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Abstract In this paper, we present a novel model of an artificial immune system (AIS), based on the process that
suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The
model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the
model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm.
We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed
approach with a set of test functions taken from the specialized literature and we compare our results with respect
to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect
to an AIS previously proposed.
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1 Introduction

In many real-world problems, the decision variables are subject to a set of constraints, and the search
has to be bound accordingly. Constrained optimization problems are very common, for example, in
engineering applications, and therefore it is important to be able to deal with them efficiently.

Many bio-inspired algorithms (particularly evolutionary algorithms) have been very successful in the
solution of a wide variety of optimization problems [31]. But, when they are used to solve constrained
optimization problems, they need a special method to incorporate the problem’s constraints into their
fitness function. Evolutionary algorithms (EAs) often use exterior penalty functions in order to do
this [27]. However, penalty functions require the definition of accurate penalty factors and performance
is highly dependent on them.

Recently, several researchers have proposed novel constraint-handling techniques for EAs [3, 20, 25].
These approaches have been able to outperform penalty functions and can handle all types of constraints
(linear, nonlinear, equality, inequality).
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The main motivation of the work presented in this paper is to explore the capabilities of a new AIS
model in the context of constrained global optimization. The proposed model is based on the process
that suffers the T-Cell. We also propose a dynamic tolerance factor and several mutation operators
that allow us to deal with different types of constraints. The remainder of the paper is organized as
follows. In Section 2, we define the problem we want to solve. Section 3 describes some previous work.
In Section 4, we introduce and describe our proposed model. In Section 5, we present our experimental
setup. In Section 6, our results are presented and they are discussed. Finally, in Section 7, we present
our conclusions and some possible paths for future work.

2 Statement of the Problem

We are interested in solving the general nonlinear programming problem which is defined as follows:

Find & = (21,...,z,) which optimizes (z1,...,x,) subject to:

hi('rlv'-'vxn):()izl,...,l
gj(w1, .., w,) S0 =1,...,p

where (21, ...,x,) is the vector of solutions (or decision variables), [ is the number of equality constraints
and p is the number of inequality constraints (in both cases, constraints could be linear or nonlinear).

3 Previous Work

According to [11] the main models of Artificial Immune System are: Negative Selection, Clonal Selection
and Immune Network Models. They are briefly described next.

Forrest et al. [26] proposed the Negative Selection model for detection of changes. This model is based
on the discrimination principle that the immune system adopts to distinguish between self and nonself.
This model generates random detectors and discards the detectors that are unable to recognize themselves.
Thus, it maintains the detectors that identify any nonself. It performs a probabilistic detection and it
is robust because it searches any foreign action instead of a particular action. Typical applications of
negative selection [11] include those reported in [26, 12, 7], among others.

The Immune Network Model was proposed by Jerne [18], and it is a mathematical model of the
immune system. In this case, the dynamics of the lymphocytes are simulated by differential equations.
This model assumes that lymphocytes are an interconnected network. Several models have been derived
from it [13, 1]. Typical applications are [11]: detection of gene promoter sequences [14], data mining [15],
diagnosis [16] and cluster analysis [17, 28].

Clonal Selection is based on the way in which both B-cells and T-cells adapt in order to match and
kill the foreign cells [11]. Clonal Selection involves: 1) the AIS’ ability to adapt its B-cells to new types
of antigens and 2) the affinity maturation by hypermutation. CLONALG proposed by Nunes de Castro
and Von Zuben [23, 24] was originally used to solve pattern recognition and multimodal optimization
problems, and there are a few extensions of this algorithm for constrained optimization. CLONALG
works in the following way: first, it creates a random population of antibodies, it sorts it according to
some fitness function, it clones them, it mutates each clone, it selects the fittest antibodies and clones it
and replaces the worst antibodies for antibodies that are randomly generated. Typical applications are
described in [8, 24, 29], among others.

Those models have been used in several types of problems, but particularly, the use of artificial immune
systems to solve constrained (numerical) optimization problems is scarce. The only previous related work
that we found in the specialized literature is the following:

Hajela and Yoo [30, 31] have proposed a hybrid between a Genetic Algorithm (GA) and an AIS
for solving constrained optimization problems. This approach works on two populations. The first is
composed by the antigens (which are the best solutions), and the other by the antibodies (which are
the worst solutions). The idea is to have a GA embedded into another GA. The outer GA performs
the optimization of the original (constrained) problem. The second GA uses as its fitness function a
Hamming distance so that the antibodies are evolved to become very similar to the antigens, without
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becoming identical. An interesting aspect of this work was that the infeasible individuals would normally
become feasible as a consequence of the evolutionary process performed. This approach was tested with
some structural optimization problems.

Kelsey and Timmis [19] proposed an immune inspired algorithm based on the clonal selection theory to
solve multimodal optimization problems. Its highlight is the mutation operator called Somatic Contiguous
Hypermutation, where mutation is applied on a subset of contiguous bits. The length and beginning of
this subset is determined randomly.

Coello Coello and Cruz-Cortés [5] have proposed an extension of Hajela and Yoo’s algorithm. In this
proposal, no penalty function is needed, and some extra mechanisms are defined to allow the approach to
work in cases in which there are no feasible solutions in the initial population. Additionally, the authors
proposed a parallel version of the algorithm and validated it using some standard test functions reported
in the specialized literature.

Balicki [2] made a proposal very similar to the approach of Coello Coello and Cruz-Cortés. Its main
difference is the way in which the antibodies’ fitness is computed. In this case, Balicki introduces a ranking
procedure. This approach was validated using a constrained three-objective optimization problem.

Luh and Chueh [10, 22] have proposed an algorithm (called CMOTA, or Constrained Multi Objective
Immune Algorithm) for solving constrained multiobjective optimization problems. In this case, the
antibodies are the potential solutions to the problem, whereas antigens are the objective functions.
CMOIA transforms the constrained problem into an unconstrained one by associating an interleukine
(IL) value with all the constraints violated. IL is a function of both the number of constraints violated
and the total magnitude of this constraint violation. Then, feasible individuals are rewarded and infeasible
individuals are penalized. Other features of the approach were based on the clonal selection theory and
other immunological mechanisms. CMOIA was evaluated using six test functions and two structural
optimization problems.

Coello Coello and Cruz-Cortés [6] have proposed an algorithm based on the clonal selection theory for
solving constrained optimization problems. The authors experimented with both binary and real-value
representation, considering Gaussian-distributed and Cauchy-distributed mutations. Furthermore, they
proposed a controlled and uniform mutation operator. This approach was tested with a set of 13 test
functions taken from the specialized literature on evolutionary constrained optimization.

4 Owur Proposed Model

This paper presents a novel bio-inspired model based on the T-Cell, it is called T-Cell Model. In a very
simple way, the processes that suffer the T-Cell are the following: first, they are divided in three groups
(Virgin Cell, Effector Cells and Memory Cells). Then, the natural immune system generates a huge
number of virgin cells. During the immunological response, the T-cells pass through different phases:
initiation, reaction and elimination. After the initiation phase, virgin cells becomes effector cells. These
react (it means that the cells change in order to improve) and undergo a process called apoptosis. This
process eliminates any undesirable cells. The surviving cells become memory cells.

Thus, this model operates on three populations, corresponding to the three groups in which the T-cells
are divided: (1) Virgin Cells (VC), (2) Effector Cells (EC) and (3) Memory Cells (MC). Each of them
has a specified function. VC has as its main goal to provide diversity. EC tries to explore the conflicting
zones of the search space. MC has to explore the neighborhood of the best solutions found so far. VC and
EC represent their cells with binary string using Gray coding, MC does the same, but adopting vectors
of real values. The general structure of this model is the following:

Repeat a predetermined number of times
1. Generate (in a random way) Virgin
Cells
2. Insert a percentage of Virgin Cells
in Effector Cells
3. Repeat a predetermined number of times
3.1. Make the Effector Cells React
End repeat.
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4. Insert a percentage of Effectors Cells
in Memory Cells
5. Repeat a predetermined number of times
5.1. Make the Memory Cells React
End repeat.
End repeat.

4.1 Handling Constraints

In our proposed model, the constraint-handling method needs to calculate, for each cell (solution) regard-
less of the population to which it belongs, the following: 1) value of each constraint function, 2) sum of
violation constraints (sum_res), it is a positive value determined by the addition of g;(z)™ fori=1,...,p
and |hg(z)| for k=1,...,1 and 3) value of objective function (only if the cell is feasible).

When the search process is driven by the value of each constraint and the sum of constraint violations,
then the selection mechanisms favors the feasible solutions over the infeasible ones. In this case, it is
probable that, in some functions, the search falls into a local optimum. For this reason, we develop a
dynamic tolerance factor (DTF). It changes with each new population, since it depends on the value
of sum_res. The DTF is calculated by adding the value of each constraint violated in each cell from a
particular population (VC or EC). Then, this value is divided by the number of Virgin Cells (for DTF’s
VC) or three times the number of Effector Cells (for DTF’s EC). Thus, the DTF for VC is more flexible
than DTF for EC allowing that more infeasible cells being feasible cells, in a virtual way.

When we evalue the population using the DTF, it will be easier to generate solutions that are consid-
ered "feasible” (although they may be really infeasible if evaluated with the actual precision required).
This allows the exploration of each solution’s neighborhood, which otherwise, would not be possible. This
DTF is used by both VC and EC. If the value of DTF is lower than 0.0001, we set it to 0.1 and 0.001 for
VC and EC, respectively. In contrast, MC adopts a traditional tolerance factor, which is set to 0.0001.
The cells within MC need to be evaluated with the traditional tolerance factor because these are the real
solution for the problem.

4.2 Incorporating Domain Knowledge

In order to explore the frontier between feasible and infeasible zones, EC is divided in EC_f and EC_inf.
The first is composed by feasible solutions and the other by infeasible solutions. Also, we introduce
domain knowledge through the mutation operator, which modify the decision variables involve in the
constraint with the highest violation.

4.3 Mutation Operators

Each population that reacts (EC_f, EC_inf and MC) has its own mutation operator. These operators are
described next.

The mutation operator for EC_inf works in the following way: first, it identifies the most violated
constraint, say c. If this constraint value (c) is larger than sum_res divided the total number of constraints,
then we change each bit from each decision variable involve in ¢ with a random probability between 0.01
and 0.2. Otherwise, we change each bit from one decision variable involve in ¢, randomly selected, with a
random probability between 0.01 and 0.2. We use a random probability because after some experiments,
we observed that some test functions required different step sizes. If after applying mutation, a cell
becomes feasible, it is inserted in EC_f according to an elitist selection.

The mutation operator for EC_f works in the following way: it changes each bit from all decision
variables, with a random probability between 0.001 and 0.2. This random probability has the same
motivation that the previously.

The mutation operator for MC applies the following equation:

, N0, Diu—11 VOV
xr =x+ (1)
10mgen|const||dv|
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where z and 2" are the original and mutated decision variables, respectively. N(0,1) refers to a random
number with a uniform distribution between (0,1). lu and Il are the upper and lower limits of z. |const|
refers to the number of constraints. |dv| refers to the number of decision variables of the problem, gen is
the current generation number and m is an integer (its value is seted in Section 5).

4.4 Replace Mechanisms

The replace mechanisms are always applied in an elitist way, both within a population and between
different populations. They take into account the value of objective function or the sum of constraint
violation, depending on whether the cell is feasible or infeasible, respectively. Additionally, we always
consider a feasible cell as better than an infeasible one. Note that before a cell is inserted into another
population, it is first evaluated with the tolerance factor of the receptor population.

Therefore, the general structure of our proposed model for constrained problems is the following:

Repeat a predetermined number of times
1. Randomly generate Virgin Cells
2. Calculate DTF’s VC
3. Evaluate VC with its own DTF
4. Insert a percentage of Virgin Cells
into Effector Cells population
Calculate DTF’s EC’s
6. Repeat 50 times
6.1. Make the Effector Cells React
6.2. Evaluate EC’s with its own DTF
End repeat.
7. Insert a percentage of Effectors Cells
into Memory Cells population
8. Repeat 100 times
8.1. Make the Memory Cells React
8.2. Evaluate MC
End repeat.
End repeat.

o

The most relevant aspects of our proposed model are the following:

e All equality constraints are converted into inequality constraints, |h(Z)| —§ < 0, using a tolerance
factor.

e VC('’s cells and MC'’s cell are sorted using the following criterion: the feasible cell whose objective
function are the best are placed first. Then, we place the infeasible cells that have the lowest sum
of constraint violation.

e EC_f’s cells are sorted in ascending order on their objective function.

e EC.inf’s cells are sorted in ascending order on their sum of constraint violation.

4.5 Differences between the Models

The immune system models described in 3 are based on different immunological theories. Clonal Selection
is based on the replication of antibodies according to their affinity. The Immune Network Model is a
probabilistic approach to idiotypic networks. Negative Selection is based on the principles of self-nonself
discrimination that take place in the immune system. Aditionally, Negative Selection and T-Cell Model
are both based on the mechanisms of the T-Cell. However, these models give a completely different
treatment to the cells (in T-Cell Model) and detectors (in Negative Selection). The Negative Selection
Model tries to detect some change, whereas T-Cell Models categorizes the T-cell and it uses their phases
in order to achieve different goals.
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5 Esperimental Setup

In order to validate our proposed model we tested it with a benchmark of 19 test functions taken from the
specialized literature [4]. The functions g02, g03, g08 and g12 are maximization problems (for simplicity,
these problems were converted into minimization problems using — f(x)) and the rest are minimization
problems.

Our results are compared with respect to Stochastic Ranking, we take its result from [21], which is a
constraint handling technique representative of the state-of-the-art in the area, and with respect to the
AIS approach reported in [6]. For equation 1, we used m = 107 for all functions except for g02, here we
used m = 10%. 25 independents runs were performed for each problem, each consisting of 350,000 fitness
function evaluations. We experimented with different population sizes, the best results were obtained
using: 1) for VC 100 cells for all functions, except for g19 here we used 10 cells and for gl0 and gl5 we
used 20 cells, 2) for EC_f, EC_inf and MC we used 20 cells for all functions, except for gl0 and g19, here
we used 10 cells. We adopted a 100% and 50% replacement for the cells in EC’s and MC, respectively.
All the statistical measures reported are taken only with respect to the runs in which a feasible solution
was reached at the end.

6 Discussion Of Results

Tables 1, 2 and 3 show the results obtained with the AIS proposed in [6], Stochastic Ranking and our
T-Cell Model, respectively. Figures 1 to 16 show graphically the best and mean values obtained for all
test functions, except for g08, g11 and gl12 where all algorithms found the optimum values.

From Table 3, we can see that our model was able to reach the global optimum in 8 test functions
(g01, g04, g06, g08, g11, g12, g15 and g16). Additionally, our model reached feasible solutions close to the
global optimum in 7 more test functions (g02, g03, g07, g09, g13, gl4 and g18) and it found acceptable
(but not too close from the global optimum) feasible solutions for the rest of the test functions.

Comparing T-Cell Model with respect to Stochastic Ranking (see Tables 2 and 3), T-Cell Model
obtained better results in 9 test functions (g03, g04, g06, gll, gl4, gl5, gl6, gl7 and g18). Both
approaches found similar solutions for g01, g08 and gl2. Our model was outperformed in 7 functions
(202, g05, g07, g09, g10, g13 and gl19) . With respect to the mean and worst found solutions, our model
was outperformed all functions except g03, g04, g06, g11, g14 and g16.

Comparing T-Cell Model with the AIS proposed in [6] (see Tables 1 and 3), T-Cell Model obtained
better results in 8 test functions (g01,g02, g03, g05, g06, g07, gl0 and gll). Both approaches found
similar solutions for g04, g08 and gl2. Finally, our model was outperformed in g09 and gl13. With
respect to the mean and worst found solutions, our model was outperformed only in g02, g07, g09 and
gl3.

We conducted an analysis of variance of the results obtained by our T-Cell Model and of the results
obtained by Stochastic Ranking [21]. Due to, for some functions, the results do not follow a normal
distribution, we used the Kruskal Wallis test [9] and then Turkey method [9]. The first test indicates if
the means between the results of the algorithms had significant differences and the second one indicates in
which experimental conditions the means had significant differences. Table 4 shows the values obtained
for these tests. The first column represents to the function, the second column shows the values for
Kruskal Wallis test (the means had significant differences if this value p is lower than 0.05), the third and
fourth column indicate the lower and upper limits (if the values contained inside this interval does not
contain the zero then the means had significant differences). After the analysis of Table 4, we observed
that for all function the means have significant differences except for gll. Note that we do not apply
these tests to g01, g08 and 12 because, for these functions both algorithms found the optimum solution
in all runs.

We argue that the model is capable of performing an efficient local search over each cell, which allows
the model to improve on the feasible solutions found. In cases in which no feasible solutions are found in
the initial population, the mutation applied is capable of reaching the feasible region even when dealing
with very small feasible search spaces.

Although there is clearly room for improving our proposed model, we have empirically shown that
this approach is able of dealing with a variety of constrained optimization problems (i.e., with both linear
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and nonlinear constraints and objective function, and with both equality and inequality constraints).
The benchmark adopted includes test functions with both small and large feasible regions, as well as a

disjoint feasible region.

Function | Optimum Best Mean Worst Std.Dev
201 -15 -14.9874 -14.7264 -12.9171 0.6070
202 -0.803619 -0.8017 -0.7434 -0.6268 0.0414
203 -1.0005 -1.0 -1.0 -1.0 0.0000
g04 -30665.5386 || -30665.5387 | -30665.5386 | -30665.5386 0.0000
g05* 5126.4967 5126.9990 5436.1278 6111.1714 300.8854
206 -6961.81387 | -6961.8105 | -6961.8065 | -6961.7981 0.0027
g07 24.306 24.5059 25.4167 26.4223 0.4637
208 -0.095825 -0.095825 -0.095825 -0.095825 0.0000
209 680.63 680.6309 680.6521 680.6965 0.0176
g10 7049.24 7127.9502 8453.7902 12155.1358 | 1231.3762
gll 0.7499 0.75 0.75 0.75 0.0000
g12 -1.0 -1.0 -1.0 -1.0 0.0000
g13 0.05395 0.05466 0.45782 1.49449 0.3790

Table 1: Results obtained with AIS proposed in [6]. The asterisk (*) indicates a case in

which only 90% of the runs converged to a feasible solution

Function | Optimum Best Mean Worst
201 -15 -15.0 -15.0 -15.0
202 -0.803619 -0.803 -0.784 -0.734
203 -1.0005 -1.0 -1.0 -1.0
204 -30665.539 || -30665.539 | -30665.480 | -30664.216
205 5126.4967 5126.497 5130.752 5153.757
206 -6961.81387 || -6961.814 | -6863.645 | -6267.787
g07 24.306 24.310 24.417 24.830
208 -0.095825 -0.095825 | -0.095825 | -0.095825
209 680.63 680.63 680.646 680.697
g10 7049.24 7050.194 7423.434 8867.844
gll 0.7499 0.750 0.750 0.751
gl2 -1.0 -1.0 -1.0 -1.0
g13 0.05395 0.053 0.061 0.128
gl4 -47.7648 -41.551 -41.551 -40.125
gl5 961.71502 961.715 961.731 962.008
g16 -1.905155 -1.905 -1.703 -1.587
gl7 8853.539 8811.692 8805.99 8559.613
g18 -0.86602 -0.866 -0.786 -0.457
g19 32.655 33.147 34.337 37.477

Table 2: Results obtained with Stochastic Ranking [21]

7 Conclusions and Future Work

This paper has presented a new AIS model for solving constrained optimization problems in which
novel mutation operators are adopted. One of the operators incorporates knowledge of the problem, by
modifying the decision variables involve in the most violated constraint. For some functions, the feasible
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Function | Optimum Best Worst Mean Std.Dev
g01 -15.0 -15.0 -15.0 -15.0 0.0
g02 -0.803619 -0.802914 -0.301795 -0.546031 0.168392
g03 -1.0005 -1.000499 -1.000498 -1.000499 0.000001
g04 -30665.5386 || -30665.5386 | -30665.5386 | -30665.5386 0.0
g05* 5126.4967 5126.6595 5850.9358 5307.1073 230.2466
g06 -6961.81387 || -6961.81387 | -6961.81387 | -6961.81387 0.0
g07 24.306 24.3118 28.5089 25.8927 1.1297
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0
209 680.63 680.6312 680.7411 680.6730 0.030547
gl0 7049.24 7061.67 7894.75 7451.88 218.39739
gll 0.7499 0.7499 0.7499 0.7499 0.0
g12 -1.0 -1.0 -1.0 -1.0 0.0
gl3 0.05395 0.054879 2.03033 0.64231 0.534641
gl4 -47.7648 -46.2546 -40.2996 -43.6876 1.538386
glh 961.71502 961.71502 971.43611 065.02171 3.10270
gl6 -1.905155 -1.905155 -1.905155 -1.905155 0.0
gl7 8853.539 8862.383 9271.390 8984.399 117.5927
gl8 -0.86602 -0.866019 -0.66920 -0.78805 0.09285
gl19 32.655 34.649 73.151 52.617 10.1005

Table 3: Results obtained with our proposed T-Cell Model. The asterisk (*) indicates a

case in which only 96% of the runs converged to a feasible solution

Function p lower limit | upper limit
g02 2.54392e-009 16.0252 31.7348
g03 4.53296e-011 | -35.0356 -18.9644
g04 8.98673e-011 17.4421 32.5579
g05 2.17934e-009 16.2556 32.0911
206 9.06124e-011 17.4406 32.5594
g07 2.93747e-009 15.4582 30.7018
209 1.08889e-008 14.9037 30.4563
g10 1.74435e-008 14.5837 30.1363
gll 0.1298 -1.7753 13.8553
gl3 3.35698e-010 17.1443 32.6957
gl4 0.0009 -21.3391 -5.4609
glh 2.01142e-008 14.9660 31.0340
g16 3.97653e-011 | -32.4185 -17.5815
gl7 3.60989e-010 17.1853 32.8147
g18 7.25903e-010 16.6646 32.2157
g19 3.15542¢-010 16.8670 32.1330

Table 4: Analysis of Variance

region is very small, which makes it difficult to find good solutions. For this reason, we were motivated
to develop a dynamic tolerance factor. It allows to explore regions of the search space that, otherwise,
would be unreachable, if we use a tolerance factor very restrictive.

The proposed model was found to be competitive in a well-known benchmark commonly adopted in
the specialized literature on constrained evolutionary optimization. The approach was also found to be
robust and able to converge to feasible solutions in most cases.

Our analysis of the benchmark adopted made us realize that these test functions require small step
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sizes, except for g02, due to this function has a feasible region bigger than the other functions. A lot of
work remains to be done in order to improve the quality of some solutions found, so that the approach
can be competitive with respect to the algorithms representative of the state-of-the-art in the area. For
example, we plan to improve the mutation operators in order to find the frontier and feasible zone faster.
Nevertheless, it is important to emphasize that there is very little work regarding the use of artificial
immune systems for constrained numerical optimization, and in that context, this approach provides a
viable alternative.
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