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This paper describes the development of a screen-printed sensor, modified with carbon nanotubes for the
rapid and sensitive quantification of methimazole (MT) in pharmaceuticals formulations. Tyrosinase [EC
1.14.18.1], immobilized on a rotating disk, catalyzed the oxidation of catechols to o-benzoquinone, whose
back electrochemical reduction was detected on graphite screen-printed electrodes modified with carbon
nanotubes at —150 mV. Thus, when MT was added to the solution, this thiol-containing compound par-
ticipate in Michael type addition reactions with o-benzoquinone to form the corresponding thioquinone

ﬁgtwh?rfiole derivatives, decreasing the reduction current obtained proportionally to the increase of its concentration.
Tyrosinase This method could be used to determine MT concentration in the range of 0.074-63.5 wM (r=0.998). The
Catechol determination of MT concentration was possible with a detection limit of 0.056 wM in the processing

of as many as 25 samples per hour. The biosensor has a reasonable reproducibility (R.S.D.<3.50%) and a
very stable amperometric response toward this compound (more than 1 month). The application of this

Screen-printed electrodes
Enzymatic sensor

FIA analysis to different pharmaceutical samples containing MT supports the utility this biosensor.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Methimazole (MT, 1-methyl-2-mercaptoimidazole, tapazole) is
an orally active drugs used in the therapy of hyperthyroidism. MT
is absorbed by the gastrointestinal tract and concentrates in the
thyroid gland [1]. MT is widely used in medicine for treatment of
hyperthyroidism and even as model substance for endocrine dis-
ruption in physiological and genomic studies. Its action is to slow
iodide integration into tyrosine and thus inhibits the production of
thyroid hormones.

Methimazole is used as a drug to manage hyperthyroidism
associated with Grave’s disease, but it has side effects as possible
decrease of white blood cells in the blood [2]. MT has also been
employed to promote growth in animals for human consumption.

In human body, methimazole is metabolized to N-
methylimidazole and sulfite via sulfenic and sulfinic acid
intermediates that are associated with the cytotoxic effects
[3]. Substantial portion of orally taken drug is excreted with urine
[4]. It has been reported that methimazole may also cause side
effects, such as nephritis, liver cirrhosis, irritation of the skin,
allergies and pharyngitis with fever [5].

Several analytical procedures have been described for the
determination methimazole in different samples. Techniques
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used were gas chromatography-mass spectrometry (GC-MS) [6-
8], high-performance liquid chromatography-mass spectrometry
(HPLC-MS) [9,10], HPLC with ultraviolet detection [11,12], poten-
tiometric [13], titrimetric [14] and flow-injection with ultraviolet
detection [15].

Screen-printing technique seems to be one of the most promis-
ing approaches allowing simple, rapid and inexpensive biosensors
production [16]. The biosensors based on screen-printed electrodes
have been extensively used for detections of biomolecules, pesti-
cides, antigens and anions [17]. Electrochemical biosensors based
on screen-printed electrodes are in tune with the requirements of
in situ screening devices, since all the equipment needed for the
electrochemical analysis is portable. They have all the major per-
formance characteristics of biosensors, among them the minimum
sample preparation, the simplicity of the apparatus, the obtaining
of fast results, moreover they are cost effective, small and becoming
miniaturized with new technologies [18].

Carbon nanotubes (CNTs) are a novel type of carbon material and
can be considered as the result of folding graphite layers into carbon
cylinders. There are two groups of carbon nanotubes, multi-walled
carbon nanotubes (MWCNT) and single-walled carbon nanotubes
(SWCNT) [19]. The CNTs have generated great interest in future
applications based on their field emission and electronic transport
properties [20], their high mechanical strength and their chemical
properties [21].

The research has been focused on their electrocatalytic
behaviours toward the oxidation of biomolecules and their perfor-
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mance has been found to be much superior to those of other carbon
electrodes in terms of reaction rate, reversibility and detection limit
[22]. The uses of CNTs for preparation of biosensors based on CNT-
modified screen-printed electrodes have been reported previously
[23-27].

Tyrosinase a two copper-containing enzyme, catalyzes the
o-hydroxylation of monophenols (monophenolase activity) and
the oxidation of o-diphenols (Q) to o-quinones (P) (diphenolase
activity) [28-30]. Over the past decades, several reports on the
tyrosinase action mechanism have been published [31-34]. This
enzyme has been used extensively in the development of biosen-
sors for the detection of phenolic compounds [35-37]. To the
best of our knowledge, no study involving an enzymatic biosensor
behaviour for MT has been reported. Thus, in this paper, we present
and discuss for the first time the electrochemical and enzymatic
reaction for MT determination, resulting in a single, fast and inex-
pensive analytical method as well as very sensitive devise based on
tyrosinase rotating biosensor systems.

In this paper, we performed a screen-printed enzymatic sen-
sor modified with MWCNT for rapid and sensitive quantification
of MT in pharmaceutical preparations. Tyrosinase immobilized
on a rotating disk, catalyzed the oxidation of catechol (Q) to
o-benzoquinone (P), whose back electrochemical reduction was
detected on graphite screen-printed electrodes (GSPE) at —150 mV
versus Ag/AgCl/NaCl 3 M. Thus, when MT was added to the solu-
tion, this thiol-containing compound participate in Michael type
addition reactions with P to form the corresponding thioquinone
derivatives, decreasing the reduction current obtained proportion-
ally to the increase of its concentration. A large number of samples
can be processed by means of the proposed method, which shows
adequate sensitivity, low cost, versatility, simplicity and effec-
tiveness. Our aim was to develop a new method able to analyze
pharmaceuticals formulations, avoiding or minimizing the number
of steps needed to assess the concentration of the MT.

2. Materials and methods
2.1. Reagents and solutions

All reagents used were of analytical reagent grade. The enzyme
tyrosinase (from mushroom, EC 1.14.18.1, 2000Umg~!) was pur-
chased from Sigma Chemical Co. (St. Louis, MO, USA). The
enzyme concentration was determined taking the value of M; as
120,000. Glutaraldehyde (25% aqueous solution) was purchased
from Merck, Darmstadt. 3-Aminopropyl-modified controlled-pore
glass, 1400A mean pore diameter and 24m2mg-! surface
area, was from Electro-Nucleonics (Fairfield, NJ) and contained
48.2molg-! of amino groups. GSPE was purchased from Eco-
BioServices&Researches S.r.l. (Fienze, Italy). Catechol and MT were
purchased from Sigma Chemical Co., St. Louis, and all other reagents
employed were of analytical grade and used without further purifi-
cations. Aqueous solutions were prepared using purified water
from a Milli-Q-system.

2.2. Flow-through reactor/detector unit

The main body of the cell was made of Plexiglas. Fig. 1 illustrates
the design of the flow-through chamber containing the rotating
disk and the detector system. The GSPE is on the top of the rotat-
ing reactor. The rotating reactor is a disk of Plexiglas into which a
miniature magnetic stirring bar has been embedded. Rotation of the
lower reactor was effected with a laboratory magnetic stirrer with
control of temperature (Metrohm AG, Herisau, Switzerland) and
controlled with a variable transformer with an output between 0
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Fig. 1. Schematic representation of components in the bioreactor flow cell. SPE:
Screen-printed electrode, RD: rotating disk. All measurements are given in millime-
tres. Gasket: Teflon, thickness: 0.3 mm.

and 250V and maximum amperage of 7.5 A (Waritrans, Argentina).
All solutions and reagents were conditioned to 37 °C before the
experiment, using a laboratory water bath Vicking Mason Ii (Vicking
SRL, Argentina).

Amperometric detection was performed using a BAS LC-4C
potentiostat and BAS 100 B/W (electrochemical analyzer Bioan-
alytical System, West Lafayette, IN) was used to voltammetric
determinations.

A pump (Wilson Minipuls 3 peristaltic pump, Gilson Electronics,
Middleton, WI, USA) was used for pumping, introducing the sample,
and stopping the flow. Fig. 2 illustrates schematically the compo-
nents of the single-line continuous-flow setup. The pump tubing
was Tygon (Fisher Accu Rated, 1.0 mm i.d., Fisher Scientific, Pitts-
burgh, PA, USA), and the remaining tubing used was Teflon (1.0 mm
i.d. from Cole-Parmer, Chicago, IL, USA).
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Fig. 2. Block diagram of the continuous-flow system and detection arrangement.
P: Pump (Gilson Minipuls 3 peristaltic pump, Gilson Electronics, Inc. Middleton,
WI); C: carrier buffer line; SI: sample injection; W: waste line; EC: cell containing
the rotating disk and GSPE; WE: GSPE; RE: pseudo-reference electrode; AE: auxil-
iary electrode; D: BAS LC-4C potentiostat (Bioanalytical Systems, West Lafayette, IN,
USA); R: recorder.
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All pH measurements were made with an Orion Expandable
Ion Analyzer (model EA 940, Orion Research, Cambridge, MA, USA)
equipped with a glass combination electrode (Orion Research).

2.3. Preparation of the CNTs-modified GSPE

An electrode pretreatment was carried out before each voltam-
metric experiment in order to oxidize the graphite impurities and
to obtain a more hydrophilic surface [38], with the aim of improv-
ing the sensitivity and reproducibility of the results. The graphite
electrode surface is pretreated applying a potential +1.6V (versus
Ag-SPE)for 120 sand +1.8 V (versus Ag-SPE) for 60 s in 5 ml of 0.25 M
acetate buffer, containing 10 mM KCI (pH 4.75), under stirred con-
ditions. Then, the electrodes were washed using 0.01 M phosphate
buffered saline (PBS), pH 7.2 and stored in the same buffer at 4°C.

One milligram of MWCNT was dispersed with the aid of ultra-
sonic stirring for 45min in methanol/water (50:50, v/v) in an
aqueous 0.1% Nafion solution. A 5 pl aliquot of this dispersion was
dropped on the screen-printed graphite working electrode surface
and then the solvent was evaporated under an infrared heat lamp
[39].

2.4. Tyrosinase immobilization

The rotating disk reactor (bottom part) was prepared by immo-
bilizing tyrosinase on 3-aminopropyl-modified controlled-pore
glass (APCPG). The APCPG, smoothly spread on one side of a double-
coated tape affixed to the disk surface, and was allowed to react
with an aqueous solution of 5% (w/w) glutaraldehyde at pH 10.00
(0.20M carbonate) for 2h at room temperature. After washing
with purified water and 0.10 M phosphate buffer of pH 7.00, the
enzyme (5.0 mg of enzyme preparation in 0.25 ml of 0.10 M phos-
phate buffer, pH 7.00) was coupled to the residual aldehyde groups
in phosphate buffer (0.10 M, pH 7.00) overnight at 5°C. The immo-
bilized enzyme preparation was finally washed with phosphate
buffer (pH 7.00) and stored in the same buffer at 5 °C between uses.
The immobilized tyrosinase preparations were perfectly stable for
at least 1 month of daily use.

2.5. Analysis of pharmaceutical samples

Ten tablets or the contents of 10 tablets were weighed form each
dosage forms and powdered. Equivalent amount to one tablet was
weighed and transferred to a 100 ml volumetric flask. The flask was
sonicated for 10 min and filled with 0.05 M phosphate buffer, pH 7.0.
Appropriated solutions were prepared by taking suitable aliquots
of the clear supernatant and diluting them with 0.05 M phosphate
buffer, pH 7.0; and injected in to sample loop by means of a peri-
staltic pump. Aliquots of pharmaceutical samples were added into
a 15ml thermostated glass cell, homogenized with the aid of a
magnetic stirrer, degassed with nitrogen for 1 min and the ampero-
metric measurements were performed at —0.15V and the resulting
cathodic current was displayed on the x-y recorder.

2.6. Preparation of synthetic tablet samples

Synthetic tablet samples were prepared into a 100 ml calibrated
flasks by spiking a placebo (mixture of tablet excipients, cellactose,
sodium croscaramelose, magnesium estearate) with accurately
amount of MT at a concentration similar to formulation concen-
tration (5.0-20mg.). Then, the procedure described above was
followed.

2.7. Dosage forms of MT

(1) Danantizol 5 mg tablets (Gador) and (2) danantizol 20 mg
tablets (Gador).

3. Results and discussions
3.1. Study of the enzymatic process

Reactions catalyzed by enzymes have long been used for ana-
lytical purposes in the determination of different analytes, such
as substrates, inhibitors and also the enzymes. In this paper, we
apply a tyrosinase biosensor for a highly sensitive determination
of MT in pharmaceutical formulations. The measuring principle of
this biosensor for the determination of MT is shown in Fig. 3. First,
the tyrosinase immobilized on a rotating disk catalyzes the oxida-
tion of Q to P [40,41], whose electrochemical reduction back to Q
was obtained at peak potential of —150 mV. Second, the detection
of the MT is accomplished by suppressing the substrate recycling
process between tyrosinase and the electrode (denoted by the dot-
ted arrow), decreasing the peak current obtained proportionally to
the increase of MT concentration. Therefore, the detection principle
is similar to biosensors based on substrate competition [42-44].

Nevertheless, when thiol-containing compound is added to
the solution, readily undergo reaction with quinone derivative P,
through the Michael type addition, decreasing the peak current
obtained proportionally to the increase of thiol-containing com-
pound concentration.

The initial reaction in the sequence (Q=P) is well established
[45-47] with NMR, pulse radiolysis and a number of electro-
chemical techniques used to probe the mechanism. The potential
analytical utility offered by the second step (1) as a method of
detecting MT is explored in this paper.

3.2. Cyclic voltammetry of Q and MT on GCE

Cyclic voltammetry (first cycle) of 1 mM of Q in aqueous solution
containing 0.05 M phosphate buffer pH 7.0, shows one anodic (A;)
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Fig. 3. Schematic representations of the reduction wave of the enzymatic process
between catechol (Q), benzoquinone (P), methimazole (MT) and tyrosinase.
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Fig. 4. Cyclic voltammograms of 1mM Q (a) in the absence; (b) in the presence
of 1mM MT; (c) 1mM MT in the absence of Q, at glassy carbon electrode (3 mm
diameter) in aqueous solution containing 0.05M phosphate buffer (pH 7.00). Scan
rate: 25mvVs-1; T: 25+ 1°C.

and corresponding cathodic peak (C;), which corresponds to the
transformation of Q to P and vice versa within a quasi-reversible
two-electron process (Fig. 4, curve a). A peak current ratio (Ic, /Ia,)
of nearly unity, particularly during the recycling of potential, can
be considered as criteria for the stability of Q produced at the sur-
face of electrode under the experimental conditions. In other word,
any hydroxylation [48-51] or dimerization [52,53] reactions are too
slow to be observed in the time scale of cyclic voltammetry.

The oxidation of Q in the presence of MT as sample in aqueous
solution containing 0.05 M phosphate buffer pH 7.0 was studied in
some details. The height of the oxidation peak was found to increase
with increasing additions of MT with the loss of the corresponding
reduction peak consistent with the ECE type mechanism proposed
in Fig. 3 (Fig. 5 curves a-d). Hence, the increase in the oxidation
peak height is attributed to the oxidation of Q-MT adducts that
arises through the electrochemically initiated reaction (Fig. 3). In
fact, once P is formed, could react with a variety of nucleophilic
reagents, as those possessing sulfhydryl (SH) groups [54].
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Fig. 5. Typical voltammograms of 1 mM of Q at a glassy carbon electrode (3 mm
diameter) in aqueous solution containing 0.05 M phosphate buffer (pH 7.00) at var-
ious MT concentrations, Cyr: (a) 0.0, (b) 0.05, (¢) 0.3, (d) 0.5, (e) 0.75 and (f) 1.0 mM;
scan rate: 25mVs~!, T: 25+ 1°C.

Given that the direct oxidation of this thiol at the electrode does
not occur within the potential window studied (Fig. 4, curve c), the
increase in the magnitude of the Q oxidation peak can be attributed
solely to the re-oxidation of the Q-MT adduct. Furthermore, the
consequent decrease on the height of the P reduction peak can be
ascribed to the fact that increasing concentration of MT scavenges
the oxidized form of Q leaving little available for electro-reduction.
The peak current ratio (Ic, /Ia, ) versus concentration for a mixture
of Q and MT confirms the reactivity between both, appearing as a
decrease in the height of the cathodic peak C; at higher concentra-
tion of MT (Fig. 5).

3.3. Effect of reactor rotation and continuous-flow/stopped-flow
operation

To optimise the proposed method is necessary to have an under-
standing of the effect of the parameters governing the system.
The implementation of continuous-flow/stopped-flow program-
ming and the location of two facing independent reactors (Fig. 1)
permits: (a) utilization of relatively low enzyme loading condi-
tions, (b) instantaneous operation under high initial rate conditions,
(c) easy detection of accumulated products and (d) reduction of
apparent Michaelis-Menten constant, K},. Amore complete reagent
homogenization is achieved, because the cell works as a mixing
chamber by facilitating the arrival of substrate at the active sites
and the release of products from the same sites. The net result is
high values of current. The main advantages of this system are its
simplicity, and the ease with which it can be applied to the deter-
mination of MT at low levels.

The effect of the rotation rate was evaluated in a range of
100-900 rpm. A significant increase of electric signal was observed
in overall the range of rotation rate but insignificant differences
were obtained for greater rotation velocities, in fact the current is
constant, and chemical kinetics controls the overall process. There-
fore, a rotation velocity of 900 rpm was used.

If the rotating disk in the cell is devoid of rotation, the response
is lower because diffusional reactions are too slow to be observed in
the time scale of electrochemical analysis. If a rotation of 900 rpm
is imposed on the rotating disc at the bottom of the cell, the signal
is dramatically enlarged.

As noted, rotation is expected to decrease the values of the
apparent Michaelis-Menten constant, K/,, since the catalytic effi-
ciency is increased. Ky, which differ substantially from that
measured in homogeneous solution, is not an intrinsic property
of the enzyme, but of the system. This constant characterizes the
reactor, not the enzyme itself. It is a measure of the substrate con-
centration range over which the reactor response is linear [55-57].

3.4. Effect of cell volume and sample size

Depending on the volume of the cell the overall process becomes
controlled by diffusion (large volumes) or by the chemical kinetics
of the enzyme-catalyzed reactions (small volumes). The cell volume
was changed from 20 to 100 pl. The rate of response, as expected,
decreased linearly with an increase in cell volume, due to the dilu-
tion effect favoured by rotation, and the fact that the measured
current is directly proportional to bulk concentration. The smallest
cell volume of 20 .l was adopted for further studies.

The sample size was studied in the range 5-50 p.l. Sensitivity is
almost tripled in the range between 5 and 20 pl (Fig. 6). Insignif-
icant differences were obtained for greater sample size. A sample
size of 20 .l was used to evaluate other parameters.

The rate of enzymatic response under flow conditions was stud-
ied in the pH range 4-8 and show a maximum value of activity at
pH 7.0. The influence of pH on peak potential (Ep) of the reaction
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Fig. 6. Effect of sample size. Solution containing 1 mM of Q in 0.05M phosphate
buffer pH 7.00. Flow rate 100 I min~". Each value of initial rate based on triplicate
of six determinations.

was assessed through examining the electrode response to Q-MT
obtained in solutions buffered between pH 4 and 8. Therefore, the
pH value used was 7.00 in 0.05 M phosphate buffer in concordance
with the steadier pH of the enzyme.

3.5. MT measurement with tyrosinase biosensor

The performance of the biosensor for the measurement of MT
concentrations was characterized. For MT measurement a solution
containing 1mM Q was injected into the screen-printed biosen-
sor and the flow was detained, thus, a large reduction current was
observed due to the quinone derivative and after 1 min the flow was
started again; after that a solution containing 1 mM Q, and several
MT concentrations were injected into the rotating biosensor; and
the reduction current was measured. The addition of MT resulted
in a current decrease.

A linear relation (Eq. (1)) was observed between the rate of
response and the MT concentration in the range of 0.074-63.5 M.

rate of response (mA/min) = 29.52 — 269.33[Cyr] (1)

The correlation coefficient for this type of plot was typically
0.998. Detection limit (DL) is the minimal difference of concentra-
tion that can be distinguished from the signal of the pure Q solution.
The DL was calculated as the amount of MT required to yield a net
peak that was equal to three times the S.D. of the pure Q signal, the
DLs for amperometric detection 0.056 .M. Reproducibility assays
were made using repetitive standards (n=5) of 30 wM; the relative
standard deviation was less than 3.72%.

The long-term stability of the enzymatic system to pharma-
ceutical formulations was study. In this experiment, after every
five samples, a standard of 30 uM MT is injected to test the
electrode response. In the FIA system using an enzymatic reactor,

Table 2
Accuracy and precision dates for MT obtained by amperometric measure

Table 1
Specificity results of the proposed method?

Sample no. Pure sample 30 (uM) Synthetic tablet sample (n=5) X (M)
1 30.02 30.26

2 29.97 30.18

3 30.07 29.92

4 29.98 29.90

5 29.94 30.13

X+S.D. 29.96+0.35 30.07 +0.47

2 X (M), mean £ S.D., standard deviation.

Table 3

Within-assay precision (five measurements in the same run for each control sample)
and between-assay precision (five measurements for each control sample, repeated
for three consecutive days)

Added? (mgL-1) Within-assay Between-assay
Mean CV% Mean CV%
5 4.96 3.42 5.19 4.76
10 10.09 2.18 10.36 3.21
20 20.20 1.38 19.84 3.54

@ mgL-1 MT.

there is practically no decay in the catalytic current after six
samples.

3.6. Determination of MT in pharmaceuticals formulations

Specificity is the ability of the method to measure the analyte
response in the presence of all the potential interference. For the
specificity test, FIA of standard solution of tablet excipients were
recorder at selected conditions. The response of the analyte with
excipients, were compared with the response of pure MT. It was
found that assay results were not changed. Therefore, the excipients
did not interfere with the quantization of MT as such in synthetic
as commercial tablet samples. In Table 1, the results are shown.

Recovery studies were performed by adding a synthetic mixture
prepared according to the manufacturer’s batch formula to known
amount of MT. The recovery was 101.13%. The results are shown in
Table 2.

The precision for MT was <3.5% within the range 5.00-20.0 mg
(Table 2). Precision studies were performed by adding a synthetic
mixture prepared according to the manufacturer’s batch formula
to known amount of MT. The accuracy for MT was <1.2% (Table 2).

The precision of the electrochemical assay was checked with
control samples 5.0, 10.0 and 20.0mgL-! MT concentrations. The
within-assay precision was tested with five measurements in the
same run for each sample. These series of analyses were repeated
for three consecutive days in order to estimate the between-assay
precision. The results obtained are presented in Table 3. The MT
assay showed good precision; the CV within-assay values were
below 3.5% and the between-assay values were below 5%. There are
no significant differences in the results, indicating that the analysis
of MT tablets by the proposed method is reproducible.

Added (mg) Found (mg) Recovery (%) Precision (mg) Accuracy® (% relative error)
5.00 4.96 99.20 X3=4.96 £0.17, VC=3.42% -0.8

10.0 10.09 100.9 X=10.09+0.22,VC=2.18% 0.9

15.0 15.17 101.13 X=15.17+0.45, VC=2.96% 1.13

20.0 20.20 101.0 X=20.20+0.28,VC=1.38% 1

2 X=mean =+ standard deviation.
b Accuracy =[(found — added)/added] x 100.
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Table 4
Determination by the developed method of amount of MT contained in commercial,
based on triplicate of six determinations

Sample no. Danantizol 5 mg Danantizol 20 mg
tablets (mg/capsule) tablets (mg/capsule)
1 5.08 20.26
2 4.98 19.84
3 4.82 20.18
4 5.11 19.89
5 4.88 20.04
6 5.14 19.92
Average 5.01 20.02
S.D. 0.13 0.17

The developed FIA-biosensor method for the MT determination
was applied to two commercial preparations (Table 4). There is no
need for any extraction procedure before FIA analysis. No change
of the peak height in the presence of the excipients was observed.

4. Conclusions

The usefulness of CNT-modified screen-printed electrodes enzy-
matic sensor as a determiner of very low concentrations of MT was
demonstrated. The biosensor developed in this work is the first one
developed for MT determination. This type of detection (addition
reaction on cosubstrates) shows promise with regards to biological
and pharmacological sensing.

In practice, the biosensor developed in this work is able to oper-
ate as a fast, selective and sensitive detection unit when is incorpo-
rated into a FIA system, also minimizes the wastage of expensive
reagents, shows physical and chemical stability, low background
current, wide working potential range, accuracy and does not
require highly skilled technicians or expensive and dedicated
equipment. This method is very simple and straightforward, itis the
good applicability in pharmaceutical industry as a routine method.
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