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ABSTRACT. The present paper surveys the geometric properties of the Grassmann mani-
fold Gr(H ) of an infinite dimensional complex Hilbert space H . Gr(H ) is viewed as
a set of operators, identifying each closed subspace S ⊂H with the orthogonal projec-
tion PS onto S . Most of the results surveyed here were stated by G. Corach, H. Porta
and L. Recht: submanifold structure, homogeneous reductive structure, local minimality of
geodesics. Some recent results concerning the existence and uniqueness of a geodesic join-
ing two given projections, which were obtained by the present author, are also presented.

1. INTRODUCTION

This is a survey article, examining the geometric structure the the Grassmann manifold
Gr(H ) of an (eventually) infinite dimensional complex Hilbert space H ,

Gr(H ) = {closed linear subspaces of H }.

We adopt the point of view that we learned from G. Corach, H. Porta and L. Recht, whose
works on this subject are cited below, which consists of identifying a closed subspace S ⊂
H with the orthogonal projection PS onto S . Thus the Grassmann manifold becomes a
submanifold of the Banach space B(H ) of bounded linear operators in H . There is a
natural metric in B(H ), the usual (spectral) norm. Most of the results cited here belong to
the mentioned authors ([14, 15, 5]). The few contributions of the present author concern the
problems of existence and uniqueness of geodesics joining two given subspaces / projections
([2, 3]).

As said above, to a closed subspace S corresponds an orthogonal projection PS ∈
B(H ) (charaterized by the conditions (PS )2 = PS , P∗S = PS and R(PS ) = S ). We
shall use this correspondence to identify

Gr(H ) = {P ∈B(H ) : P is an orthogonal projection}.

One advantage of this viewpoint is that it enables one to regard the Gr(H ) as a subset of a
Banach space (namely B(H )). Most of the facts concerning this viewpoint were presented
in [15, 14, 5].

The main tool to study the geometry of Gr(H ) is the action of the unitary group U (H )
on this set. Recall that U ∈U (H ) if U∗U =UU∗ = 1. The action is given by

U ·P =UPU∗, U ∈U (H ), P ∈ Gr(H ).

In terms of subspaces, if P = PS , then U ·P corresponds to the subspace U(S ).
We shall denote by P⊥ = 1−P (note that if P = PS , then 1−P = PS ⊥).
This action is locally transitive: if P,Q ∈ Gr(H ) verify ‖P−Q‖ < 1, then there exists

U ∈U (H ) such that U ·P = Q. This fact is well known (for instance [10, 9, 7, 5, 4]); we
include an elementary proof:
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Lemma 1.1. Let P,Q ∈ Gr(H ) such that ‖P−Q‖ < 1. Then there exists U = U(P,Q) ∈
U (H ) such that

UPU∗ = Q.

Proof. We claim that S = S(P,Q) = QP+Q⊥P⊥ is an invertible operator. Indeed,

S∗S = (PQ+P⊥Q⊥)(QP+Q⊥P⊥) = PQP+P⊥Q⊥P⊥.

Then, using that 1 = P+P⊥,

1−S∗S = P−PQP+P⊥−P⊥Q⊥P⊥.

The first term P−PQP can be regarded as a difference of bounded operators in the space
R(P). Note that PQP is invertible there:

‖P−PQP‖= ‖P(P−Q)P‖ ≤ ‖P‖‖P−Q‖‖Q‖ ≤ ‖P−Q‖< 1.

It is a well known fact that an operator whose distance to the identity operator is less than 1 is
invertible (in this case P is the identity operator of R(P)). Similarly, P⊥Q⊥P⊥ is invertible in
R(P⊥)=R(P)⊥ (note that ‖P⊥−Q⊥‖= ‖Q−P‖). Then S∗S is invertible in R(P)⊕R(P⊥)=
H . Analogously, SS∗ is invertible in H .

Note that
SP = (QP+Q⊥P⊥)P = QP = Q(QP+Q⊥P⊥) = QS.

Then S∗Q = (QS)∗ = (SP)∗ = PS∗, and thus S∗S commutes with P,

S∗SP = S∗QS = PS∗S.

Consider the polar decomposition S =U |S| (here |S|= (S∗S)1/2). Since S is invertible, U is
unitary, and by the above computation, |S| commutes with P. Then

UP = S|S|−1P = SP|S|−1 = QS|S|−1 = QU,

i.e. UPU∗ = Q. �

In the above proof, note that U is a smooth formula in terms of the operators P and Q.
One easy consequence of the above result, is that the connected components of Gr(H )
are the orbits of the action by the unitary group. Note the fact that for any pair P,Q of
projections, one always has ‖P−Q‖ ≤ 1. And if ‖P−Q‖ < 1 they are conjugate by a
unitary operator, and thus lie in the same connected component. Here we use the known
fact that U (H ) is connected (in fact it is contractible if dimH = ∞ [12]).

We shall denote by Bh(H )⊂B(H ) the (real, complemented) subspace of selfadjoint
(or Hermitian) operators in H .

2. P CO-DIAGONAL OPERATORS

Following ideas in [14] and [5], we shall base our study of the geometry of Gr(H ) on
the following decomposition. Fix P0 ∈ Gr(H ). Then operators A in B(H ) can be written
as 2×2 block matrices:

A =

(
P0AP0 P0AP⊥0
P⊥0 AP0 P⊥0 AP⊥0

)
=

(
a11 a12
a21 a22

)
,

where a11 = P0AP0 is regarded as an operator in B(R(P0)), a12 = P0AP⊥0 as an operator in
B(N(P0),R(P0)), and so on. Then, based on P0, B(H ) can be decomposed as

A =

(
a11 0
0 a22

)
+

(
0 a12

a21 0

)
= Ad +Ac,
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where Ad will be called the P0-diagonal part of A, and Ac the P0-co-diagonal part of A. Note
that Ad commutes with P0.

Let us denote by DP0 and CP0 the (closed, complemented) subpaces of P0-diagonal and
P0-co-diagonal selfadjoint operators. Clearly DP0⊕CP0 = Bh(H ).

It shall be sometimes useful to consider the symmetry induced by a projection. Namely,
projections are in one to one correspondence with symmetries ε ∈B(H ): ε∗ = ε−1 = ε .
The correspondence is given by

P←→ εP = 2P−1.

Note that εP equals 1 in R(P) and −1 in N(P).
Returning to the diagonal/co-diagonal decomposition, it is apparent that the P0-diagonal

part Ad commutes with εP0 and the P0-co-diagonal part Ac anti-commutes with εP0 (AcεP0 =
−εP0Ac).

Fix P0 ∈P , and consider the following map

ϕ : Bh(H )→Bh(H ), ϕ(X) = Xd + eX̃cP0e−X̃c ,

where

X̃c =

(
0 −x12

x∗12 0

)
, if Xc =

(
0 x12

x∗12 0

)
.

X∗c = Xc implies X̃∗c = −X̃c and thus eX̃c is a unitary operator. This implies that ϕ(X) is
indeed selfadjoint.

Also note that Xc 7→ X̃c is a linear isometric isomorphism between P0-co-diagonal selfad-
joint operators, and P0-co-diagonal anti-selfadjoint operators (an operator B is anti-selfadjoint
if B∗ =−B).

Lemma 2.1. dϕ0 = 1Bh(H ).

Proof. Let X ∈Bh(H ) and X(t) a smooth path in Bh(H ) with X(0) = 0, Ẋ(0) = X . For
instance, X(t) = tX . Then

dϕ0(X) =
d
dt
|t=0(Xd(t)+ eX̃c(t)P0e−X̃c(t)) = Xd + X̃cP0−P0X̃c.

Note that

X̃cP0−P0X̃c =

(
0 −x12

x∗12 0

)(
1 0
0 0

)
−
(

1 0
0 0

)(
0 −x12

x∗12 0

)
=

(
0 x12

x∗12 0

)
= Xc.

Then dϕ0(X) = Xd +Xc = X . �

By the inverse mapping theorem, it follows that ϕ is a local diffeomorphism between
neighbourhoods of 0 and ϕ(0) = P0 in Bh(H ): there exist open subsets V , W in Bh(H ),
such that 0 ∈ V , P0 ∈W , and

ϕ : V →W

is a C∞ diffeomorphism.

Proposition 2.2. Gr(H ) is a C∞ differentiable complemented submanifold of B(H ). For
any fixed P0 ∈ Gr(H ), the map

πP0 : U (H )→ Gr(H )P0 , πP0(U) =UP0U∗
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is a C∞ submersion. Here Gr(H )P0 denotes the connected component of P0 in Gr(H ),
which coincides with the (unitary) orbit of P0:

Gr(H )P0 = {UP0U∗ : U ∈U (H )}.

Proof. The local diffeomorphism ϕ : V →W maps V ∩CP0 onto W ∩Gr(H ). This pro-
vides a local chart for Gr(H ) near P0. Since P0 is arbitary, one obtains a chart for every
point in Gr(H ). The Lemma in the previous section shows that elements in different or-
bits / connected components lie at distance at least 1. On the other hand, any given pair of
projections lie at distance less than or equal to 1, thus elements in different components lie
at distance 1.

The same Lemma provides an explicit formula for the a unitary operator U = U(P,Q)
(which is C∞ in both variables P and Q), which implements the conjugation UPU∗ = Q.
Thus ΣP0 =U(P0, · ) provides a C∞ local cross section for πP0 defined on a neighbourhood
of P0 in Gr(H ), namely, {Q ∈ Gr(H ) : ‖Q−P0‖ < 1}. One obtains local cross sections
near other points P of Gr(H )P0 by translating this one. Explicitly: if P =U0P0U∗0 for some
U0 ∈U (H ), put

ΣP(Q) =U0 ΣP0(U
∗
0 QU0)

defined on the open set

{Q ∈ Gr(H )P0 : ‖U∗0 QU0−P0‖= ‖Q−P‖< 1}.
It follows that πP0 has C∞ local cross sections defined on neighbourhoods of any point of
Gr(H )P0 . Then it is a submersion. �

Tangent vectors are co-diagonal:

Remark 2.3. The tangent space (T Gr(H ))P0 is CP0 . Indeed, let p(t), t ∈ I, be a smooth
curve in Gr(H ), with p(0) = P0 and ṗ(0) = X . Clearly, X is selfadjoint. Differentiating
the identity p(t) = p(t)2 at t = 0 we obtain

X = XP0 +P0X .

Thus P0XP0 = P0XP0 +P0XP0, which implies P0XP0 = 0, and

P⊥0 XP⊥0 = P⊥0 (XP0 +P0X)P⊥0 = 0.

That is, X is co-diagonal. Note also the useful relations: if X ∈ (T Gr(H ))P0 ,

[X ,P0] = XP0−P0X = X̃ , [X̃ ,P0] = X .

Conversely, if X ∈ CP0 , then X̃ is anti-selfadjoint, and thus etX̃ is a one-parameter group of
unitaries, in particular it is a smooth curve of unitaries. Thus

p(t) = etX̃ P0e−tX̃ ∈ Gr(H )

satisfies p(0) = P0 and
ṗ(0) = X̃P0−P0X̃ = [X̃ ,P0] = X ,

i.e. X ∈ (T Gr(H ))P0 .

Let us show how the diagonal / co-diagonal decomposition provides also a natural linear
connection for Gr(H ). We shall make it here explicit, though it is a particular case of what
in classical differential geometry is a reductive structure for a homogeneous space. Again,
we follow ideas in [14], [15] and [5].

For further use, note the following straightforward facts about co-diagonal operators:

Remark 2.4.
• X ∈ CP if and only if V XV ∗ ∈ CV PV ∗ , for any V ∈U (H ).
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• If X ∈ CP, X = XP+PX .

Definition 2.5. As above, let p(t), t ∈ I = [0,1] be a smooth curve in Gr(H ). A smooth
curve U(t), t ∈ I of unitary operators is a co-diagonal lifting (or in classical terms, a
horizontal lifting) por p, if

U(t)p(t0)U(t)∗ = p(t) and iU∗(t)U̇(t) ∈ Cp(t).

If one requires that U(t0) = 1, then the curve U is unique. Existence and uniqueness of
such liftings follow from the next result.

Lemma 2.6. The co-diagonal lifting satisfying U(t0) = 1, is charaterized as the unique
solution of the following linear differential equation:{

U̇ = [ṗ, p]U
U(t0) = 1 (1)

Proof. Pick first a co-diagonal lifting U =U(t): U p(t0)U∗= p and pU∗U̇ p= P⊥U∗U̇ p⊥=
0. Denote P0 = p(t0). The first observation in the above remark implies that U∗U̇ ∈ CP0 .
We need to show that U satisfies the equation (1), or equivalently,

U̇U∗ = [ṗ, p].

Differentiating UP0U∗ = p, one obtains U̇P0U∗+UP0U̇∗ = ṗ. Then

[ṗ, p] = [U̇P0U∗+UP0U̇∗,UP0U∗] = U̇P0U∗+UP0U̇∗P0UP0U∗−UP0U∗U̇P0U∗−UP0U̇∗.

Note that differentiating UU∗ = 1 one obtains UU̇∗ =−U̇U∗. Then the second term in the
above sum vanishes

−UP0U∗U̇P0U∗ = 0,
because U∗U̇ is P0-co-diagonal. The third term equals 0 for the same reason. Thus U
satisfies equation (1) if and only if

U̇U∗ = U̇P0U∗−UP0U̇∗,

or equivalently (multiplying by U∗ on the left and by U on the right)

U∗U̇ =U∗U̇P0−P0U̇∗U =U∗U̇P0 +P0U∗U̇ ,

which holds, by the second item in the above remark, because U∗U̇ is P0-co-diagonal.
Conversely, suppose that U is a solution of the equation U̇ = [ṗ, p]U with U(t0) = 1.

First note that [ṗ, p], being the commutant of two selfadjoint operators, is anti-selfadjoint.
It is a general fact that an operator valued linear equation with initial data a unitary operator
(in this case the identity operator 1), with anti-selfadjoint Hamiltonian, has a solution which
consists of unitary operators. On the other hand,

U̇U∗ = [ṗ, p]

is clearly p-co-diagonal. Let us show that U is a lifting of p, or equivalently, that

U∗pU = P0.

Differentiating U∗pU one obtains

U̇∗pU +U∗ ṗU +U∗pU̇ =U∗(UU̇∗p+ ṗ+ pU̇U∗)U.

The term inside the parenthesis equals

−U̇U∗p+ pU̇U∗+ ṗ =−[ṗ, p]p+ p[ṗ, p]+ ṗ
=−ṗp+ pṗp+ pṗp− pṗ+ ṗ.
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Recall that tangent vectors are co-diagonal, thus pṗp = 0, and the above expression equals

−ṗp− pṗ+ ṗ = 0.

Thus U∗pU is constant, and equals P0 at t = t0, which completes the proof. �

With the aid of the co-diagonal lifting we define the parallel transport of tangent vectors
in Gr(H ).

Definition 2.7. Given X ∈ (T Gr(H ))P0 and p(t), t ∈ [0,1], a smooth curve in Gr(H ) with
p(0) = P0, the parallel transport of X along p is defined as

U(t)XU∗(t),

where U is the solution of equation (1), U̇ = [ṗ, p]U, U(0) = 1.

Note that by the remark above, X ∈ (T Gr(H ))P0 = CP0 implies that UXU∗ ∈ CUP0U∗ =
(T Gr(H ))p.

This notion of parallel transport induces a covariant derivative.

Definition 2.8. If X(t) is a smooth field of tangent vectors along p(t) (i.e. X(t) is a smooth
curve of selfadjoint operators with X(t) ∈ Cp(t)), define

DX
dt

=U{ d
dt
(U∗XU)t=0}U∗, (2)

where U is the solution of equation (1): U̇ = [ṗ, p]U, U(0) = 1.

Note that U∗XU is a smooth curve in CP0 , thus its derivative is an element in CP0 , and
therefore DX

dt ∈ Cp = (T Gr(H ))p.
The main data of the linear connection, for instance its torsion and curvature tensors, can

be computed (as in classical differential geometry of reductive homogeneous spaces [11],
or [13] for the specific framework on homogeneous spaces of operators). We shall focus on
the geodesics. The equation of a geodesic δ (with co-diagonal lifting Ω, Ω(t0) = 1) of this
connection is

Dδ̇

dt

∣∣
t=t0

= 0.

In our case,

Ω{ d
dt
(Ω∗δ̇Ω)}t=t0Ω

∗ = 0,

Explicitly,

0 = ΩΩ̇∗δ̇ + δ̈ + δ̇ Ω̇Ω
∗ =−Ω̇Ω

∗
δ̇ + δ̈ + δ̇ Ω̇Ω

∗

=−[δ̇ ,δ ]δ̇ + δ̈ + δ̇ [δ̇ ,δ ].

Thus we arrive at
δ̈ = [[δ̇ ,δ ], δ̇ ]. (3)

We know from the general theory of homogeneous reductive spaces that the horizontal (or
co-diagonal) liftings of geodesics are exponentials with co-diagonal exponents:

Proposition 2.9. Let P0 ∈ Gr(H ) and X0 ∈ (T Gr(H ))P0 . The unique geodesic δ with
δ (0) = P0 and δ̇ (0) = X0 is given by

δ (t) = etX̃0P0e−tX̃0 .
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Proof. Apparently δ (0) = P0 and

δ̇ = X̃0δ −δ X̃0 = [X̃0,δ ] = etX̃0 [X̃0,P0]e−tX̃0

so that
δ̇ (0) = [X̃0,P0] = X0.

Also
δ̈ = [X̃0, [X̃0,δ ]] = etX̃0 [X̃0, [X̃0,P0]]e−tX̃0 .

Note that, since X̃0 is P0-co-diagonal, X̃2
0 commutes with P0,

[X̃0, [X̃0,P0]] = 2X̃2
0 P0−2X̃0P0X̃0.

On the other hand,
[[δ̇ ,δ ], δ̇ ] = etX̃0 [[X̃0,P0], [X̃0,P0]]e−tX̃0 .

Again, that X̃0 is P0-co-diagonal, implies that P0X̃0P0 = 0, and thus a straightforward com-
putation shows that

[[X̃0,P0], [X̃0,P0]] = 2P0X̃2
0 P0−2X̃0P0X̃0 = 2X̃2

0 P0−2X̃0P0X̃0.

�

3. CONDITIONS FOR THE EXISTENCE OF A GEODESIC JOINING
TWO GIVEN PROJECTIONS

The problem of whether two given projections P and Q lie in the same connected com-
ponent of Gr(H ) (or equivalently, whether there exists a unitary operator U such that
UPU∗ = Q, shortly: whether P and Q are unitarily equivalent) is solved computing the
numbers

dimN(P) = n(P), dimR(P) = r(P).
Namely, P and Q lie in the same connected component if and only if n(P) = n(Q) and
r(P) = r(Q).

The problem of whether they can be joined by a geodesic, and in this case whether the
geodesic is unique (up to reparametrization) requires another study.

P. Halmos [9], J. Dixmier [8], and C. Davis [7], among others, suggest that to understand
the finer geometric relative properties of P and Q, one needs to consider the following
subspaces:

(R(P)∩R(Q)) ⊕ (N(P)∩N(Q)) ⊕ (R(P)∩N(Q)) ⊕ (N(P) ∩R(Q)) ⊕ H0,

where H0 is the orthogonal complement of the sum of the first three subspaces. We denote
these subspaces, respectively,

H11⊕H00⊕H10⊕H01⊕H0.

It can be proved that H11, H00 and H ′ = H10⊕H01 reduce P and Q simultaneously,
which implies that their orthogonal complement H0 also does. H0 is usually called the
generic part of P and Q.

It will be useful to refer these subspaces to the operator A = P−Q:

N(A) = H00⊕H11, N(A−1) = H10 and N(A+1) = H01.

In H11, P and Q act as the indentity, in H00 they are both trivial. Therefore interest-
ing phenomena occur in H ′ and in the generic part H0. We shall denote by P′, Q′ the
restrictions of P and Q to H ′, and by P0, Q0 their restrictions to H0.

An important result obtained by the mentioned authors (see for instance [9], which is the
form we employ here) is that in the generic part, P0 and Q0 are unitarily equivalent, and
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unitarily equivalent to their orthogonal complements 1−P0, 1−Q0. And more important
for us, these equivalences are implemented in the following manner:

There exists a unitary isomorphism between H0 and a product Hilbert space K ×K ,
and an operator 0≤ X ≤ π/2 in K , such that P0 and Q0 are carried to (the operator matrices
in K ×K ):

P0 =

(
1K 0
0 0

)
and Q0 =

(
C2 CS
CS S2

)
,

where C = cos(X) and S = sin(X) have trivial nullspace.
In the space H ′, as matrices in terms of the decomposition H ′ = H10⊕H01, the pro-

jections P′ and Q′ are given by:

P′ =
(

1 0
0 0

)
and Q′ =

(
0 0
0 1

)
.

Apparently P′ and Q′ are unitarily equivalent (in H ′) if and only if

dimH10 = dimH01.

Therefore, if these numbers coincide, the whole projections P and Q are unitarily equiva-
lent. However, as remarked in the first paragraph of this section, P and Q can be unitarily
equivalent without the coincidence of these dimensions (the unitary operator implementing
the equivalence need not be reduced by H ′). For instance, pick Q ≤ P, both with infinite
rank and nullity.

Coming back to

P0 =

(
1K 0
0 0

)
and Q0 =

(
C2 CS
CS S2

)
,

a straightforward computation shows that the unitary operator implementing the equivalence
of these projections can be chosen to be

U =

(
C −S
S C

)
= exp(i

(
0 iX
−iX 0

)
).

Note that the exponent

Z0 =

(
0 iX
−iX 0

)
is (if we bring it back to H0 with the unitary isomorphism between H0 and K ×K )
selfadjoint and P0-co-diagonal. That is, in the Grassmannian of H0 there is a geodesic
curve joining P0 and Q0,

δ0(t) = eitZ0P0e−itZ0 ,

which additionally satisfies ‖Z0‖ ≤ π/2, with equality in some cases.
Let us explicitly describe how in H ′ = H10⊕H01, if both subspaces have the same

dimension, P′ and Q′ are unitarily equivalent, by means of a unitary operator which is the
exponential of a P′-co-diagonal exponent:

Let W : H10→H01 be a unitary isomorphism, and put U ′ : H ′→H ′,

U ′(ξ ,η) = (W ∗η ,−Wξ ).

A straightforward computation shows that

U ′P′U ′∗ = Q′.

Moreover, if we put Z′ =−i π

2U , one has that Z′ is selfadjoint, P′-co-diagonal, and satisfies
that

eiZ′ =U ′.
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In other words, the geodesic δ ′(t) = eitZ′P′e−itZ′ joins P′ and Q′ (inside H ′). Note that
‖Z′‖= π/2. Thus we have proved the following partial result:

Proposition 3.1. Let P,Q be two projetions such that

dimR(P)∩N(Q) = dimR(Q)∩N(P).

Then there exists a geodesic δ (t) = eitZPe−itZ of Gr(H ), such that δ (0) = P and δ (1) = Q.
The exponent can be chosen so that ‖Z‖ ≤ π/2.

Conversely, suppose now that there exists a selfadjoint operator Z, which is P-codiagonal
(in H ) and such that

eiZPe−iZ = Q.

Pick ξ ∈H10, i.e. Pξ = ξ and Qξ = 0.
The formula above implies that eiZ(R(P)) = R(Q), so that eiZξ ∈ R(Q). Let us show that

also eiZξ ∈ N(P). The same formula also means that Pe−iZ = e−iZQ. The fact that Z is
P-codiagonal, means that Z anti-commutes with the symmetry 2P−1. It follows that

(2P−1)eiZ
ξ = e−iZ(2P−1)ξ = e−iZ

ξ ,

and then
PeiZ

ξ = P(2P−1)eiZ
ξ = Pe−iZ

ξ = e−iZQξ = 0.
That is,

eiZ(H10)⊂H01.

Similarly (or by the symmetry of the argument, reasoning with the orthocomplements P⊥

and Q⊥), one obtains
eiZ(H01)⊂H10.

In particular, dimH10 = dimH01
We may summarize our computations in the following

Theorem 3.2. Let P and Q be projections. There is a geodesic of Gr(H ) which joins them
if and only if

dimR(P)∩N(Q) = dimR(Q)∩N(P).

Note that, in particular, this equality implies that the projections are unitarily equivalent.

4. UNIQUENESS OF GEODESICS JOINING TWO GIVEN PROJECTIONS

Let us focus now on the problem of uniqueness (or multiplicity) of geodesics in Gr(H )
joining two given projections.

In the previous section we saw that in the case that dimR(P)∩N(Q) = dimR(Q)∩N(P)
any unitary isomorphism W : R(P)∩N(Q)→ R(Q)∩N(P) induces a geodesic between P′

and Q′. It follows that if

dimR(P)∩N(Q) = dimR(Q)∩N(P) 6= 0,

there are infinitely many geodesics of Gr(H ) joining P and Q.

Remark 4.1. If Z is the (selfadjoint, P-co-diagonal) exponent of a geodesic joining P and
Q, reparametrizing this curve in order to reverse its path (t←→ 1− t) one concludes that Z
is also Q-co-diagonal. In particular,

Z(N(P))⊂ R(P), Z(R(P))⊂ N(P), Z(N(Q))⊂ R(Q), Z(R(Q))⊂ N(Q).

Then

Z(N(P)∩N(Q))⊂ R(P)∩R(Q) and Z(R(P)∩R(Q))⊂ N(P)∩N(Q),
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as well as

Z(R(P)∩N(Q))⊂ N(P)∩R(Q) and Z(N(P)∩R(Q))⊂ R(P)∩N(Q).

In other words, any exponent Z of a geodesic joining P and Q is reduced by the (three)
subspace decomposition

H = H ′′⊕H ′⊕H0,

where
H ′′ = (N(P)∩N(Q))⊕ (R(P)∩R(Q)) = H00⊕H11,

and
H ′ = (R(P)∩N(Q))⊕ (N(P)∩R(P)) = H10⊕H01.

This implies that any geodesic of Gr(H ) between P and Q induces three geodesics:
• Between

1⊕0 and 1⊕0 in H ′′,

• between
P′ = 1⊕0 and Q′ = 0⊕1 in H ′,

• and between
P0 and Q0 in H0.

The first geodesic is reduced to a point. This fact seems apparent, but needs a proof (it
could be a loop inside Gr(H ′′)).

Proposition 4.2. Let Z1 be a selfadjoint operator in (N(P)∩N(Q))⊕ (R(P)∩R(Q)), co-
diagonal with respect 1⊕0, with ‖Z1‖ ≤ π/2, such that

eiZ1(1⊕0)e−iZ1 = 1⊕0.

Then Z1 = 0.

Proof. Let us write the projections as symmetries,

e2iZ1(1⊕−1) = 1⊕−1. (4)

The operator 2iZ1, in matrix form in terms of (N(P)∩N(Q))⊕ (R(P)∩R(Q)), is

2iZ1 =

(
0 a
−a∗ 0

)
with ‖a‖ ≤ π . The exponential of this matrix can be computed

e2iZ1 =

(
cos(|a∗|) −a sinc(|a|)

−a∗ sinc(|a∗|) cos(|a|)

)
,

where sinc(t) = sin(t)
t is the cardinal sine. In particular, the formula (4) above implies that

cos(|a|) = 1.

Since 0≤ |a| ≤ π , this implies |a|= 0, i.e. Z1 = 0. �

In the second part H ′= (R(P)∩N(Q))⊕(N(P)∩R(P)), as seen previously, there might
be infinitely many geodesics (granted that dimH10 = dimH01 6= 0).

In order to examine what happens in the third part H0, the generic part, we shall use a
result by Chandler Davis ([7, Thm. 6.1]):

The following condition is necessary and sufficient in order that a selfadjoint operator A
be equal to the difference of two orthogonal projections:
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−1 ≤ A ≤ 1 and in the generic part H0 of A (in terms of A: H0 = (N(A)⊕N(A−1)⊕
N(A+1)⊥) there is a symmetry V (V ∗ =V−1 =V ) such that

VA0 =−A0V,

where A0 denotes the part of A which acts in H0.
In this case, Davis shows, to every V there corresponds a unique pair PV , QV of projec-

tions such that A0 = PV −QV .

Apparently, only A0 needs a decomposition. In N(A) and N(A− 1)⊕N(A+ 1), A is
naturally written as a difference of projections: 0+PN(A−1)−PN(A+1).

Davis gives explicit formulas for PV and QV :

PV =
1
2
{1+A0 +V (1−A2

0)
1/2}, QV =

1
2
{1−A0 +V (1−A2

0)
1/2}.

It can be easily shown how the projections determine V :

PV +QV −1 =V (1−A2
0)

1/2 = (1−A2
0)

1/2V,

knowing that (1−A2
0)

1/2 has trivial nullspace, because

N((1−A2
0)

1/2) = N(1−A2
0) = N(A0−1)⊕N(A0 +1) = 0,

one obtains that
V = (1−A2

0)
−1/2(PV +QV −1).

What Davis’ theorem means to our problem is explained in the following result:

Lemma 4.3. Let P0 and Q0 be projections in the generic part H0, A0 = P0−Q0 and let V
be the unique symmetry given by Davis’ theorem which verifies

PV = P0, QV = Q0.

Let Z0 be a selfadjoint operator, ‖Z0‖≤ π/2, which is P0-co-diagonal, such that eiZ0P0e−iZ0 =
Q0. Then

V = eiZ0(2P0−1).

Proof. Indeed, recalling that

P0 =

(
1K 0
0 0

)
, Q0 =

(
C2 CS
CS S2

)
and eiZ0 =

(
C −S
S C

)
,

one has that (using C2 +S2 = 1)

A2
0 =

(
S2 0
0 S2

)
, (1−A2

0)
−1/2 =

(
C−1 0
0 C−1

)
and then

V = (1−A2
0)
−1/2(P0 +Q0−1) =

(
C−1 0
0 C−1

)(
C2 CS
CS −C2

)
=

(
C S
S −C

)
,

which coincides with

eiZ0(2P0−1) =
(

C −S
S C

)(
1 0
0 −1

)
.

�
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In consequence, eiZ0 is determined by P0 and Q0.
Moreover, since ‖Z0‖ ≤ π/2 < π , this implies that Z0 is determined P0 and Q0. Indeed,

the exponential of the unitary group, Z 7→ eiZ is one to one between {Z = Z∗,‖Z‖< π} and
{U unitary,‖U−1‖< 2}, by a straightforward use of the spectral theorem.

Therefore we have

Theorem 4.4. Let P and Q be projections which can be joined by a geodesic δ of Gr(H ).
This geodesic determines a geodesic δ0 between the generic parts P0 and Q0, which is
unique (satisfying that ‖Z0‖ ≤ π/2).

In particular, if P and Q are in generic position (H = H0), there is a unique geodesic
of Gr(H ) (with exponent Z of norm less than or equal to π/2) which joins them.

In terms of the question originating this section:

Theorem 4.5. There is a unique geodesic joining P and Q in Gr(H ) if and only if

R(P)∩N(Q) = N(P)∩R(Q) = 0.

Remark 4.6. If H is finite dimensional, or if P−Q is a trace class operator, one has that

Tr(P−Q) = dimN(A−1)−dimN(A+1).

This fact was stated by several authors (Effros [6], Amrein-Sinha [1], Avron, Seiler and
Simon [4]), and has a direct proof using Davis’ theorem of 1954 [7]. Indeed, if A0 is the
generic part of A = P−Q, A0 is also a trace class operator, which anti-commutes with a
symmetry, therefore it has null trace:

Tr(A0) = Tr(VA0V ) =−Tr(A0).

In the spectral resolution of A, taking trace, only two projections remain: Tr(PN(A−1))−
Tr(PN(A+1)), which equals the differences of dimensions above. One obtains in this fashion
a proof that in this context P and Q can be connected by a geodesic of Gr(H ) if and only
if Tr(P−Q) = 0. In the finite dimensional case, this equality means that r(P) = r(Q) and
thus also n(P) = n(Q), i.e. P and Q lie in the same connected component of Gr(H ). The
fact, that this condition implies that P and Q can be joined by a geodesic, is a consequence
of the Theorem of Hopf-Rinow, due to the fact that the connected components of Gr(H )
are compact if dimH < ∞.

5. FINSLER METRIC IN Gr(H )

Since Gr(H ) is a complemented submanifold of B(H ), it is natural to endow its tan-
gents spaces (T Gr(H ))P = CP ⊂ B(H ) with the operator norm of B(H ). We shall
call the metric thus obtained a Finsler metric, though it is not a Finsler metric in the usual
sense of the term: for instance, the norm of a smooth tangent field is a (continuous) non
differentiable map.

We shall expose the remarkable result by Porta and Recht [14], that geodesics of the
linear connection are locally minimal. To do this, it will be useful to consider the metric
of the unitary group U (H ), induced by endowing the tangent spaces of U (H ) also with
the usual operator norm. Let us state in the next remark the basic facts on the geometry of
U (H ).

Remark 5.1. The unitary group U (H ) is a submanifold of B(H ). One can parametrize
unitaries with selfadjoint operators by means of the exponential map:

exp : {X ∈Bh(H ) : ‖X‖< π} 7→ {U ∈U (H ) : ‖U−1‖< 2}, exp(X) = eiX
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which is one to one. Then U (H ) acquires a differentiable structure (translating this local
chart for 1 ∈U (H ) using the left action of U (H ) on itself). Therefore

(TU (H ))1 = iBh(H ) and (TU (H ))U = iU ·Bh(H ).

As said above, we endow the tangent spaces with the usual operator norm. This norm
is unitary invariant: ‖UX‖ = ‖XU‖ = ‖X‖. With this metric, one parameter groups t 7→
exp(tX) are minimal curves for time |t| ≤ π/‖X‖.

Let us state and prove this fact, which is well known:

Proposition 5.2. Let U ∈U (H ) and X0 ∈Bh(H ) with ‖X0‖ ≤ π . Then the smooth curve

µ(t) =UeitX0

has minimal length along its path, for all t ∈ [−1,1]. Any pair of unitaries U,V ∈U (H )
can be joined by such a curve.

Proof. Note that the length of µ in the interval [t1, t2] is (t2− t1)‖X0‖. Suppose first that the
selfadjoint operator X0 has a norming eigenvector. This means that there exists a unit vector
ξ ∈H such that X0ξ = λξ , where λ =±‖X0‖. Consider the following smooth map:

ρ : U (H )→ SH = {η ∈H : ‖η‖= 1}, ρ(U) =Uξ .

Clearly the differential of this map is

dρU : iUBh(H )→ (TSH )Uξ , DρU(UX) = iUXξ .

Note that dρU is norm decreasing (SH is endowed with the Hilbert-Riemann metric con-
sisting of the usual norm at very tangent space): ‖dρU(UX)‖= ‖UXξ‖ ≤ ‖UX‖. It follows
that if γ is a piecewise smooth curve in U (H ), then

`(ρ(γ))≤ `(γ),

where ` denotes the length functional of curves. On the other hand, note that for the special
curve µ(t) =UeitX0 , the length is preserved by ρ:

‖ d
dt
(ρ(µ))‖= ‖ d

dt
UeitX0ξ‖= ‖UeitX0X0ξ‖= ‖X0ξ‖= |λ |= ‖X0‖= ‖µ̇‖.

Therefore `(µ) = `(ρ(µ)). Moreover, note that

ρ(µ(t)) =UeitX0ξ =U(eitλ
ξ ) = eitλUξ .

Since |λ | ≤ π , the curve ρ(µ(t) = eitλUξ is a minimal geodesic of the sphere SH for
t ∈ [−1,1]. This implies that on any sub-interval [t1, t2] of [−1,1], ρ(µ) is shorter than any
given curve of SH joining the same endpoints. In particular, if γ is a curve in U (H )
joining U1 = µ(t1) and U2 = µ(t2), then

`(µ|[t1,t2]) = `(ρ(µ)|[t1,t2])≤ `(ρ(γ))≤ `(γ).

Suppose now that X0 is an arbitrary selfadjoint operator. Then X0 can be approximated by
seladjoint operators Xn with norming eigenvectors, and ‖Xn‖ ≤ ‖X0‖ (for instance, it can
be approximated by selfadjoint operators of finite spectrum). Apparently it is sufficient to
reason in the interval [0,1] (the same argument holds on any sub-interval). Suppose that
there exists a curve γ in U (H ) joining the same endpoints as µ , such that

`(γ)< `(µ)−δ = ‖X0‖−δ .

Pick Xn close to X0, so that 0≤ ‖X0‖−‖Xn‖< δ/4 and ‖Zn‖< δ/4, where

Zn = log(e−iX0eiXn).
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Here log is the (continuous) inverse of exp above. Consider the curve γ · µn obtained by
adjoining the curves γ , and µn(t) =UeiX0eitZn , t ∈ [0,1]. Note that µn joins UeiX0 with

UeiX0eiZn =UeiXn ,

with length `(µn)= ‖Zn‖. Thus γ ·µn joins U with UeiXn with length `(γ ·µn)= `(γ)+`(µn).
Note that `(γ)< ‖X0‖−δ < ‖Xn‖− 3

4 δ and `(µn) = ‖Zn‖< δ/4. Thus

`(γ ·µn)< ‖Xn‖−δ/2,

which contradicts the previous paragraph.
Finally, it is well known that any unitary operator can be written in the form eiX0 for some

selfadjoint operator X0 with ‖X0‖ ≤ π . If U1,U2 ∈ U (H ), there exists such X0 satisfying
U∗1 U2 = eiX0 . Then µ(t) = U1eitX0 is a minimal curve in U (H ) joining µ(0) = U1 and
µ(1) =U1eiX0 =U2 �

As said in the first section, there is a one to one correspondence between projections and
symmetries,

P←→ εP = 2P−1.
This correspondence allows one to regard Gr(H ) inside U (H ). With respect to the
Finsler metrics induced by the operator norm, this inclusion is an isometry multiplied by
the factor 2. Thus we may compare lengths of curves of projections in the unitary group.
The following statement was proved in [14], with a slightly different argument.

Theorem 5.3. Let P ∈ Gr(H ), and let Z = Z∗ be P-codiagonal with ‖Z‖ ≤ π/2. Then the
curve δ (t) = eitZPe−itZ is minimal along its path in Gr(H ), for t ∈ [−1,1].

Proof. As remarked in Section 1, that Z is P-codiagonal means that it anti-commutes with
εP = 2P−1: ZεP =−εpZ. Then

eitZ
εP = εPe−itZ.

Therefore, if we consider the geodesic δ inside U (H ),

εδ (t) = 2eitZPe−itZ−1 = eitZ
εPe−itZ = εPe−2itZ.

That is, εδ is a minimal curve in U (H ) for t ∈ [−1,1] (note that ‖2Z‖ ≤ π). Thus, if γ is a
curve in Gr(H ) joining two endpoints in the path δ , say δ (t1) and δ (t2), then εγ is a curve
in U (H ), joining εδ (t1) and εδ (t2). By the above Proposition, it follows that

`(εγ)≥ `(εδ |[t1,t2]).

Since `(εγ) = 2`(γ) and `(εδ |[t1,t2]) = 2`(δ |[t1,t2]), the result follows. �

Remark 5.4. The proof above proves a stronger fact than stated, namely, that εδ is minimal
among all curves of unitaries joining the same endpoints, and not merely among curves of
symmetries.

Combining the above theorem with the results in section 3, one obtains:

Corollary 5.5. Let P,Q ∈ Gr(H ). Then they can be joined by a minimal geodesic if and
only if

dimR(P)∩N(Q) = dimN(P)∩R(Q).

The length of a minimal geodesic is ≤ π/2. If this dimension above is non zero, then the
length of a minimal geodesic equals π/2.
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