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This paper introduces a particle swarm optimization algorithm to solve constrained engineering optimiza-
tion problems. The proposed approach uses a relatively simple method to handle constraints and a different
mechanism to update the velocity and position of each particle. The algorithm is validated using four stan-
dard engineering design problems reported in the specialized literature and it is compared with respect to
algorithms representative of the state-of-the-art in the area. Our results indicate that the proposed scheme
is a promising alternative to solve this sort of problems because it obtains good results with a low number
of objective functions evaluations.

Povzetek: Članek uvaja za reševanje inženirskih optimizacijskih problemov z omejitvami algoritem za
optimizacijo z roji.

1 Introduction

Engineering design optimization problems are normally
adopted in the specialized literature to show the ef-
fectiveness of new constrained optimization algorithms.
These nonlinear engineering problems have been inves-
tigated by many researchers that used different methods
to solve them: Branch and Bound using SQP [24], Re-
cursive Quadratic Programming [9], Sequential Lineariza-
tion Algorithm [20], Integer-discrete-continuous Nonlin-
ear Programming [11], Nonlinear Mixed-discrete Pro-
gramming [19], Simulated Annealing [27], Genetic Algo-
rithms [26], Evolutionary Programming [8] and, Evolution
Strategies [25] among many others. These types of prob-
lems normally have mixed (e.g., continuous and discrete)
design variables, nonlinear objective functions and nonlin-
ear constraints, some of which may be active at the global
optimum. Constraints are very important in engineering
design problems, since they are normally imposed on the
statement of the problems and sometimes are very hard to
satisfy, which makes the search difficult and inefficient.

Particle Swarm Optimization (PSO) is a relatively re-
cent bio-inspired metaheuristic, which has been found to be
highly competitive in a wide variety of optimization prob-
lems. However, its use in engineering optimization prob-
lems and in constrained optimization problems, in general,
has not been as common as in other areas (e.g., for adjust-
ing weights in a neural network). The approach described
in this paper contains a constraint-handling technique as
well as a mechanism to update the velocity and position of

the particles, which is different from the one adopted by the
original PSO.

This paper is organized as follows. Section 2 briefly dis-
cusses the previous related work. Section 3 describes in
detail our proposed approach. Section 4 presents the ex-
perimental setup adopted and provides an analysis of the
results obtained from our empirical study. Our conclusions
and some possible paths for future research are provided in
Section 5.

2 Literature review

Guo et al. presented a hybrid swarm intelligent algorithm
with an improvement in global search reliability. They
tested the algorithm with two of the problems adopted here
(E02 and E04). Despite they claim that their algorithm is
superior for finding the best solutions (in terms of qual-
ity and robustness), the solution that they found for E02 is
greater than its best known value and for E04 the results ob-
tained are not comparable to ours, because they used more
constraints in the definition of that problem [13].

Shamim et al. proposed a method based on a socio-
behavioral simulation model. The idea behind this ap-
proach is that the leaders of all societies interact among
themselves for the improvement of the society. They tested
their algorithm using three of the problems adopted here
(E01, E02 and E03). The best values reported for these
three problems are close from the optimal known values.
The number of fitness function evaluations was 19,259 for
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E01, 19,154 for E02 and 12,630 for E03 [1].
Mahdavi et al. developed an improved harmony search

algorithm with a novel method for generating new solutions
that enhances the accuracy and the convergence rate of the
harmony search. They used three of the problems adopted
here (E01, E03 and E04) to validate their approach, per-
forming 300,000, 200,000 and 50,000 evaluations, respec-
tively. For E01 and E02, the best values reported are not the
best known values because the ranges of some variables in
E01 are different from those of the original description of
the problem (x4 is out of range), which makes such so-
lution infeasible under the description adopted here. The
value reported by them for E04 is very close to the best
value known [21].

Bernardino et al. hybridized a genetic algorithm embed-
ding an artificial immune system into its search engine, in
order to help moving the population into the feasible re-
gion. The algorithm was used to solve four of the test
problems adopted here (E01, E02, E03 and E04), using
320,000, 80,000, 36,000 and 36,000 evaluations of the ob-
jective functions, respectively. The best values found for
E01, E02 and E04 are close to the best known. For E03 the
value reported is better than the best known, because one
of the decision variables is out of range (x5). The values in
general, are good, although the number of evaluations re-
quired to obtain them is higher than those required by other
algorithms [4].

Hernandez Aguirre et al. proposed a PSO algorithm with
two new perturbation operators aimed to prevent prema-
ture convergence, as well as a new neighborhood struc-
ture. They used an external file to store some particles
and, in that way, extend their life after the adjustment of
the tolerance of the constraints. The authors reference
three algorithms which obtained good results for the prob-
lems adopted in their study: two PSO-based algorithms
and a Differential Evolution (DE) algorithm. One of the
PSO-based approaches compared [16] used three of the
problems adopted here (E01, E02 and E04), performing
200,000 objective function evaluations. The other PSO-
based approach compared [14] was tested with the same set
of problems and the best known values were reached for
E02 and E04 after 30,000 objective function evaluations.
The DE algorithm [22] reported good results with 30,000
evaluations for the four problems. This same number of
evaluations was performed by the algorithm proposed by
Hernandez et al. and their results are the best reported until
now for the aforementioned problems [15].

For that reason, we used these last two algorithms to
compare the performance of our proposed approach. The
DE algorithm [22] will be referenced as “Mezura” and, the
PSO by [15] as “COPSO”.

3 Our proposed approach: SiC-PSO

The particles in our proposed approach (called Simple
Constrained Particle Swarm Optimizer, or SiC-PSO), are

n-dimensional values (continuous, discrete or a combina-
tion of both) vectors, where n refers to the number of de-
cision variables of the problem to be solved. Our approach
adopts one of the most simple constraint-handling meth-
ods currently available. Particles are compared by pairs:
1) if the two particles are feasible, we choose the one with
a better fitness function value; 2) if the two particles are
infeasible, we choose the particle with the lower infeasi-
bility degree; 3) if one particle is feasible and the other
is infeasible, we choose the feasible one. This strategy is
used when the pbest, gbest and lbest particles are chosen.
When an individual is found infeasible, the amount of vi-
olation (this value is normalized with respect to the largest
violation stored so far) is added. So, each particle saves its
infeasibility degree reached until that moment.

As in the basic PSO [10], our proposed algorithm records
the best position found so far for each particle (pbest value)
and, the best position reached by any particle into the
swarm (gbest value). In other words, we adopt the gbest
model. But in previous works, we found that the gbest
model tends to converge to a local optimum very often [7].
Motivated by this, we proposed a formula to update the ve-
locity, using a combination of both the gbest and the lbest
models [5]. Such a formula (Eq. 1) is adopted here as well.
The lbest model is implemented using a ring topology [17]
to calculate the neighborhoods of each particle. For a size
of neighborhood of three particles and a swarm of six parti-
cles (1,2,3,4,5,6), the neighborhoods considered are the fol-
lowing: (1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,1) and (6,1,2).
The formula for updating particles is the same that in the
basic PSO and it is shown in Eq. 2.

vid = w(vid + c1r1(pbid − pid)
+ c2r2(plid − pid) (1)
+ c3r3(pgd − pid))

pid = pid + vid (2)

where vid is the velocity of the particle i at the dimension
d, w is the inertia factor [10] whose goal is to balance the
global exploration and the local exploitation, c1 is the per-
sonal learning factor, and c2, c3 are the social learning fac-
tors, r1, r2 and r3 are three random numbers within the
range [0..1], pbid is the best position reached by the par-
ticle i, plid is the best position reached by any particle in
the neighborhood of particle i and, pgd is the best position
reached by any particle in the swarm. Finally, pid is the
value of the particle i at the dimension d.

We empirically found that for some difficult functions,
a previous version of our algorithm could not find good
values. The reason was its diversification of solutions
which kept the approach from converging. In SiC-PSO we
changed the common updating formula (Eq. 2) of the parti-
cles for the update equation presented by Kennedy [18].
In Kennedy’s algorithm, the new position of each parti-
cle is randomly chosen from a Gaussian distribution with
the mean selected as the average between the best position
recorded for the particle and the best in its neighborhood.
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The standard deviation is the difference between these two
values. We adapted that formula adding the global best
(gbest) to the best position of the particle and the best in its
neighborhood. We also changed the way in which the stan-
dard deviation is determined. We use the pbest and, the
gbest instead of the lbest as was proposed by Kennedy. We
determined those changes after several empirical tests with
different Gaussian random generator parameters. Thus, the
position is updated using the following equation:

pi = N

(
pi + pli + pg

3
, |pi − pg|

)
(3)

where pi, pli and pg are defined as before and, N is the
value returned by the Gaussian random generator. SiC-
PSO used Eq. 3 and Eq. 2 for the updating of positions
of the particles. We considered a high probability for se-
lecting Eq. 3 (0.925) over Eq. 2. We chose that probability
after conducting numerous experiments.

4 Parameter settings and analysis of
results

A set of 4 engineering design optimization problems was
chosen to evaluate the performance of our proposed algo-
rithm. A detailed description of the test problems may be
consulted in the appendix at the end of this paper. We
performed 30 independent runs per problem, with a total
of 24,000 objective function evaluations per run. We also
tested the algorithm with 27,000 and 30,000 evaluations of
the objective function, but no performance improvements
were noticed in such cases. Our algorithm used the follow-
ing parameters: swarm size = 8 particles, neighborhood
size = 3, inertia factor w = 0.8, personal learning factor
and social learning factors for c1, c2 and c3 were set to 1.8.
These parameter settings were empirically derived after nu-
merous previous experiments.

Our results were compared with respect to the best re-
sults reported in the specialized literature. Those values
were obtained by Hernandez Aguirre et al. [15] and Mezura
et al. [22]. We reference those results into the tables shown
next as “COPSO” and “Mezura”, respectively. It is impor-
tant remark that COPSO and Mezura algorithms reached
the best values after 30,000 fitness function evaluations,
which is a larger value than that required by our algorithm.
The best values are shown in Table 1 and, the mean and
standard deviations over the 30 runs are shown in Table 2.

The three algorithms reached the best known values for
E01. For E02, SiC-PSO and COPSO reached the best
known, but Mezura reported a value with a precision of
only 4 digits after the decimal point, and the exact value
reached by them is not reported. For E03, SiC-PSO reached
the best value, COPSO reached a value slightly worse
than ours, and Mezura reached an infeasible value. SiC-
PSO and COPSO reached the best value for E04, although
Mezura reported a value that is worse than the best known.
In general, COPSO obtained the best mean values, except

for E03 for which best mean was found by our algorithm.
The lower standard deviation values for E01 and E04 was
obtained by COPSO; for E02 and E03, our SiC-PSO found
the minimum values.

Tables 3, 4, 5 and 6 show the solution vectors of the best
solution reached by SiC-PSO as well as the values of the
constraints, for each of the problems tested.

Best Solution
x1 0.205729
x2 3.470488
x3 9.036624
x4 0.205729
g1(~x) -1.819E-12
g2(~x) -0.003721
g3(~x) 0.000000
g4(~x) -3.432983
g5(~x) -0.080729
g6(~x) -0.235540
g7(~x) 0.000000
f(~x) 1.724852

Table 3: SiC-PSO Solution vector for E01 (welded beam).

Best Solution
x1 0.812500
x2 0.437500
x3 42.098445
x4 176.636595
g1(~x) -4.500E-15
g2(~x) -0.035880
g3(~x) -1.164E-10
g4(~x) -63.363404
f(~x) 6,059.714335

Table 4: SiC-PSO Solution vector for E02 (pressure ves-
sel).

5 Conclusions and Future Work
We have presented a simple PSO algorithm (SiC-PSO)
for constrained optimization problems. The proposed ap-
proach uses a simple constraint-handling mechanism, a
ring topology for implementing the lbest model and a novel
formula to update the position of particles. SiC-PSO had
a very good performance when is applied to several engi-
neering design optimization problems. We compared our
results with respect to those obtained by two algorithms
that had been previously found to perform well in the same
problems. These two algorithms are more sophisticated
than our SiC-PSO. Our algorithm obtained the optimal val-
ues for each of the test problems studied, while performing
a lower number of objective function evaluations. Also, the
performance of our approach with respect to the mean and
standard deviation is comparable with that shown by the
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Prob. Optimal SiC−PSO COPSO Mezura
E01 1.724852 1.724852 1.724852 1.724852
E02 6,059.714335 6,059.714335 6,059.714335 6,059.7143
E03 NA 2,996.348165 2,996.372448 2,996.348094∗

E04 0.012665 0.012665 0.012665 0.012689
∗Infeasible solution. NA Not avaliable.

Table 1: Best results obtained by SiC-PSO, COPSO and Mezura.

Mean St. Dev.
Prob. SiC−PSO COPSO Mezura SiC−PSO COPSO Mezura
E01 2.0574 1.7248 1.7776 0.2154 1.2E-05 8.8E-02
E02 6,092.0498 6,071.0133 6,379.9380 12.1725 15.1011 210.0000
E03 2,996.3482 2,996.4085 2,996.3480∗ 0.0000 0.0286 0.0000∗

E04 0.0131 0.0126 0.0131 4.1E-04 1.2E-06 3.9E-04
∗Infeasible solution.

Table 2: Means and Standard Deviations for the results obtained.

Best Solution
x1 3.500000
x2 0.700000
x3 17
x4 7.300000
x5 7.800000
x6 3.350214
x7 5.286683
g1(~x) -0.073915
g2(~x) -0.197998
g3(~x) -0.499172
g4(~x) -0.901471
g5(~x) 0.000000
g6(~x) -5.000E-16
g7(~x) -0.702500
g8(~x) -1.000E-16
g9(~x) -0.583333
g10(~x) -0.051325
g11(~x) -0.010852
f(~x) 2,996.348165

Table 5: SiC-PSO Solution vector for E03 (speed reducer).

other algorithms. Thus, we consider our approach to be a
viable choice for solving constrained engineering optimiza-
tion problems, due to its simplicity, speed and reliability.
As part of our future work, we are interested in exploring
other PSO models and in performing a more detailed statis-
tical analysis of the performance of our proposed approach.

Appendix: Engineering problems

Formulating of the engineering design problems used to
test the algorithm proposed.

Best Solution
x1 0.051583
x2 0.354190
x3 11.438675
g1(~x) -2.000E-16
g2(~x) -1.000E-16
g3(~x) -4.048765
g4(~x) -0.729483
f(~x) 0.012665

Table 6: SiC-PSO Solution vector for E04 (ten-
sion/compression spring).

E01: Welded beam design optimization
problem
The problem is to design a welded beam for minimum
cost, subject to some constraints [23]. Figure 1 shows the
welded beam structure which consists of a beam A and
the weld required to hold it to member B. The objective is
to find the minimum fabrication cost, considerating four
design variables: x1, x2, x3, x4 and constraints of shear
stress τ , bending stress in the beam σ, buckling load on the
bar Pc, and end deflection on the beam δ. The optimization
model is summarized in the next equation:

Minimize:

f(~x) = 1.10471x1
2x2 + 0.04811x3x4(14.0 + x2)

subject to:
g1(~x) = τ(~x)− 13, 600 ≤ 0

g2(~x) = σ(~x)− 30, 000 ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471(x1
2) + 0.04811x3x4(14 + x2)− 5.0 ≤ 0

g5(~x) = 0.125− x1 ≤ 0

g6(~x) = δ(~x)− 0.25 ≤ 0
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g7(~x) = 6, 000− Pc(~x) ≤ 0

with:

τ(~x) =

√
(τ ′)2 + (2τ ′τ ′′)

x2

2R
+ (τ ′′)2

τ ′ =
6, 000√
2x1x2

τ ′′ =
MR

J

M = 6, 000
(
14 +

x2

2

)

R =

√
x2

2

4
+

(x1 + x3

2

)2

J = 2

{
x1x2

√
2

[
x2

2

12
+

(x1 + x3

2

)2
]}

σ(~x) =
504, 000

x4x3
2

δ(~x) =
65, 856, 000

(30× 106)x4x3
3

Pc(~x) =
4.013(30× 106)

√
x32x46

36

196


1−

x3

√
30×106

4(12×106)

28




with 0.1 ≤ x1, x4 ≤ 2.0, and 0.1 ≤ x2, x3 ≤ 10.0.
Best solution:

x∗ = (0.205730, 3.470489, 9.036624, 0.205729)

where f(x∗) = 1.724852.

Figure 1: Weldem Beam.

E02: Pressure Vessel design optimization
problem
A compressed air storage tank with a working pressure of
3,000 psi and a minimum volume of 750 ft3. A cylindrical
vessel is capped at both ends by hemispherical heads (see
Fig. 2). Using rolled steel plate, the shell is made in two
halves that are joined by teo longitudinal welds to form a
cylinder. The objective is minimize the total cost, including
the cost of the materials forming the welding [24]. The de-
sign variables are: thickness x1, thickness of the head x2,
the inner radius x3, and the length of the cylindrical section

of the vessel x4. The variables x1 and x2 are discrete val-
ues which are integer multiples of 0.0625 inch. Then, the
formal statement is:
Minimize:

f(~x) = 0.6224x1x3x4 + 1.7781x2x3
2 + 3.1661x1

2x4

+ 19.84x1
2x3

subject to:

g1(~x) = −x1 + 0.0193x3 ≤ 0

g2(~x) = −x2 + 0.00954x3 ≤ 0

g3(~x) = −πx3
2x4

2 − 4

3
πx3

3 + 1, 296, 000 ≤ 0

g4(~x) = x4 − 240 ≤ 0

with 1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625, 10.0 ≤ x3, and
x4 ≤ 200.0.

Best solution:

x∗ = (0.8125, 0.4375, 42.098446, 176.636596)

where f(x∗) = 6, 059.714335.

Figure 2: Pressure Vessel.

E03: Speed Reducer design optimization
problem
The design of the speed reducer [12] shown in Fig. 3, is
considered with the face width x1, module of teeth x2,
number of teeth on pinion x3, length of the first shaft
between bearings x4, length of the second shaft between
bearings x5, diameter of the first shaft x6, and diameter
of the first shaft x7 (all variables continuous except x3

that is integer). The weight of the speed reducer is to
be minimized subject to constraints on bending stress of
the gear teeth, surface stress, transverse deflections of the
shafts and stresses in the shaft. The problem is:

Minimize:

f(~x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x2

7) + 7.4777(x3
6 + x3

7)

+ 0.7854(x4x
2
6 + x5x

2
7)

subject to:
g1(~x) =

27

x1x2
2x3

− 1 ≤ 0
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g2(~x) =
397.5

x1x2
2x

2
3

− 1 ≤ 0

g3(~x) =
1.93x3

4

x2x3x4
6

− 1 ≤ 0

g4(~x) =
1.93x3

5

x2x3x4
7

− 1 ≤ 0

g5(~x) =
1.0

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9× 106 − 1 ≤ 0

g6(~x) =
1.0

85x3
7

√(
745.0x5

x2x3

)2

+ 157.5× 106 − 1 ≤ 0

g7(~x) =
x2x3

40
− 1 ≤ 0

g8(~x) =
5x2

x1
− 1 ≤ 0

g9(~x) =
x1

12x2
− 1 ≤ 0

g10(~x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(~x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤
28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and
5.0 ≤ x7 ≤ 5.5.

Best solution:

x∗ = (3.500000, 0.7, 17, 7.300000, 7.800000,

3.350214, 5.286683)

where f(x∗) = 2, 996.348165.

Figure 3: Speed Reducer.

5.1 E04: Tension/compression spring design
optimization problem

This problem [2] [3] minimizes the weight of a ten-
sion/compression spring (Fig. 4), subject to constraints of
minimum deflection, shear stress, surge frequency, and
limits on outside diameter and on design variables. There
are three design variables: the wire diameter x1, the mean
coil diameter x2, and the number of active coils x3. The

mathematical formulation of this problem is:

Minimize:
f(~x) = (x3 + 2)x2x

2
1

subject to:

g1(~x) = 1− x3
2x3

7, 178x4
1

≤ 0

g2(~x) =
4x2

2 − x1x2

12, 566(x2x3
1)− x4

1

+
1

5, 108x2
1

− 1 ≤ 0

g3(~x) = 1− 140.45x1

x2
2x3

≤ 0

g4(~x) =
x2 + x1

1.5
− 1 ≤ 0

with 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, and
2.0 ≤ x3 ≤ 15.0.

Best solution:

x∗ = (0.051690, 0.356750, 11.287126)

where f(x∗) = 0.012665.

Figure 4: Tension/Compression Spring.
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