a σ-cone for F (with respect to Σ) with vertex E corresponds to a opσ-natural transfor-
mation F

θ=⇒ kE , this amounts to a lax cone {FA 
θA−→ E}A∈A, {θBFf

θf=⇒ θA}
A

f−→B∈A
such that θf is invertible for every f in Σ. The morphisms between two σ-cones corre-
spond to their morphisms as lax cones.

We now describe the universal property defining the (conical) σ-colimit of F . The 
σ-colimit in B (with respect to Σ) of the 2-functor F : A −→ B is the universal σ-cone, 
denoted {FA

λA−→ σLimΣ
−−−−→
A∈A

FA}A∈A, {λBFf
λf=⇒ λA}

A
f−→B∈A

in the sense that for each 

E ∈ B, pre-composition with λ is an isomorphism of categories

B(σLimΣ
−−−−→
A∈A

FA,E) λ∗
−→ Conesσ(F,E) (2.4.4)

We denote the weak notion of (conical) σ-bicolimit as in Remark 2.2.7, where λ∗ is an 
equivalence, σbiLimΣ

−−−−−→
A∈A

FA. By definition we have, for F : A −→ B,

σLim−−−→
A∈A

FA = k1 ⊗σ F, σbiLim−−−−→
A∈A

FA = k1 bi⊗σ F. (2.4.5)

Conical opσ-colimits are special cases of Cartesian quasi limits considered by J. W. 
Gray in [14, I,7.9.1 iii)]. What we would denote by opσLimΣ

−−−−−−→
A∈A

FA is, in Gray’s notation, 

Cart q- Lim−−→
A,isoΣ

F .

Remark 2.4.6. Conical σ-limits σLimΣ
←−−−−
A∈A

FA are σ-limits weighted by k1, in this case there 

is no “op” in the lax naturality involved (because there is no “op” in the first isomorphism 
of § 1.1, item 16), and they correspond in Gray’s notation to Cart q- Lim←−−

A,isoΣ
F . We also 

refer to σ-natural transformations kE
θ=⇒ F as σ-cones (as in Definition 2.4.3 above), 

and denote the so-obtained category of σ-cones by ConesΣ
σ (E, F ).

The following diagram illustrates the correspondence between σ-cones in Bop and 
σ-cones in B (recall that 2-cells in Bop keep their direction and that we denote objects 
in Bop with an overline, see § 1.1, item 8):
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For A
f−→ B in A,

FB

FfE

θA

θB

⇓θf

FA

in Bop corresponds to

FA

Ff

θA

E⇑θf

FB θB

in B.

(2.4.7)

Definition 2.4.8. Recall Definition 1.2.1. We denote by CΣ the 1-subcategory of ElP with 
arrows (f, ϕ) that satisfy f ∈ Σ, ϕ invertible (i.e. the intersection of CP and �−1

P (Σ)).

In [25, Theorem 15] Street shows that for each weight A W−→ Cat, s-limits weighted 
by W are equivalent to a special type of Gray’s cartesian quasi-limit (see Remark 2.4.6) 
over ElW . A slight modification of this procedure shows that weighted σ-limits can be 
expressed as conical σ-limits. Since we will use this result for colimits, we prefer to prove 
the colimit version.

Proposition 2.4.9. Let Aop W−→ Cat, A P−→ B, then we have

HomΣ
σ (Aop, Cat)(W,B(P−, B)) ∼= HomCΣ

σ (ElW , Cat)(k1,B(P�op
W−, B))

Proof. Consider the isomorphism

Hom�(Aop, Cat)(W,H) ∼= Hom�(ElW , Cat)(k1, H�W )

of Remark 1.2.4 and the explicit formulas therein. Then it can be seen at once that the 
isomorphism restricts to

HomΣ
σ (Aop, Cat)(W,H) ∼= HomCΣ

σ (ElW , Cat)(k1, H�W )

In particular, for H = B(P−, B) we have the desired isomorphism. �
This Proposition has as a corollary the following fundamental result:

Theorem 2.4.10. Let Aop W−→ Cat, A P−→ B, then

W ⊗σ P = k1 ⊗σ P�op
W = σLimCΣ

−−−−→
(x,A)∈ElopW

PA, W bi⊗σ P = k1 bi⊗σ P�op
W = σbiLimCΣ

−−−−−−→
(x,A)∈ElopW

PA,

which means that the universal properties defining each object are equivalent. In partic-
ular, by considering Σ = A0, we have

W ⊗p P = σLimCW
−−−−−→

(x,A)∈ElopW

PA, W bi⊗p P = σbiLimCW
−−−−−−→
(x,A)∈ElopW

PA.
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Proof. The first equality (in both expressions) is given by Proposition 2.4.9, the second 
one is (2.4.5). �

In particular for ε = p using Theorem 2.4.10 we have the following expressions 
of a pseudocoend of tensors as a conical σ-colimit (for the first equality consider 
(Aop)op P−→ Cat, Aop W−→ Cat, and the first coend as indexed by Aop).

Proposition 2.4.11.

σLimCP
−−−−→

(x,A)∈ElopP

WA = p

A∫
PA×WA = p

A∫
WA× PA = σLimCW

−−−−−→
(y,A)∈ElopW

PA �

The expression of a Cat-valued 2-functor as a conical σ-bicolimit of representable 
2-functors.

It is a classical result that any Set-valued functor has a canonical expression as a 
colimit of representable functors. We now establish a 2-categorical version of this result. 
Consider a 2-functor A P−→ Cat, and the Yoneda embedding Aop h−→ Homp(A, Cat),
hA = A(A,−). Recall the Pseudo-Yoneda Lemma, [26, (1.9)], see [8, 1.1.18] for a proof:

2.4.12 (Pseudo-Yoneda Lemma).
a) For any 2-functor A 

Q−→ Cat, evaluation at the identity for each A ∈ A provides 
the components:

Homp(A, Cat)(A(A,−), Q) ≈−→ QA

of a pseudo-equivalence, that is an equivalence in Homp(A, Cat), between Q and the 
2-functor on the left side. Furthermore, this equivalence is pseudonatural in the vari-
able Q.

From this, as usual, it follows:
b) The Yoneda embedding is pseudo-fully-faithful. That is, there is an equivalence of 

categories:

Homp(A, Cat)(A(A,−), A(B,−)) ≈−→ A(B, A). �
Proposition 2.4.13. For any 2-functor A P−→ Cat, we have a pseudo-equivalence, that is 
an equivalence in Homp(A, Cat):

P ≈ P ⊗p h
(1)= p

A∫
PA⊗A(A,−).

Proof. Consider P as a weight for the colimit of the Yoneda embedding h, then Corol-
lary 2.3.12 shows (1)=. Then, we have the following chain of equivalences, pseudonatural 
in the variable Q:
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Homp(A, Cat)(p
A∫
PA⊗A(A,−), Q) ∼= p

∫
A

Homp(A, Cat)(PA⊗A(A,−), Q)

∼= p

∫
A

Cat(PA,Homp(A, Cat)(A(A,−), Q))

≈ p

∫
A

Cat(PA, QA)

∼= Homp(A, Cat)(P, Q).

justified, in turn, by (2.3.7), Proposition 2.3.10, Pseudo Yoneda a) and Proposition 2.3.8. 
By the pseudonaturality in Q, a use of Pseudo Yoneda b), applied this time to the 
category Homp(A, Cat), finishes the proof. �

From this Proposition and Theorem 2.4.10 we have:

Proposition 2.4.14. For any 2-functor A P−→ Cat, we have a pseudo-equivalence, that is 
an equivalence in Homp(A, Cat):

P ≈ σLimCP
−−−−→

(x,A)∈ElopP

A(A,−). �

Remark 2.4.15. In particular, since σ-bilimits are defined up to equivalence, it follows 
that any Cat-valued 2-functor P is a conical σ-bilimit in Homp(A, Cat) of a 2-diagram 
in Homs(A, Cat) of representable 2-functors, indexed by the pair (ElopP , CP ).

2.5. A construction of conical σ-colimits of categories

In [14, I,7.11.4 i)] Gray proves that conical opσ-colimits in Cat exist and gives an 
explicit construction of them. In Proposition 2.5.1 below, we interpret this result ac-
cording to our notation. We will use the left adjoint π0 of the inclusion Cat d−→ 2-Cat
(where 2-Cat is the 2-category of small 2-categories, 2-functors and 2-natural transfor-
mations) and the existence of the usual category of fractions [13]. For a subcategory Σ
of a category C, we will denote this category by C[Σ−1].

We observe that Gray only makes invertible those morphisms of the form (f, id) ∈ CΣ
while we invert every morphism in CΣ. Since every morphism (f, ϕ) ∈ CΣ can be factor-
ized as (id, ϕ)(f, id) and (id, ϕ) is already invertible because ϕ is an isomorphism, both 
constructions are isomorphic.

Proposition 2.5.1. Let A 
Q−→ Cat be a 2-functor. Then

opσLim−−−−→
A∈A

QA = (π0ElQ)[C−1
Σ ]. �
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Remark 2.5.2. Let A 
Q−→ Cat be a 2-functor. There is a construction dual to the 

2-category of elements ElQ, that we will denote by ΓQ, where the direction of ϕ in 
Definition 1.2.1 is reversed. Note that Definition 2.4.8 can be easily adapted to define 
the 1-subcategory CΣ of ΓQ. Then a proof dual to the one of Proposition 2.5.1 shows 
that, for a 2-functor A 

Q−→ Cat,

σLim−−−→
A∈A

QA = (π0Γop
Q )[C−1

Σ ]

The interested reader can also see [2, Proposition 1.17] for the �-case, and
[6, Theorem 5.2] for the p-case, where the following formula is established:

σLim−−−→
A∈A

QA = π0(Γop
Q [C−1

Σ ]),

In the previous formula, Γop
Q [C−1

Σ ] is the 2-category of fractions in the sense of [24]. Note 
that from the adjunction π0 � d for any 1-subcategory Σ of a 2-category A it follows 
(π0A)[Σ−1] = π0(A[Σ−1]), thus the two constructions are the same.

Remark 2.5.3. Note that, since computing π0 and the category of fractions doesn’t change 
the objects, the objects of σLim−−−→

A∈A
QA can be taken to be the objects of ΓQ, which are 

pairs (x, A) with A ∈ A, x ∈ QA. By looking at the proof of [14, I,7.11.1] (which has 
[14, I,7.11.4 i)], i.e. Proposition 2.5.1 as corollary), we have a formula for the universal 
σ-cone λ, in particular on objects λA(x) = (x, A). Note that for each object c ∈ σLim−−−→

A∈A
QA, 

there are A ∈ A, x ∈ QA such that λA(x) = c.

Lemma 2.5.4. Let Aop W−→ Cat, A P−→ Cat, and consider the universal w-σ-cone 
W

ν=⇒ Cat(P−, C), where C = W ⊗σ P (see (2.2.4)), note that ν is a σ-natural trans-
formation. Then for each object c ∈ C, there exist A ∈ A, x ∈ WA, a ∈ PA such that 
νA(x)(a) = c.

Proof. By Theorem 2.4.10 we have C = σLimCΣ
−−−−→

(x,A)∈ElopW

PA. In other words, W ⊗σ P is the 

σ-colimit of the 2-functor ElopW
�op

W−→ A P−→ Cat. We may compute this colimit using 

Remark 2.5.2, then we have the colimit σ-cone P�op
W

λ=⇒ kC . By Remark 2.5.3, there 
are (x, A) ∈ ElW , a ∈ PA such that λ(x,A)(a) = c.

Now, as in the proof of Theorem 2.4.10, the correspondence between the σ-colimit 
σ-cone P�op

W
λ=⇒ kC and the σ-colimit w–σ-cone W

ν=⇒ Cat(P−, C) is given by Propo-
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sition 2.4.9 and (2.4.2), and therefore by the formulas in Remark 1.2.4 and in § 1.1, 
item 16. Then we have νA(x)(a) = λ(x,A)(a) = c. �
2.6. Pointwise limits

We analyze now the computation of weighted ε-limits in functor categories. The point-
wise computation of arbitrary weighted ε-limits is a much more delicate matter than that 
of cotensors (Proposition 2.3.10), we give below a general result regarding the pointwise 
computation of α-limits in opβ-functor categories (with pseud” or strict diagrams). Note 
in particular the appearance of the “op” prefix, this is reminiscent of the lifting of op-lax 
limits to the 2-category of strict algebras and lax morphisms for a 2-monad ([20]), which 
has as a particular case the case γ = � of Proposition 2.6.2.

Remark 2.6.1. Let B, C be 2-categories, and γ ∈ {s, p, �}. Then we have a 2-functor 

B
ev(−)−−−−→ Homγ(Homopγ(B, C), C) given by the formulas, for B

f

μ⇓
g

B′ in B, 

F

θ

ρ⇓
η

G in Homopγ(B, C),

1. evB(F ) = FB, evB(θ) = θB , evB(ρ) = ρB
2. (evf )F = Ff, (evf )θ = θf
3. (evμ)F = Fμ

For each B ∈ B and any ε the definition in 1. determines 2-functors

Homε(B, C) evB−−−→ C, Homopε(B, C) evB−−−→ C,

that is, functors

Homε(B, C)(F, G) evB−−−→ C(FB, GB), Homopε(B, C)(F, G) evB−−−→ C(FB, GB).

All the verifications are straightforward. �
Recall Notation 2.2.10. Given 2 categories A, B, in the next proposition we let α ∈ LA,

β ∈ LB be the label “s”, or labels corresponding to arbitrary 1-subcategories of A, B
respectively. Among all the possible labels, the three labels �, p, s always make sense for 
any A and B. We will use the letter γ to refer to these labels. With this in mind, we 
have:

Proposition 2.6.2. Let γ ∈ {�, p, s}, α ∈ LA, β ∈ LB, such that α ≥ γ, β ≥ γ. Then 
weighted α-limits of opγ-diagrams are computed pointwise in the 2-functor 2-categories
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Homopβ(B, C) (in particular in Homopγ(B, C)), and are preserved by the inclusion 

2-functor Homopγ(B, C) i−→ Homopβ(B, C). This means precisely that given 2-functors
A W−→ Cat, A F−→ Homopγ(B, C), if the α-limits {W, evBF}α exist in C for each B ∈ B, 
the definition LB = {W, evBF}α determines a 2-functor B L−→ C which is the α-limit 
L = {W, iF}α of iF weighted by W in Homopβ(B, C). Denoting the composition evBF by 
(F−)B : A −→ C, we can write {W, F}α(B) = {W, (F−)(B)}α. Note that when γ = �, 
this forces that also α = � and β = �.

Proof. The definition of L is given by the composition (see Remarks 2.2.11 and 2.6.1):

L : B
ev(−)−−−−→ Homγ(Homopγ(B, C), C) F∗

−−→ Homγ(A, C)+
{W,−}α−−−−−→ C

Note that by hypothesis the limits {W, evBF}α exist for each B. It follows then that the 
composite F ∗ev(−) actually lands in Homγ(A, C)+, so L is defined.

Clearly LB = {W, evBF}α. For each B ∈ B, let W ξB=⇒ C(LB, (F−)B) be a 
α-limit w-α-cone in C, LB = {W, (F−)B}α, let us denote the components of ξB by 

WA
ξB,A−−−→ C(LB, (FA)B). Then:

a) For each A ∈ A, WA 
ξB,A−−−→ C(LB, (FA)B) are the components of an s-dinatural 

cone in the variable B.
proof: Let B h−→ B′ in B, and consider the following diagram as in the proof of 

Remark 2.2.11:

W

ξB

ξB′
C(LB′, (F−)B′)

(Lh)∗

LB′

C(LB, (F−)B)
((F−)h)∗ C(LB, (F−)B′) LB

∃! Lh

Then, evaluating at A finishes the proof. end proof of a) �
b) The arrows in a) determine a w-α-cone:

WA
ξA−→ Homs(B, C)(L, FA) i−→ Homopβ(B, C)(L, FA), W

ξ=⇒ Homopβ(B, C)(L, F ).

proof: Let A 
g−→ A′ in A, and consider the following diagram:

WA
ξA

Wg ⇓ξg

Homopγ(B, C)(L, FA)

(Fg)∗

i

≡

Homopβ(B, C)(L, FA)

(Fg)∗

evB

≡

C(LB, (FA)B)

((Fg)B)∗

WA′ξA′
Homopγ(B, C)(L, FA′) i Homopβ(B, C)(L, FA′)

evB C(LB, (FA′)B)
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By Proposition 2.3.8 it follows there are arrows ξA, ξ′A such that evB ξA = ξB,A, 
evB ξA′ = ξB,A′ . By hypothesis, for each B, ξB is α-natural (in the variable A). Thus there 

is a 2-cell ((Fg)B)∗ ξB,A
(ξB)g=⇒ ξB,A′ Wg. It is straightforward to check that ((Fg)B)∗ ξB,A

and ξB,A′ Wg are opγ-dicones for the 2-functor C(L−, (FA′)−), and the (ξB)g deter-
mine a morphism of dicones. Then, the existence of ξg as indicated in the diagram, 
(ξB)g = evB ξg, follows from the isomorphism of categories

Cat(WA, Homopγ(B, C)(L−, (FA′)−))
∼=−→ Diconesopγ(WA, C(L,FA′)).

This shows we have a w-α-cone: W ξ=⇒ Homopγ(B, C)(L, F−), thus also one into 
Homopβ(B, C)(L, F−).

The axioms of α-naturality for ξg can be checked using the corresponding axioms for 
(ξB)g and the isomorphism of categories above. end proof of b) �

c) The w-α-cone in b) is a α-limit cone in Homopβ(B, C), L = {W, F}α.
proof: It only remains to show the universal property. Let B H−→ C be a 2-functor and 

W
ρ=⇒ Homopβ(B, C)(H, F−) be a w-α-cone. We have:

W

ρB

ξB C(LB, (F−)B)

(ηB)∗

LB

C(HB, (F−)B) HB

∃! ηB

We now prove that ηB is opβ-natural in the variable B. Let B h−→ B′ in B. Consider 
the isomorphism in the definition of ξB′ ,

(1) C(HB, LB′) (ξB′ )∗−−−−→ Homα(A, Cat)(W, C(HB, (F−)B′))

We have the α-natural structural 2-cell ηh defined as follows:

(Hh)∗(ηB′)∗ξB′ = (Hh)∗ρB′
ρh=⇒ ((F−)h)∗ρB = ((F−)h)∗(ηB)∗ξB =

= (ηB)∗((F−)h)∗ξB = (ηB)∗(Lh)∗ξB′ .

We suggest the reader to use the diagram below to check the equations in this defini-
tion.
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C(HB, (F−)B)

((F−)h)∗

C(LB, (F−)B) ((F−)h)∗

(ηB)∗

W

ρB

ξB

ξB′

ρB′

ρB

C(LB, (F−)B′)
(ηB)∗

C(HB, (F−)B′)

C(LB′, (F−)B′)

(ηB′ )∗

(Lh)∗

⇑ (ηh)∗

C(HB′, (F−)B′)

(Hh)∗

⇓ρh

C(HB, (F−)B)

((F−)h)∗

Thus, we have a 2-cell (ηB′ Hh)∗ ξB′
ρh=⇒ (Lh ηB)∗ ξB′ . By the isomorphism (1) above, 

it follows that there exist a unique HB
ηB

Hh

LB

Lh

HB′ ηB′

⇑ηh

LB′

such that ρh = (ηh)∗ξB′ . The 

β-naturality axioms for η follow from the β-dicone axioms for ρ and the opβ-naturality 
of ρA(x), A ∈ A, x ∈ WA. We leave to the reader the verification of the 2-dimensional 
aspect of the universal property. end proof of c) �

This finishes the proof of the proposition. Note that if C has tensor products with 
2 = {0 → 1}, by Proposition 2.3.10 so does Homopβ(B, C) and thus (as in [17, p.306]) 
the 2-dimensional aspect of the universal property follows from the 1-dimensional one. 
However we think it is pertinent not to assume that C has tensors, for example, in 
practice, C may only have all finite conical p-limits. �
Remark 2.6.3. Note that to compute pointwise α-limits in the Homopβ(B, C) categories 
we use α-limits in C. Since Homopβ(B, C) ∼= Homβ(Bco, Cco) (§ 1.1, item 14), to compute 
α-limits in Homβ(B, C) we use α-limits in Cco, that is opα-limits in C (Remark 2.2.6).

Since for β = p or s we have isomorphisms Homopβ(B, C) ∼= Homβ(B, C), it follows:
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Corollary 2.6.4. Weighted σ-limits are computed pointwise in the 2-functor 2-categories 
Homs(B, C) and Homp(B, C). The inclusion Homs(B, C) i−→ Homp(B, C) preserves these 
limits, we have i{W, F}σ = {W, iF}σ. �
Remark 2.6.5. In general, s-limits are not computed pointwise in Homp(A, B), see 
[3, Example 6.2] for a counterexample. The obstruction in the proof of Proposition 2.6.2
if one tries to prove this statement is that the definition LB in the beginning of 
the proof would not be functorial in the variable B, as we do not have a 2-functor 
Homp(A, C) {W,−}s−−−−−→ C.

2.7. Interchange formulas

As usual, the commutativity of limits with limits follows from the pointwise compu-
tation. Recall the notation considered before Proposition 2.6.2.

Proposition 2.7.1. Let γ ∈ {�, p, s}, α ∈ LA, β ∈ LB, such that α ≥ γ, β ≥ γ. 
Let A Fl−→ Homopγ(B, C), B Fr−→ Homγ(A, C) be 2 functors in correspondence as in 

§ 1.1, item 12. Consider weights A 
Wl−→ Cat, B Wr−→ Cat. Then, the following holds:

{Wl, {Wr, Fr}β}α ∼= {Wr, {Wl, Fl}α}β

Proof. By the usual reasoning it suffices to show it for the case C = Cat. We have the 
following isomorphisms given by Proposition 2.2.8 and Corollary 2.2.9:

{Wl, {Wr, Fr}β}α ∼= Homα(A, Cat)(Wl, {Wr, Fr}β) ∼= {Wr, Homα(A, Cat)(Wl, Fr−)}β

We conclude the proof by showing that {Wl, Fl}α = Homα(A, Cat)(Wl, Fr−). By 
Proposition 2.6.2 we can compute pointwise:

{Wl, Fl}α(B) = {Wl, (Fl−)(B)}α = Homα(A, Cat)(Wl, (Fl−)(B)) =

Homα(A, Cat)(Wl, FrB(−)) = Homα(A, Cat)(Wl, Fr−)(B).

The second equality is justified by Proposition 2.2.8, the third one follows from the 
formulas in § 1.1, item 12, and the last is clear. �

It is convenient to state with a slightly different notation a particular case which we 
will need in this paper;

Proposition 2.7.2. Let σ ∈ LI . Consider a 2-functor I
F(−)−−−→ Homp(A, B) and a weight 

A W−→ Cat. Then the following holds:

{W,σLim←−−−
i∈I

Fi}p = σLim←−−−
i∈I

{W,Fi}p. �
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The commutativity of weighted pseudolimits with conical σ-colimits, which is (as 
usual) a much deeper subject, is treated in [9] for Cat-valued 2-functors. We recall 
now this result noting that, while in [9, Theorem 3.2] it is stated for a 2-functor 
I −→ Homs(A, Cat), since pseudolimits are also computed pointwise in Homp(A, Cat)
a careful inspection of the proof yields:

Theorem 2.7.3. Let I be a σ-filtered 2-category, A a 2-category. Consider a 2-functor 
I

F(−)−−−→ Homp(A, Cat) and a finite weight (see Definition 3.2.2) A W−→ Cat. Then the 
canonical comparison functor

σLim−−−→
i∈I

bi{W,Fi}p
≈−→ bi{W,σLim−−−→

i∈I
Fi}p

is an equivalence of categories. �
3. σ-filtered 2-categories

We fix throughout this section a 2-category C and a 1-subcategory Σ of C which 
contains all the objects. Note that this amounts to a family, that we will also denote by Σ, 
of arrows of C such that all the identities belong to Σ and Σ is closed by composition. 
We don’t require Σ to contain the isomorphisms or the equivalences of C.

3.1. The notion of σ-filtered

Recall that a non empty 1-category is filtered if and only if every finite diagram has a 
cone (see [22, §VII.6]). This happens if and only if two particular diagrams, correspond-
ing to binary products and equalizers, have a cone (the two usual axioms of filtered 
category).

In the 2-dimensional case the notion of filteredness has been considered under the 
name of bifiltered in [19], and 2-filtered in [11], and it holds if and only if every finite 
diagram has a pseudocone (see [6]).

We introduce now the concept of 2-filteredness with respect to a family Σ. It gener-
alizes the definition of bifiltered in [19], which corresponds to the case where Σ consists 
of all the arrows of A.

Notation 3.1.1. We add a circle to an arrow · o · to indicate that it belongs to Σ.

Definition 3.1.2. We say that a pair (C, Σ) is σ-filtered, or for brevity, that C is σ-filtered 
(with respect to Σ), if it is non empty and the following hold:

σF0. Given A, B ∈ C, there exist E ∈ C and morphisms 
A

o
f

E.

B
o
g
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σF1. Given A
f

o
g

B ∈ C, there exist a morphism B o
h

E and a 2-cell 

hf
α=⇒ hg. If f ∈ Σ, we may choose α invertible.

σF2. Given A

f

α⇓ β⇓
o
g

B ∈ C, there exists a morphism B o
h

E such that 

hα = hβ.

We say that C is σ-cofiltered if Cop is σ-filtered. We keep the same labels for the 
axioms.

Proposition 3.1.3. Consider the following finite diagrams:

1. {a, b} F1−→ C, {C,D}

2. {a
u

v

b} F2−→ C, {C
f

o
g

D}

3. {a
u

θ⇓ η⇓
v

b} F3−→ C, {C
f

α⇓ β⇓
o
g

D}

Let Σ1, Σ2, Σ3 (respectively) be the family of arrows that are mapped to arrows of Σ, 
i.e. Σi = F−1

i (Σ). Then, for each i, the category ConesΣi
σ (Fi, E) (recall Definition 2.4.3) 

is equivalent (naturally in E) to the category Ai whose objects and arrows are:

A1 Objects: Pairs of morphisms 
C h

E

D �

Arrows: Pairs of 2-cells h =⇒ h′, � =⇒ �′.

A2 Objects: An object consists of a morphism D
h

E together with a 2-cell 
hf

γ=⇒ hg, invertible if f ∈ Σ.
Arrows: 2-cells h 

η=⇒ h′ such that γ′(ηf) = (ηg)γ.

A3 Objects: Morphisms D
h

E such that hα = hβ.
Arrows: 2-cells h 

η=⇒ h′.

Proof. Certainly item 1 requires no proof.
For item 2, we define the equivalence ConesΣ2

σ (F2, E) φ−→ A2, and leave the verifica-
tion of the details to the reader. Given a σ-cone θ, define h = θb, γ = θ−1

v θu. Given a 
morphism of σ-cones θ ϕ−→ θ′, define η = ϕb. Then it is easy to check that φ is actually 
surjective on objects, and given φ(θ) η−→ φ(θ′), the unique θ

ϕ−→ θ′ such that φ(ϕ) = η

is defined by ϕb = η, ϕa = θ′v(ηg)θ−1
v .
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For item 3, define h, γ and η as in item 2, but now since θ is a σ-cone we have 
hα = γ = hβ. Then in this case the condition γ′(ηf) = (ηg)γ for a 2-cell h 

η=⇒ h′ is 
(h′α)(ηf) = (ηg)(hα), which holds by the interchange law. �

The following proposition expresses a basic property of σ-filteredness and it is a 
generalization of [22, §VII.6, Lemma 1] to the 2-dimensional case. See also [6] where 
the case of Σ consisting of all the arrows of C is analyzed.

Notation 3.1.4. For a 2-functor Δ F−→ C, we say that a σ-cone θ with vertex E has arrows 
in Σ if the structural arrows F (i) θi−→ E are in Σ for all i ∈ Δ.

Proposition 3.1.5. The following are equivalent

i) C is σ-filtered.
ii) Each of the diagrams F1, F2, F3 in Proposition 3.1.3 has a σ-cone (with respect to 

F−1(Σ)) with arrows in Σ.
iii) Every finite 2-diagram Δ F−→ C (i.e. every 2-functor Δ F−→ C with Δ a finite 

2-category) has a σ-cone (with respect to F−1(Σ)) with arrows in Σ.

Proof. iii) ⇒ ii) is trivial. ii) ⇒ i) follows from the description of the σ-cones in Propo-
sition 3.1.3. To show i) ⇒ iii), suppose that C is σ-filtered and let Δ F−→ C be a finite 

2-diagram. Since Δ is finite, by axiom σF0, we have morphisms 
{
Fi o

θi
E

}
i∈Δ.

We will modify E and the arrows θi by going further, in order to have a σ-cone with 
arrows in Σ. We will do this one arrow u of Δ at a time. Using axiom σF1, there is a 

morphism E o
h

E′ and a 2-cell θjF (u) θu=⇒ θi, invertible if F (u) ∈ Σ. We denote 
E′ by E again, the compositions hθi by θi, and hθu by θu for all the pre-existing θu. We 

repeat the procedure to have 
{
θjF (u) θu=⇒ θi

}
i

u−→j∈Δ
, with θu invertible for all u such 

that F (u) ∈ Σ.
Now we consider the equations LN0, LN1, LN2 of § 1.1, item 11 expressing the lax 

naturality of F θ=⇒ kE (see Definition 2.4.3). A similar procedure, considering one equa-
tion at a time and using axiom σF2 instead of σF1, allows one to go further and make 
θ a σ-cone with arrows in Σ. �

Remark 3.1.6. The reason why we consider σ-cones with arrows in Σ will be clear in 
Proposition 3.2.3 below. We note nevertheless that a weaker notion of σ-filteredness 
where we ask that every finite 2-diagram has a σ-cone could also be worth considering 
in another context.
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3.2. Exact 2-functors

Definition 3.2.1. Consider 2-functors A W−→ Cat, A F−→ B H−→ C. We say that 
H preserves a σ-bilimit bi{W, F}σ if bi{W, HF}σ exists, and the canonical map 
Hbi{W,F}σ −→ bi{W,HF}σ is an equivalence.

We will define the notion of finite weight and finite bilimit below. We note that there is 
a more general notion of finite (or finitary) weight ([16, § 4],[25]) which we don’t consider 
here as it is not necessary for our purposes.

Definition 3.2.2. 1. We say that a 2-functor A W−→ Cat is a finite weight if A is a finite 
2-category and for each A ∈ A, WA is a finite category. A finite bilimit is a weighted 
bilimit with finite weight.

2. Assume that B is a 2-category with finite weighted bilimits. We say that a 2-functor 
B H−→ C is left exact if it preserves all finite bilimits.

Note that all finite weighted bilimits are required to exist in the domain category of 
exact 2-functors, but not necessarily in the codomain category.

The objective of this subsection is to prove the following result: for any left exact 
Cat-valued 2-functor P , its 2-category of elements ElP is σ-cofiltered (with respect to 
the cocartesian arrows). The first result which we will use is a 2-dimensional version of 
a result that is known for Set-valued functors, see for example [15, Proposition 4.87]:

Proposition 3.2.3. Let A P−→ Cat be a 2-functor. Let Δ F−→ ElP be a 2-functor, and set 
Σ = F−1(CP ). Assume that �PF has a σ-bilimit L in A that is preserved by P . Then 
there exist c ∈ PL and a σ-cone for F with arrows in CP with vertex (c, L), which is the 
σ-bilimit of F .

Proof. We are going to denote the action of F by Fi = (ai, Fi) for each i ∈ Δ, 

Fu = (Fu, σu) for each i u−→ j ∈ Δ, Fθ = Fθ for each i
u

θ⇓
v

j ∈ Δ.

Consider the σ-bilimit L of the 2-functor Δ 
�PF−−−→ A, then L is furnished with a 

σ-cone {L 
hi−−→ Fi}i∈Δ, {Fuhi

hu=⇒ hj}i u−→j∈Δ. This σ-bilimit is preserved by P , this 

means that if we denote by E the σ-bilimit of the 2-functor Δ 
P�PF−−−−→ Cat, which is 

furnished with a σ-cone {E πi−→ PFi}i∈Δ, {PFuπi
πu=⇒ πj}i u−→j∈Δ, then the comparison 

functor PL s−→ E such that πis = Phi, πus = Phu is an equivalence of categories.
Recall that, by the construction of σ-limits in Cat given in Remark 2.3.13, we have 

that E = Homσ(Δ, Cat)(k1, P�PF ) and so:

1. Objects of E are σ-natural transformations between the constant 2-functor k1
and P�PF . Observe that those transformations correspond to pairs of tuples 
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({xi}i∈Δ, {ϕu}i u−→j∈Δ) with xi ∈ PFi, PFu(xi) 
ϕu−→ xj satisfying the following prop-

erties corresponding to axioms LN0, LN1 and LN2 from § 1.1, item 11:

LN0. For all i ∈ Δ, ϕidi
= idxi

LN1. For all i u−→ j
v−→ k ∈ Δ, ϕvu = ϕvPFv(ϕu)

LN2. For all i
u

θ⇓
v

j ∈ Δ, ϕv(PFθ)xi
= ϕu

2. Arrows of E are modifications. Observe that a modification between ({xi}i∈Δ,

{ϕu}i u−→j∈Δ) and ({yi}i∈Δ, {ψu}i u−→j∈Δ) corresponds to a tuple {xi
ξi−→ yi}i∈Δ sat-

isfying the property corresponding to axiom LNM from § 1.1, item 11:

LNM. For all i u−→ j ∈ Δ, ψuPFu(ξi) = ξjϕu

3. πi({xi}i∈Δ, {ϕu}i u−→j∈Δ) = xi, πi({xi
ξi−→ yi}i∈Δ) = ξi.

4. (πu)({xi}i∈Δ,{ϕu}i
u−→j∈Δ) = ϕu.

Thus s(c) = ({Phi(c)}i∈Δ, {(Phu)c}i u−→j∈Δ).
Now, F determines an object of E ({ai}i∈Δ, {σu}i u−→j∈Δ). Since s is an equivalence 

of categories, there exists an object c ∈ PL such that we have an invertible modification 

from s(c) to ({ai}i∈Δ, {σu}i u−→j∈Δ), say {Phi(c) 
ξi−→ ai}i∈Δ satisfying that the following 

diagram commutes in PFj :

P (Fuhi)(c)

(Phu)c

PFu(ξi)
PFu(ai)

σu

Phj(c)
ξj

aj

We have the following σ-cone for F :

{(c, L) (hi,ξi)−−−−→ (ai, Fi)}i∈Δ, {(Fuhi, σuPFu(ξi))
hu=⇒ (hj , ξj)}i u−→j∈Δ.

It is straightforward from the diagram above that the hu are 2-cells in ElP .
We leave the verification of the fact that (c, L) is actually a σ-bilimit to the interested 

reader. In any case, note that in this paper we only need the existence of a σ-cone (with 
arrows in CP ). �

We write here, for convenience of the reader, the dual version of Proposition 3.1.3:

Proposition 3.2.4. For the 2-functors Fi, i = 1, 2, 3 considered in Proposition 3.1.3, and 
Σi = F−1

i (Σ), the category ConesΣi
σ (E, Fi) (recall Remark 2.4.6) is equivalent (naturally 

in E) to the category Bi whose objects and arrows are:
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B1 Objects: Pairs of morphisms 
C

E

h

� D
Arrows: Pairs of 2-cells h =⇒ h′, � =⇒ �′.

B2 Objects: An object consists of a morphism E
h

C together with a 2-cell 
fh

γ=⇒ gh, invertible if f ∈ Σ.
Arrows: 2-cells h 

η=⇒ h′ such that γ′(fη) = (gη)γ.

B3 Objects: Morphisms E
h

C such that αh = βh.
Arrows: 2-cells h 

η=⇒ h′. �
Remark 3.2.5. Concerning our objective of showing that ElP is σ-cofiltered for a left 
exact 2-functor A P−→ Cat, recall Proposition 3.1.5. For a 2-functor Δ F−→ E lP , in view 
of Proposition 3.2.3, we can deduce that F has a σ-cone with arrows in CP by showing 
that the σ-bilimit of the composite 2-functor �PF is preserved by P . We will show that 
when P is exact, this is the case when F is each of the functors F1, F2, F3 considered in 
Proposition 3.1.3, by relating the σ-bilimits of these functors to biproducts, biinserters, 
biequalizers and biequifiers in A (which we describe below). This is done by performing a 
careful comparison of the categories B1, B2, B3 above with the cones of these four bilimits. 
Consider thus the finite diagrams Δ 

Fi−→ C, i = 1, 2, 3:

1. biproduct(C, D): this is the bilimit of the diagram a 
F1
−→ C, b 

F1
−→ D weighted by the 
2-functor W1 constant at the terminal category 1.

2. biinserter(f, g): this is the bilimit of the diagram a
u

v

b 
F2
−→ C

f

g

D

weighted by a
u

v

b 
W2
−→ 1

0

1
2, see [17, (4.1)] for details. Note that if we 

consider the category I (consisting of two objects and an isomorphism) instead of 2, 
the weighted bilimit is the biequalizer(f, g) (note that the biequalizer(f, g) is also the 
biisoinserter(f, g) see [17, p.308] and [5, Observation 5.23])

3. biequifier(α, β): this is the bilimit of the diagram a 
u

θ⇓ η⇓
v

b 
F3
−→ C

f

α⇓ β⇓
g

D

weighted by a
u

θ⇓ η⇓
v

b 
W3
−→ 1

0
⇓ ⇓

1
2, see [17, (4.5)] for details.

We note, though we won’t use this fact, that finite biproducts, biequalizers and bi-
cotensor products with 2 = {0 → 1} suffice to construct all finite weighted bilimits (The 
general proof in [27] can be restricted to the finite case, see [5, § 6.2] for details). Since 
the bicotensor product with 2 can be constructed from the biinserter and the biequifier, 
the four bilimits above are also sufficient to construct all finite weighted bilimits. In 
particular we have that a 2-functor H is left exact if and only if these four bilimits exist 
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and are preserved by H, and thus we are actually using in our proof of Proposition 3.2.8
the full strength of the hypothesis.

Proposition 3.2.6. With the definitions above, for i = 1, 2, 3, the category ConesWi
p (E, Fi)

(recall Definition 2.2.1) is equivalent (naturally in E) to the category Bi described in 
Proposition 3.2.4 (for i = 2, the case in which the 2-cell γ is required to be invertible 
corresponds to the case of the biequalizer).

Proof. The case i = 1 requires no proof. For the case i = 2, we denote the category 2 by 

{0 �−→ 1}. Note that a cone W2
θ=⇒ C(E, F2(−)) amounts to E

θa−→ C, E
θb(0)

θb(�)⇓

θb(1)
D, 

and invertible 2-cells θaf
θu=⇒ θb(0), θag

θv=⇒ θb(1). The definition of the equivalence 

ConesW2
p (F2, E) φ−→ B2 on objects is by the formulas h = θa, γ = θ−1

v θb(�)θu, this is 
easily seen to be surjective.

A morphism of cones W2

θ

ϕ⇓

θ′

C(E, F2(−)) is a modification given by natural 

transformations θa
ϕa=⇒ θ′a, θb

ϕb=⇒ θ′b, therefore by 2-cells ϕa, (ϕb)0, (ϕb)1 such that 
θ′b(�)(ϕb)0 = (ϕb)1θb(�), θ′u(fϕa)θ−1

u = (ϕb)0, θ′v(gϕa)θ−1
v = (ϕb)1. The definition of φ

is by the formula η = ϕa, then from the equations above we note that (ϕb)0 and (ϕb)1
are determined by ϕa, and the condition γ′(fη) = (gη)γ is equivalent to the equation 
θ′b(�)(ϕb)0 = (ϕb)1θb(�). Then ϕ is full and faithful.

In the case where we replace 2 by I, the formulas are the same, simply note that γ is 
invertible. If i = 3, we consider h, γ, η as in the case i = 2, then from the 2-naturality of 
θ it follows αh = γ = βh and the proof finishes like the proof of Proposition 3.1.3. �

Remark 3.2.7. From Proposition 3.2.6 it follows that the σ-bilimit of each of the functors 
F1, F2, F3 of Proposition 3.1.3, for any of the possibilities for the family Σi, is a finite 
weighted bilimit, more precisely:

1. For {a, b} 
F1
−→ {C, D}, σbiLim←−−−− F1 = biproduct(C, D).

2. (i) For {a o
u

o
v

b} 
F2
−→ {C

f

g

D}, σbiLim←−−−− F2 = biequalizer(f, g).

(ii) For {a
u

o
v

b} 
F2
−→ {C

f

g

D}, σbiLim←−−−− F2 = biinserter(f, g).
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3. For {a
o
u

θ⇓ η⇓
o
v

b} 
F3
−→ {C

f

α⇓ β⇓
g

D}, and for

{a
u

θ⇓ η⇓
o
v

b} 
F3
−→ {C

f

α⇓ β⇓
g

D}, σbiLim←−−−− F3 = biequifier(α, β).

It follows that if a 2-functor P is left exact then P preserves the σbiLim←−−−− Fi, for 

i = 1, 2, 3 with the 1-subcategories Σi considered above.

Proposition 3.2.8. Let A be a 2-category with finite weighted bilimits and let A P−→ Cat
be a 2-functor. If P is left exact then ElP is σ-cofiltered with respect to CP .

Proof. By Proposition 3.1.5 it suffices to show that each of the diagrams F1, F2, F3 :
Δ −→ E lP considered in Proposition 3.1.3 has a σ-cone with arrows in CP . Let i = 1, 2, 3, 
by Remark 3.2.7 σbiLim←−−−− �PFi exists in A and is preserved by P (note that all the possible 

Σi = F−1
i (CP ) were considered in the remark). Then by Proposition 3.2.3 Fi has a σ-cone 

with arrows in CP which concludes the proof. �
3.3. σ-cofinal 2-functors

In this section we define σ-cofinal 2-functors and establish some properties that will 
be used in the proof of Theorem 4.2.7. Our definition is a 2-dimensional σ-version of the 
definition in SGA4 for the case when C is filtered (see [1, 8.1.1]). If Σ = C0, we recover 
[7, Definition 1.3.1]. We do not deal with a more general concept of σ-cofinality since 
this particular case is relevant enough and it is the only one that we need in this paper. 
We leave the development of the full theory of σ-cofinal 2-functors for future work.

Definition 3.3.1. Let C, C′ be 2-categories and Σ, Σ′ 1-subcategories of C, C′ respectively. 
Suppose that C is σ-filtered. We say that a 2-functor C T−→ C′ is σ-cofinal (with respect 
to Σ and Σ′) if it satisfies:

σC0. Given C ′ ∈ C′, there exist C ∈ C and a morphism C ′ o TC in C′.

σC1. Given C ′
f

o
g

TC ∈ C′, there exist a morphism C o
u

D and a 2-cell 

T (u)f α=⇒ T (u)g. If f ∈ Σ′, we may choose α invertible.

σC2. Given C ∈ C, C ′ ∈ C′ and 2-cells C ′
f

α⇓ β⇓
o
g

TC ∈ C′, there exists a morphism 

C o
u

D ∈ C such that T (u)α = T (u)β.
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If C is σ-cofiltered, we say that C T−→ C′ is σ-initial if Cop T op

−→ C′op is σ-cofinal. We 
keep the same labels for the axioms.

The following proposition is the only result concerning σ-cofinal functors that we need 
in this paper, and it is the analogous to item c) of [1, 8.1.3].

Proposition 3.3.2. Let C, C′ be 2-categories, C T−→ C′ a 2-functor, Σ′ a subcategory of C′, 
and Σ = T−1(Σ′). If the following hold:

1. C′ is σ-filtered,
2. T is pseudo-fully-faithful,
3. Condition σC0 from Definition 3.3.1.

Then C is σ-filtered and T is σ-cofinal.

Proof. We observe that since T is pseudo-fully-faithful and Σ = T−1(Σ′) we have:

(1) For every arrow TC o
h

TD in C′, there exists C o
u

D such that T (u) ∼= h.

We are going to check first that axioms σC1 and σC2 from Definition 3.3.1 are 
satisfied:

σC1. Given C ∈ C, C ′ ∈ C′, C ′
f

o
g

TC ∈ C′, since C′ is σ-filtered, there exist a 

morphism TC o
h

D′ and a 2-cell hf α=⇒ hg, that we may take invertible if f ∈ Σ′. 
Then, by the fact that condition σC0 is satisfied, there exist an object D ∈ C and a 

morphism D′ o
l

TD ∈ C′. Now, by (1) above, there exists a morphism C o
u

D

such that T (u) ∼= lh and so we have a 2-cell T (u)f ∼= lhf
lα=⇒ lhg ∼= T (u)g, which is 

invertible if f ∈ Σ′.

σC2. Given C ∈ C, C ′ ∈ C′ and 2-cells C ′
f

α⇓ β⇓
o
g

TC ∈ C′, since C′ is σ-filtered, 

there exists a morphism TC o
h

D′ such that hα = hβ. Then, by the fact that 

condition σC0 is satisfied, there exist an object D ∈ C and a morphism D′ o
l

TD . 

Now, by (1) above, there exists a morphism C o
u

D such that T (u) ∼= lh. This, 
together with the fact that hα = hβ can be used to prove that T (u)α = T (u)β.

It only remains to check that σF0, σF1 and σF2 from Definition 3.1.2 are satisfied 
for the 2-category C:
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σF0. Given C, D ∈ C, since C′ is σ-filtered, there exist morphisms 
TC

o
f

E′

TD
o
g

. Then, 

since T is σ-cofinal, there exist an object E ∈ C and a morphism E′ o
h

TE . Now, 

by (1) above, this yields morphisms 
C

o
u

E

D
o
v

.

σF1. Given C
u

o
v

D ∈ C, consider TC
Tu

o
Tv

TD ∈ C′. Since T is σ-cofinal, there 

exist a morphism D o
w

E and a 2-cell T (wu) = TwTu 
α=⇒ TwTv = T (wv), that 

we may take invertible if u ∈ Σ. Then, since T is pseudo-fully-faithful, this gives a 2-cell 
uw =⇒ vw, which is invertible if u ∈ Σ.

σF2. Given C
u

θ⇓ η⇓
o
v

D ∈ C, consider TC
Tu

Tθ⇓ Tη⇓
o
Tv

TD ∈ C′. Since T is 

σ-cofinal, there exists a morphism D o
w

E such that T (wθ) = TwTθ = TwTη =
T (wη). Then, since T is pseudo-fully-faithful, wθ = wη. �

Proposition 3.3.3. Let P, Q : A −→ Cat be 2-functors, and P
η=⇒ Q a pseudonatural 

transformation. If ηA is full and faithful for each A ∈ A, then the induced 2-functor 
ElP

Tη−→ ElQ (recall 1.2.5) is 2-fully-faithful and the 1-subcategories given by the cocarte-
sian arrows satisfy CP = T−1

η (CQ).

Proof. Recall the formulas in 1.2.5. Let (ηA(x), A) (f,ψ)−→ (ηB(y), B), consider then 

ηB(Pf(x)) 
(η−1

f )x−→ QfηA(x) ψ−→ ηB(y), since ηB is full and faithful there is a unique 
Pf(x) ϕ−→ y such that Tη(f, ϕ) = (f, ψ). This shows that Tη is 2-fully-faithful (the fact 
that we have an isomorphism between 2-cells is trivial).

To show that CP = T−1
η (CQ), note that ηB(ϕ) ◦ (ηf )x is an isomorphism if and 

only if ηB(ϕ) is so, which since ηB is full and faithful happens if and only if ϕ is an 
isomorphism. �

Proposition 3.3.4. Consider 2-functors A H−→ B P−→ Cat, and the induced 2-functor 
ElPH

TH−→ E lP as in 1.2.6. If H is 2-fully-faithful, then so is TH and the 1-subcategories 
given by the cocartesian arrows satisfy CPH = T−1

H (CP ).

Proof. It is immediate from the formulas TH(f, ϕ) = (Hf, ϕ), TH(θ) = Hθ in 1.2.6. �
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4. Flat pseudofunctors and the main theorems

4.1. Flat pseudofunctors

In this subsection we will consider pseudofunctors between 2-categories. Though our 
objective when starting the research that led to this paper was to have results for 
2-functors, it turned out that the correct generality in which to define flat 2-functors 
is to consider flat pseudofunctors. For 2-categories A, B, we denote by pHomp(A, B) the 
2-category of pseudofunctors, pseudonatural transformations and modifications. We re-
fer the reader to the Appendix A for the complete definitions of these concepts, noting 
that we will not need the explicit formulas of Definition A.1 in this section.

Weighted bilimits for pseudofunctors are considered for example in [26], [12], [21, § 2]. 
We recall this notion, with an approach more similar to the one of § 2.2, and show 
some basic results that will be needed later. For the sake of simplicity in the exposition, 
we consider only the case σ = p, but we note that we could also define σ-bilimits of 
pseudofunctors.

Definition 4.1.1. Given pseudofunctors A W−→ Cat, A F−→ B, and E an object of B, 
we denote pConesW (F, E) = pHomp(A, Cat)(W, B(E, F−)). This is the category of 
w-pseudocones (with respect to the weight W ) for F with vertex E.

The bilimit of F weighted by W , denoted bi{W, F}p or more precisely (bi{W, F}p, ξ), 
is a w-pseudocone ξ with vertex bi{W, F}p universal in the sense that

B(B, bi{W,F}p)
ξ∗−→ pHomp(A, Cat)(W,B(B,F−)) (4.1.2)

B

f

α⇓
g

E 
−→ W
ξ=⇒ B(E,F−)

f∗

α∗⇓

g∗
B(B,F−)

is an equivalence of categories (pseudonatural in the variable B).

Bilimits behave pseudofunctorially respect to pseudonatural transformations:

Remark 4.1.3. Let A
V

α⇓

W

Cat, A
F

β⇓

G

B be pseudonatural transformations 

between pseudofunctors. With a similar argument as in Remark 2.2.11 it follows that 
there are pseudofunctors

(pHomp(A, Cat)op)+ bi{−,F}p−−−−−−→ B, (pHomp(A,B))+
bi{W,−}p−−−−−−→ B,

(pHomp(A, Cat)op × pHomp(A,B))+
bi{−,−}p−−−−−−→ B.



304 M.E. Descotte et al. / Advances in Mathematics 333 (2018) 266–313
where the subscript “+” indicates the full-subcategories with objects such that the cor-
responding bilimits exist.

As for 2-functors, we refer to equivalences in pHomp(A, B) as pseudo-equivalences. 
Since pseudofunctors send equivalences to equivalences, we have:

1. If α is a pseudo-equivalence, then bi{W, F}p bi{α,F}p−−−−−−→ bi{V, F}p is an equivalence.
2. If β is a pseudo-equivalence, then bi{W, F}p bi{W,β}p−−−−−−→ bi{W, G}p is an equiva-

lence. �
Note that the definitions of preservation of bilimits (Definition 3.2.1), and left ex-

actness (Definition 3.2.2) make perfect sense for pseudofunctors. From Remark 4.1.3, 
item 2, it follows:

Corollary 4.1.4. Let A
F

β⇓

G

B be a pseudo-equivalence between pseudofunctors. Then 

any weighted bilimit preserved by F is also preserved by G. In particular, F is left exact 
if and only if G is. �

Recall that a Set-valued functor is flat when its left Kan extension along the Yoneda 
embedding is left exact (see for example [22, § VII.5]). This notion is considered in 
[16, § 6] for V-enriched categories in general, and in particular for V = Cat. However, as 
it is usually the case (for example with limits), the Cat-enriched version is too strict, and 
a relaxed version is the important notion.

In Definition 4.1.11 below, we will introduce the notion of flat pseudofunctor into Cat. 
The reader should be aware that if A P−→ Cat is a 2-functor (as we will consider in § 4.2), 
both Kelly’s notion of flatness and ours make sense, but are not at all equivalent. We 
will always be referring to our notion.

A relaxed notion of Kan extension was already considered in [21], where it was denoted 
pseudo Kan extension. We review the main results while, as it is defined by a bicolimit, 
changing the notation into the one adopted in this paper. We will use (and therefore 
choose to define) the left bi-Kan extension.

Let C be a 2-category with weighted bicolimits. We will only use the case C = Cat
in this paper. Given two pseudofunctors A P−→ C, A H−→ E , consider the composite 

E h−→ pHomp(Eop, Cat) H∗
−→ pHomp(Aop, Cat) of the Yoneda embedding 2.4.12, with the 

pseudofunctor determined by precomposition with H, which we denote E(H, −) = H∗◦h. 
We have:

Definition 4.1.5 ([21, 9.3]). The left (pointwise) bi-Kan extension of P along H is the 
pseudofunctor L = LanHP : E −→ C given by the formula LE = E(H, E) bi⊗p P for 
E ∈ E , that is L = (H∗ ◦ h) bi⊗p P (see Remark 4.1.3).

The pointwise bi-Kan extension has the following important universal property, which 
can also be considered as the definition of a (not necessarily pointwise) bi-Kan extension:
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Proposition 4.1.6 ([21, 9.6]). Given pseudofunctors A P−→ C, A H−→ E, for each pseudo-
functor E Q−→ C we have an equivalence

pHomp(E , C)(LanHP,Q) r−→
≈

pHomp(A, C)(P,QH) (4.1.7)

pseudonatural in Q. �
Remark 4.1.8. Equation (4.1.7) expresses a biadjunction between precomposition with 
H and LanH . The unit of this biadjunction consists of a pseudonatural transformation 
P

η=⇒ LanHP ◦H, which is given by η = r(idLanHP ) in (4.1.7):

A H

P

E

LanHP

C

η⇒

It can be seen (following the idLanHP in the chain of equivalences in the proof of 
[21, 9.6]) that ηA = (νHA)A(idHA), where for each E ∈ E we denote by νE the unit of 
the bicolimit (LanHP )E = E(H, E) bi⊗ P , E(H, E) νE=⇒ C(P−, (LanHP )E).

From Remark 4.1.3, item 2, we have:

Proposition 4.1.9. Consider pseudofunctors A 
P, Q−−−→ C, A H−→ E. If P and Q are pseudo-

equivalent, then so are LanHP and LanHQ. �
If H is pseudo-fully-faithful (see §1.1, item 7), then the bi-Kan extension is really a 

(pseudo) extension:

Proposition 4.1.10 ([21, 9.5]). With the notation of Definition 4.1.5, if H is pseudo-
fully-faithful, then the unit η of Remark 4.1.8 is a pseudo-equivalence (recall that this 
amounts to each ηA being an equivalence of categories). �
Definition 4.1.11. Let A P−→ Cat be a pseudofunctor, consider the Yoneda embedding 

2.4.12 A h−→ Homp(Aop, Cat), we denote P ∗ = LanhP . We say that P is flat if P ∗ is left 
exact (note that this is well defined by Corollary 4.1.4). Note that, by Proposition 4.1.10, 
the following diagram commutes up to pseudo-equivalence:

A h

P

Homp(Aop, Cat)

P∗

Cat

η⇒
≈

(4.1.12)
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Proposition 4.1.13. A flat pseudofunctor A P−→ Cat preserves any finite (weighted) bilimit 
that exists in A.

Proof. It follows immediately from diagram (4.1.12) and Corollary 4.1.4 (note that h
preserves weighted bilimits by Corollary 2.2.9). �

Consider P, h, P ∗ as in Definition 4.1.11. It follows from Remark 4.1.3, item 1, that 
for a 2-functor Aop F−→ Cat the formula P ∗F = Homp(Aop, Cat)(h, F )bi⊗p P in Defini-
tion 4.1.5 is pseudo-equivalent by Yoneda to the usual coend formula P ∗F = F bi⊗p P

(recall Corollary 2.3.12).
For a 2-functor Aop F−→ Cat, from the dual case of Proposition 2.4.13 we have 

F ≈ F ⊗p h. Since this pseudo-colimit is computed pointwise by Proposition 2.6.2, for 
A ∈ A we have FA ≈ F ⊗p A(A,−). It follows:

Proposition 4.1.14. The bi-Kan extension of a representable 2-functor A(A, −) along h
can be chosen to be the evaluation 2-functor Homp(Aop, Cat) evA−−−→ Cat. Since by Propo-
sition 2.6.2 the evaluations preserve any weighted pseudolimit, we have in particular that 
the representable 2-functors are flat. �
4.2. The main theorem

Let C be a 2-category with weighted pseudo-colimits. We will only need the case 
C = Cat in this paper.

Remark 4.2.1. Consider a 2-functor A P−→ C, and a 2-functor A H−→ E . Note that we can 
compute the bi-Kan extension L = LanHP of Definition 4.1.5 as a 2-functor E L−→ C. 
The definition of L is given by the formula LE = E(H, E) bi⊗p P , but we can compute 
it by the equivalent pseudo-colimit LE = E(H, E) ⊗p P . �
Remark 4.2.2. Consider 2-functors I F−→ Homp(A, C), and A H−→ E . From the dual 
of Proposition 2.7.2 we have the equation E(H, E) ⊗p σLim−−−→

i∈I
Fi = σLim−−−→

i∈I
E(H,E) ⊗p Fi, 

which together with the fact that σ-colimits are computed pointwise, implies immediately 
the equation LanH(σLim−−−→

i∈I
Fi)E = (σLim−−−→

i∈I
LanHFi)E. That is, the left bi-Kan extension 

commutes with σ-colimits. �
With this, and using again that σ-colimits in Homp(A, Cat) are computed pointwise, 

we have the following immediate corollary of Theorem 2.7.3.

Proposition 4.2.3. A σ-filtered σ-colimit in Homp(A, Cat) of left exact 2-functors is left 
exact. �
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From Remark 4.2.2 and Proposition 4.2.3 it follows (all σ-colimits below are considered 
in Homp(A, Cat)):

Corollary 4.2.4. A σ-filtered σ-colimit of flat 2-functors is flat. In particular, by Propo-
sition 4.1.14, a σ-filtered σ-colimit of representable 2-functors is flat. �
Lemma 4.2.5. Let A P−→ Cat, A H−→ E, E L−→ Cat as in 4.2.1. Consider the 
1-subcategories CP of ElP , and CL of ElL as in Definition 1.2.1. Then there exists a 
canonical 2-functor

T : ElP −→ ElL

satisfying (the dual of) axiom σC0 in Definition 3.3.1. If H is 2-fully-faithful, then so 
is T and CP = T−1(CL).

Proof. T is defined as the composition of the 2-functors ElP
Tη−→ E lLH

TH−→ ElL con-
sidered in Propositions 3.3.3 and 3.3.4, where η is the pseudonatural transformation of 
Remark 4.1.8. Then we have the formula T (x, A) = (ηA(x), HA). Let (c, E) ∈ ElL, we 

will show that there is an arrow in CL of the form (ηA(x), HA) (θ,id)−−−−→ (c, E).
We have c ∈ LE = E(H−, E) ⊗pP , then by Lemma 2.5.4 there exist A ∈ A, HA θ−→ E

and x ∈ PA such that (νE)A(θ)(x) = c.
We consider the following diagram, which commutes by definition of L on the arrow 

θ (see Remark 2.2.11)

E(HA,E)
(νE)A Cat(PA,LE)

E(HA,HA)

θ∗

(νHA)A Cat(PA,LHA)

(Lθ)∗

Element chasing idHA and then evaluating at x, we have the equality

c = (νE)A(θ)(x) = Lθ ◦ (νHA)A(idHA)(x) 4.1.8= Lθ(ηA(x)),

which expresses the fact that (θ, id) is an arrow of ElL as desired.
If H is 2-fully-faithful, by Proposition 4.1.10 each ηA is full and faithful and then by 

Propositions 3.3.3 and 3.3.4 both Tη and TH are 2-fully-faithful and CP = T−1
η (CLH) =

T−1(CL). �
Using Proposition 3.3.2 for the 2-functor T op : ElopP −→ E lopL it follows

Corollary 4.2.6. Under all the hypothesis of Lemma 4.2.5 (including H 2-fully-faithful), if 
ElL is σ-cofiltered (with respect to CL), then ElP is σ-cofiltered (with respect to CP ). �
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It is a classical result (see for example [22, §VII.6]) that every flat Set-valued functor is 
a filtered colimit of representable functors, that, as far as we know (see [16, (6.4)]) has no 
known generalization to other base categories. Here we extend this result to 2-dimensional 
category theory. Note that from Theorem 4.2.7 it follows that if a 2-functor A P−→ Cat
is pseudo-equivalent to any σ-filtered σ-colimit of representable 2-functors, then the 
σ-colimit in its canonical expression 2.4.14 (whose diagram is actually in Homs(A, Cat), 
see Remark 2.4.15) is also σ-filtered.

Theorem 4.2.7. Let A P−→ Cat be a 2-functor. Then the following are equivalent.

(i) ElP is σ-cofiltered with respect to the family CP of cocartesian arrows.
(ii) P is equivalent to a σ-filtered σ-colimit of representable 2-functors in Homp(A, Cat).
(iii) P is flat.

Proof. (i) ⇒ (ii) follows immediately by the canonical expression 2.4.14. (ii) ⇒ (iii)
holds by Corollary 4.2.4 (note that flatness is preserved by pseudo-equivalence by Corol-
lary 4.1.9). (iii) ⇒ (i): If P ∗ is left exact, by Propositions 2.6.2 and 3.2.8, ElP∗ is 
σ-cofiltered with respect to CP∗ . Then (i) follows by Corollary 4.2.6. �
Remark 4.2.8. Note that, since σ-bicolimits are defined up to equivalence, we can say 
that the flat 2-functors are exactly the σ-filtered σ-bicolimits of representable 2-functors.

Combining Proposition 4.1.13, Proposition 3.2.8 and the implication (i) ⇒ (iii) in 
the theorem above, it follows:

Proposition 4.2.9. If A is finitely complete, then a 2-functor A P−→ Cat is flat if and only 
if it is left exact. �
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Appendix A. The main theorem for pseudofunctors

We will now prove a generalization of Theorem 4.2.7 and Proposition 4.2.9 to 
Cat-valued pseudofunctors A P−→ Cat (with A still a 2-category). We will prove it by 
applying those results to the 2-functor P̃ associated to the pseudofunctor P . We note 
that, while it is tempting to try and develop this generalization for A a bicategory, the 
computations with the bicategory ElP are more complicated than in the 2-category case 
and, more fundamentally, as far as we know the fact that P̃ is pseudo-equivalent to P
has not been shown in this case. The interested reader can check this possibility, as we 
may in the future.
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We begin by giving the explicit definition of the 2-category pHomp(A, B) considered 
in Section 4. We will use the explicit formulas defining pseudofunctors and pseudonatural 
transformations. We refer the reader to [21, § 2], [12, §3], [7, §1] among other choices for 
a more expanded description of the equations below.

Definition A.1. Let A, B be 2-categories. A lax functor A F−→ B is given by the following 
data:

– For each object A ∈ A, an object FA ∈ B.
– For each hom-category A(A, B), a functor A(A, B) FA,B−−−→ B(FA, FB). Whenever 

possible we will abuse the notation FA,B by F .
– For each object A ∈ A, an invertible 2-cell αF

A : idFA =⇒ F (idA).
– For each triplet of objects A, B, C ∈ A, a natural transformation

A(B,C) ×A(A,B)

αF⇓◦

F×F B(FB,FC) × B(FA,FB)

◦

A(A,C) F B(FA,FC)

.

This natural transformation is given, for each configuration A 
f−→ B

g−→ C by 2-cells 

of B, FgFf
αF

f,g=⇒ F (gf). These data are subject to the axioms

LF0. For each A
f−→ B, αF

f,idB
◦ (αF

BFf) = Ff = αF
idA,f ◦ (FfαF

A).
LF1. For each A

f−→ B
g−→ C

h−→ D, αF
gf,h ◦ (FhαF

f,g) = αF
f,hg ◦ (αF

g,hFf).

A lax natural transformation θ between lax functors A
F

G

B is given by fami-

lies {FA 
θA−→ GA}A∈A, {GfθA

θf=⇒ θBFf}
A

f−→B∈A
satisfying the equations (cf. § 1.1, 

item 11):

LN0. For all A ∈ A, θidA
◦ αG

AθA = θAα
F
A.

LN1. For all A f−→ B
g−→ C ∈ A, θgf ◦ αG

f,gθC = θCα
F
f,g ◦ θgFf ◦Ggθf .

LN2. For all A
f

γ⇓
g

B ∈ A, θBFγ ◦ θf = θg ◦GγθA.

A pseudofunctor is a lax functor F such that the structural 2-cells αF
A, αF

f,g are all 
invertible. A pseudonatural transformation between lax functors is a lax natural trans-
formation such that the structural 2-cells θf are all invertible. Modifications are defined 
as for 2-functors.
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Now we extend the Definition 1.2.1 of the 2-category of elements to the case of 
pseudofunctors. We note that this construction is considered in [6], and with greater 
generality in [4, 3.3.3], where a theory of fibered 2-categories is developed, correspond-
ing to pseudofunctors with values in 2-categories. An idea that is useful to have in 
mind is that Cat-valued pseudofunctors are the 2-dimensional analogous to the “dis-
crete” 1-dimensional fibrations.

Definition A.2. Let A P−→ Cat be a pseudofunctor. ElP is the 2-category with objects, 
morphisms and 2-cells described exactly as in Definition 1.2.1, but now the structural 
2-cells of the pseudofunctor appear in the formulas for composition and identities:

For (x, A) (f,ϕ)−−−→ (y, B) (g,ψ)−−−→ (z, C), the composition is given by the formula

(g, ψ)(f, ϕ) = (gf, ψPg(ϕ)(αP
f,g)−1

x ).

Identity morphisms are given by (x,A) (idA,(αP
A)−1

x )−−−−−−−−−→ (x,A). 2-cells are composed as in A.
As for 2-functors, we consider the 1-subcategory CP of ElP whose arrows are (f, ϕ)

with ϕ an isomorphism.

Remark A.3. The fact that (x, A) (idA,(αP
A)−1

x )−−−−−−−−−→ (x, A) are identities follows from axiom
LF0 in Definition A.1. The fact that the composition of morphisms is associative follows 
from axiom LF1. In both cases the naturality of the structural 2-cells αP

A, αP
f,g respec-

tively is used. The computations are somewhat lengthy but straightforward so we omit 
them.

We also extend the results of 1.2.5 and Proposition 3.3.3 to pseudofunctors.

Proposition A.4. For each lax natural transformation P
η=⇒ Q between Cat-valued 

pseudofunctors, there is an induced 2-functor ElP
Tη−→ E lQ given by the same formu-

las in 1.2.5.

Proof. To show that Tη preserves composition of morphisms strictly, consider
(x, A) (f,ϕ)−→ (y, B) (g,ψ)−→ (z, C) in ElP , then the equation we have to show is

(gf, ηC(ψPg(ϕ)(αP
f,g)−1

x ) (ηgf )x) = (gf, ηC(ψ) (ηg)y Q(g)(ηB(ϕ)(ηf )x) (αQ
f,g)

−1
ηA(x))

This equation follows at once from axiom LN1 in Definition A.1 using the naturality of 
ηg with respect to the arrow ϕ. The fact that Tη preserves identities follows immediately 
from axiom LN0. The rest of the verifications of the 2-functoriality are straightforward 
and identical to the case of 2-functors so we omit them. �

We note that the formulas in 1.2.5 are the same formulas of [4, 3.3.12], where it is 
stated (for a pseudonatural transformation η, though the same proof would work for lax 
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natural instead) that Tη is a morphism of bicategories. In our case computations are 
simpler, and we have 2-functoriality instead. Proposition 3.3.3 holds for pseudofunctors 
with exactly the same proof:

Proposition A.5. Let P, Q : A −→ Cat be pseudofunctors, and P
η=⇒ Q a pseudonatural 

transformation. If ηA is full and faithful for each A ∈ A, then the 2-functor ElP
Tη−→ E lQ

of Proposition A.4 is 2-fully-faithful and the 1-subcategories given by the cocartesian 
arrows satisfy CP = T−1

η (CQ). �
We now recall (see [23, 4.2], or the nLab website on pseudofunctors) the construction 

of the 2-functor A P̃−→ Cat associated to a pseudofunctor A P−→ Cat. We state only the 
facts that we will need.

Given a pseudofunctor A P−→ Cat, there is a 2-functor A P̃−→ Cat and an equiv-
alence in pHomp(A, Cat) between P and P̃ , i.e. a pseudo-equivalence P

η=⇒ P̃ . The 
description of P̃ on objects is as follows, P̃B is the category with pairs (f, x) as ob-
jects, where A

f−→ B ∈ A and x ∈ PA, and arrows (f, x) ϕ−→ (f ′, x′) given by an arrow 
Pf(x) ϕ−→ Pf ′(x′) in PB. For B g−→ B′ ∈ A, we have P̃ g(f, x) = (gf, x). The definition 
of PA 

ηA−→ P̃A on objects is ηA(x) = (idA, x), and for the pseudo-inverse P̃
ε=⇒ P we 

have εB(f, x) = Pf(x).
When applied to P̃ , Theorem 4.2.7 yields:

Theorem A.6. Let A P−→ Cat be a pseudofunctor. Then the following are equivalent.

(i) ElP is σ-cofiltered with respect to the family CP of cocartesian arrows.
(ii) P is a σ-filtered σ-bicolimit of representable 2-functors in pHomp(A, Cat).
(iii) P is flat.

Proof. We will show the equivalence of each of the items above with the corresponding 
statement of Theorem 4.2.7 for the 2-functor P̃ :

(i) By Proposition A.5 we have induced 2-functors ElP
Tη−→ ElP̃ , ElP̃

Tε−→ E lP , both 
2-fully-faithful and satisfying CP = T−1

η (CP̃ ), CP̃ = T−1
ε (CP ). In order to show that ElP

is σ-cofiltered if and only if ElP̃ is so, by Proposition 3.3.2 it suffices to show axiom σC0
for these 2-functors.

For Tη: given ((f, x), B) in ElP̃ , where A 
f−→ B ∈ A and x ∈ PA, consider 

Tη(x,A) = ((idA, x), A)
(f,idPf(x))−−−−−−−→ ((f, x), B).

For Tε: given (x, A) in ElP , consider Tε((idA, x), A) = (P (idA)(x), A) (idA,ϕ)−→ (x, A), 

where ϕ is the isomorphism ϕ : P (idA)P (idA)(x) P (idA)(αP
A)−1

x−−−−−−−−−→ P (idA)(x)
(αP

A)−1
x−−−−−→ x.
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(ii) Immediate from the pseudo-equivalence P
η=⇒ P̃ (recall Remark 4.2.8).

(iii) Immediate from Corollary 4.1.9. �
We end the paper showing that, in the presence of finite bilimits, flat pseudofunctors 

coincide with left exact ones.

Proposition A.7. If A is finitely complete, then a pseudofunctor A P−→ Cat is flat if and 
only if it is left exact.

Proof. By Corollary 4.1.4, P is left exact if and only if P̃ is so. By Corollary 4.1.9, P is 
flat if and only if P̃ is so. Then the proposition follows from Proposition 4.2.9 applied 
to P̃ . �
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