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ABSTRACT. LetH be the class of algebras verifying Han’s con-
jecture. In this paper we analyse two types of algebras with the
aim of providing an inductive step towards the proof of this
conjecture. First, we show that if an algebra Λ is triangular with
respect to a system of non-necessarily primitive idempotents,
and if the algebras at the idempotents belong toH , then Λ is in
H . Second, we consider a 2× 2 matrix algebra, with two alge-
bras on the diagonal, two projective bimodules in the corners,
and zero corner products. They are not triangular with respect
to the system of the two diagonal idempotents. However, the
analogous result holds: namely, if both algebras on the diagonal
belong to H , then the algebra itself is in H .

1. INTRODUCTION

In this paper, a smooth finite-dimensional algebra is a finite-dimensional algebra
over a field k of finite global dimension. The word “smooth” originated in com-
mutative algebra and is convenient for brevity. Observe that in [11], for finite-
dimensional algebras, “smooth” corresponds to algebras of global dimension at
most one, that is, hereditary or semisimple algebras.

In 2006, Y. Han conjectured in [13] that a finite dimensional algebra whose
Hochschild homology vanishes in large enough degrees is smooth. In the same
paper he proved the conjecture for monomial algebras, while in [4] P. A. Bergh
and D. Madsen proved it in characteristic zero for graded finite-dimensional local
algebras, Kozsul algebras, and graded cellular algebras. Recently, the same authors
showed in [6] that trivial extensions of selfinjective algebras, local algebras, and
graded algebras have infinite Hochschild homology, a result which confirms Han’s

639

Indiana University Mathematics Journal c©, Vol. 70, No. 2 (2021)



640 HAN’S CONJECTURE AND HOCHSCHILD HOMOLOGY

conjecture for these algebras. In the 90s, the work of the Buenos Aires Cyclic
Homology Group [8], and of L. Avramov and M. Vigué-Poirrier [1] provided the
result for finitely generated commutative algebras.

In relation with Han’s conjecture, lower bounds are obtained in [5] for the
dimension of the Hochschild homology groups of fiber products of algebras, triv-
ial extensions, path algebras of quivers containing loops, and quantum complete
intersections. Note that P. A. Bergh and K. Erdmann proved in [2] that quantum
complete intersections—not at a root of unity—satisfy Han’s conjecture. In [19]
A. Solotar and M. Vigué-Poirrier proved Han’s conjecture for a generalization of
quantum complete intersections and for a family of algebras which are in a sense
opposite to these. Moreover, in [18], A. Solotar, M. Suárez-Alvarez, and Q. Vivas
considered quantum generalized Weyl algebras and proved Han’s conjecture for
these algebras (out of a few exceptional cases).

In this paper we consider null-square algebras over a field k, that is, algebras
Λ of the form (

A N
M B

)

where A and B are k-algebras,M and N are bimodules, and the product is given by
matrix multiplication subject to MN = 0 = NM . For these algebras, I = M ⊕N
is a two-sided ideal verifying I2 = 0 and C = A × B is a subalgebra. Actually,
Λ = C ⊕ I, that is, Λ is a cleft singular extension (see [16, p. 284]).

Hochschild homology is a functor HH∗ from k-algebras to graded vector
spaces. Thus, for a null-square algebra, HH∗(C) is a direct summand ofHH∗(Λ).
Moreover, note that HH∗(C) = HH∗(A)⊕HH∗(B).

In relation to Han’s conjecture, this paper treats two opposite cases: one corre-
sponds to quivers without cycles, while in the other case the quiver contains cycles.
Both of them aim to provide an inductive step towards proving the conjecture. In
Section 2, we consider algebras which are E-triangular; that is, they do not have
oriented cycles with respect to a complete system E of non-necessarily primitive
orthogonal idempotents—for brevity we call such a set E a “system.” In Sections
3 and 4, on the contrary, we study a case where there is an oriented cycle. In this
last case our analysis requires the involved bimodules to be projective.

A null-square algebra with N = 0 will be called a corner algebra. For these
algebras HH∗(Λ) = HH∗(C), by a direct computation that we briefly recall in
Section 2 (see also [15] or [10]). Moreover, we show that if a corner algebra is
finite dimensional, with A and B smooth, then the corner algebra is also smooth.
This leads to our first result: namely, corner algebras built on the class of algebras
H verifying Han’s conjecture also belong to H . Note that no extra assumption
on M is required in the foregoing.

Based on the previous results, we go further. We associate with a system E of a
k-algebra Λ its Peirce E-quiver: the set of vertices is E, and for x ≠ y elements of
E, there is an arrow from x to y if yΛx ≠ 0. If the Peirce E-quiver has no oriented
cycles then Λ is called E-triangular. For instance, the Peirce E-quiver of a corner
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algebra with respect to the system E given by the two diagonal idempotents is an
arrow if M ≠ 0. We show that if Λ is E-triangular, then there is a decomposition
HH∗(Λ) =

⊕
x∈EHH∗(xΛx). Moreover, for a finite-dimensional E-triangular

algebra Λ such that xΛx is smooth for all x ∈ E, the algebra is also smooth. We
infer that finite-dimensional E-triangular algebras built on the classH also belong
to H , without requiring additional assumptions on the bimodules yΛx.

In Section 3, we consider null-square algebras Λ with non-zero bimodules
M and N: in other words, the Peirce E-quiver with respect to the two diago-
nal idempotents is · ⇄ · . If M and N are projective bimodules, Λ is called
a null-square projective algebra. We provide a long exact sequence computing
HH∗(Λ), which is associated to the short exact sequence obtained from the prod-
uct map Λ ⊗C Λ → Λ. We obtain a projective resolution of the kernel K1

C(Λ)
of this map, which enables us to compute TorΛ−Λ∗ (K1

C(Λ), Λ) through invari-
ants or coinvariants of a natural action of cyclic groups Cm on the zero-degree
Hochschild homology of tensor powers N ⊗BM : that is, H0(A, (N ⊗BM)

⊗Am)Cm

and H0(A, (N ⊗B M)
⊗Am)Cm . We thus obtain the long exact sequence of Theo-

rem 3.15.

In Section 4 we focus on basic finite-dimensional algebras A and B over a per-
fect field. After choosing a complete system of primitive orthogonal idempotents
for each algebra, the projective bimodules M and N are given explicitly as direct
sums of indecomposable projective bimodules. We first prove that if the invariants
are zero (i.e, H0(A, (N ⊗B M)

⊗Am)Cm = 0), then the space itself is zero. We infer
that if the null-square projective algebra has zero homology in large degrees, then
the 0-homology of any tensor power of N ⊗A M vanishes. Hence, the long exact
sequence obtained before provides HH∗(Λ) = HH∗(A × B). We prove that the
tensor powers of N ⊗AM and of M ⊗B N vanish in large enough degrees. Observe
that H0(A, (N ⊗B M)⊗A∗) is related to 2-truncated cycles: namely, cycles in the
Gabriel quiver of a basic algebra in which the product of any two consecutive ar-
rows is zero, as considered in [3] in order to guarantee that Hochschild homology
is infinite dimensional.

Another important result that we obtain in this section is the following The-
orem 4.7. For a perfect field k, let Λ be a finite-dimensional null-square pro-
jective k-algebra, where A and B are smooth. Assuming the bimodules verify
(N ⊗B M)⊗A∗ = 0 for large enough exponents, the algebra Λ is also smooth.
The proof relies on the construction of an explicit projective resolution obtained
through successive cones of the identity.

One of the main results of this paper follows: a finite-dimensional null-square
projective algebra built on the class of basic algebras in H also belongs to H .

In the last section we give a presentation by quiver and relations of a null-
square projective algebra, starting from the same type of presentations of A and B.
This is useful for producing examples where our results apply.
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2. HAN’S CONJECTURE FOR CORNER AND E-TRIANGULAR ALGEBRAS

In this section we first consider null-square algebras and their category of rep-
resentations. Next, we will study corner algebras which are particular cases of
null-square algebras, in relation with Han’s conjecture. The results that we obtain
in this section for corner (and then for triangular algebras) do not require a pro-
jectivity hypothesis on the bimodules considered in the definition of a null-square
algebra below.

Definition 2.1. Let k be a field and let A and B be k-algebras. Let M and N
be, respectively, a B − A-bimodule and an A − B-bimodule. The corresponding
null-square algebra is (

A N
M B

)

where the product is given by matrix multiplication using the products of A and
B, the bimodule structures of M and N, and setting mn = 0 and nm = 0 for all
m ∈ M and n ∈ N.

Remark 2.2. A square algebra is an algebra

(
A N
M B

)

as before, with two bimodule maps α : N ⊗B M → A and β : M ⊗A N → B
verifying the obvious “associativity” conditions that ensure the associativity of the
corresponding matrix product on Λ. A null-square algebra is a square algebra
where α = 0 = β. Observe that in [7], R. O. Buchweitz studies square algebras
which are called “(generalised) Morita context” or “pre-equivalence,” and focuses
on the case where α or β are surjective.

Example 2.3. Let Λ be a k-algebra with a decomposition Λ = P ⊕ Q as a
right Λ-module. Then, Λ is a square algebra of the form

(
EndΛ P HomΛ(Q, P)

HomΛ(P,Q) EndΛQ

)
.

If for all f ∈ HomΛ(P,Q) and for all g ∈ HomΛ(Q, P) the compositions gf
and fg are zero, the algebra is null-square.

Remark 2.4. Any square algebra Λ is obtained as above by considering the
right module decomposition:

(
A N
M B

)
=

(
A N
0 0

)
⊕

(
0 0
M B

)
.

Recall that a cleft singular extension algebra (see [16, p. 284]) is an algebra Λ
with a decompositionΛ = C⊕I, where C is a subalgebra and I is a two-sided ideal
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of Λ verifying I2 = 0. A null-square algebra Λ =
(
A N
M B

)
is an instance of a cleft

singular extension with C = A× B and I = M ⊕N. Indeed, I is a two-sided ideal
precisely because MN = NM = 0.

We will next consider systems of idempotents of an arbitrary algebra in order
to recall the representation theory of a null-square algebra.

Definition 2.5. Let Λ be a k-algebra. A system of Λ is a finite set E of non-
zero orthogonal idempotents which is complete, that is,

∑
x∈E x = 1. The system

is trivial if E = {1}.

Observe that in the above definition we do not require the idempotents to
be primitive. With a system E of a k-algebra Λ we associate a k-category CΛ,E
as follows: its objects are the elements of E, while the vector space y(CΛ,E)x of
morphisms from x to y is yΛx. The composition is provided by the product
of Λ. Of course, Λ is recovered as the direct sum of all the morphisms spaces of
CΛ,E, endowed with the matrix product. It is well known and easy to prove that
the k-categories of left Λ-modules, and of k-functors from CΛ,E to k-vector spaces,
are isomorphic.

Let now C be a small k-category, with set of objects C0. Notice that a
k-functor M from C to k-vector spaces is given by a family of vector spaces
{xM}x∈C0 and a collection of linear maps

yCx ⊗ xM
ymx

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ yM

such that, for any objects x, y , and z, the following diagram commutes:

zCy ⊗ yCx ⊗ xM zCy ⊗ yM

zCx ⊗ xM zM.

c⊗1

1⊗ymx

zmy

zmx

Next, we define a k-category, which will be isomorphic to the category of left
modules over a square algebra.

Definition 2.6. Let Λ =
(
A N
M B

)
be a square algebra. The objects of the linear

category S(Λ) are X
µ
⇌
ν
Y , where X is an A-module, Y is a B-module, X

µ
⇀ Y

stands for a map of B-modules µ : M ⊗A X → Y , and analogously X ↽
ν
Y stands

for a map of A-modules ν : N ⊗B Y → X which verify

(2.1) ν(1N ⊗ µ) = α⊗ 1X and µ(1M ⊗ ν) = β⊗ 1Y .

Note that we identify the vector spaces A ⊗A X and X through the canonical
isomorphism, as well as Y ⊗B B and Y .
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A morphism in S(Λ) from X
µ
⇌
ν
Y to X′

µ′

⇌
ν ′
Y ′ is a couple (ϕ,ψ) where

ϕ : X → X′ is a morphism of A-modules, ψ : Y → Y ′ is a morphism of B-
modules such that the following diagrams commute:

M ⊗A X Y X N ⊗B Y

M ⊗A X′ Y ′ X′ N ⊗B Y ′

1⊗ϕ

µ

ψ ϕ

ν

1⊗ψ

µ′ ν ′

Proposition 2.7. Let Λ be a square algebra. The category of left Λ-modules is
isomorphic to S(Λ).

Proof. Consider the complete set of orthogonal idempotents E = {e,1 − e}

of Λ, where e =
(

1 0
0 0

)
. The result is an immediate consequence of the previous

observations. ❐

In what follows, the categories of the above proposition will be identified.
Note that for a null-square algebra, the equalities (2.1) become

ν(1N ⊗ µ) = 0 and µ(1M ⊗ ν) = 0.

Lemma 2.8. Let Λ be a square algebra and let P be a projective A-module. The

Λ-module (P
1
⇌
α
M ⊗A P) is projective.

Proof. Let Λ1 be the Λ −A-bimodule given by the first column of Λ, that is,

Λ1 =
(
A 0
M 0

)
= (A

1
⇌
α
M). Note that Λ1 = Λe is a projective Λ-module. Moreover,

if X is an A-module, Λ1 ⊗A X = (X
1
⇌
α⊗1X

M ⊗A X). Since Λ1 ⊗A A is isomorphic

to Λ1, we infer that Λ1 ⊗A P is a projective Λ-module. ❐

The analogous result holds for B-modules.
From now on we focus on null-square algebras.

Proposition 2.9. Let Λ =
(
A N
M B

)
be a null-square algebra where A, B, M , and

N are finite dimensional. A simple Λ-module is isomorphic to

S ⇌ 0 or 0 ⇌ T

where S and T are simple A and B-modules, respectively.

Proof. We assert that the Jacobson radical of Λ is
(

radA N
M radB

)
where radA and

radB are the Jacobson radicals of A and B. Indeed, this vector space is a nilpotent
two-sided ideal, and the quotient of Λ by it is semisimple. ❐
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Definition 2.10. A corner algebra Λ is a square algebra with N = 0. In this

case, the objects of S(Λ) are denoted by X
µ
⇀Y .

In this section we consider Han’s conjecture for corner algebras first, and sec-
ondly for E-triangular algebras which will be defined below. We emphasize that
for corner algebras we do not make any hypothesis on the projectivity ofM . First,
we recall the following result.

Proposition 2.11 ([12, Proposition 10, p. 86]). Let A and B be smooth finite-
dimensional k-algebras. Then, the k-algebra A⊗ B is smooth.

Theorem 2.12. Let Λ =
(
A 0
M B

)
be a corner finite-dimensional algebra, where

M is a B −A-bimodule. If A and B are smooth, then Λ is smooth.

Proof. It is well known that if a finite-dimensional algebra A is smooth, the
same holds for Aop. By the previous proposition, B ⊗Aop is smooth.

Let 0 → Qq → ·· · → Q1 → Q0 → M → 0 be a finite resolution of M by
projective B −A-bimodules.

First, let S ⇀ 0 be a simple Λ-module where S is a simple A-module. Let
0 → Pp → ·· · → P1 → P0 → S → 0 be a resolution of S by projective A-
modules. Observe that the sequence of Λ-modules obtained by tensoring the
previous resolution by Λ1,

0 → (Pp
1
⇀ M ⊗A Pp)→ ·· · → (P0

1
⇀M ⊗A P0)→ (S ⇀ 0)→ 0,

is not exact in general unless M is a projective A-module. Instead, we consider the
double complex obtained by tensoring both resolutions over A:

...
...

...

. . . Q1 ⊗A P2 Q1 ⊗A P1 Q1 ⊗A P0 0

. . . Q0 ⊗A P2 Q0 ⊗A P1 Q0 ⊗A P0 0

. . . M ⊗A P2 M ⊗A P1 M ⊗A P0 0.

0 0 0

The total complex of this double complex is exact, since each column is obtained
by tensoring an exact complex by a projective module. Hence, we obtain a finite
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exact sequence of Λ-modules:

...
...

P2 ⇀ M ⊗A P2 ⊕ Q0 ⊗A P1 ⊕ Q1 ⊗A P0.

P1 ⇀ M ⊗A P1 ⊕ Q0 ⊗A P0

P0 ⇀ M ⊗A P0

S ⇀ 0

0

We assert that this is a projective resolution of S ⇀ 0. Indeed, the i-th module is

(Pi ⇀M ⊗ Pi)⊕ (0⇀ Q0 ⊗A Pi−1)⊕ · · · ⊕ (0⇀ Qi−1 ⊗A P0).

The first summandΛ1⊗APi is projective by Remark 2.8. For the other summands,
we first notice that if Q is a projective B − A-bimodule and X is any A-module,
Q ⊗A X is a projective B-module. Moreover, for a corner algebra Λ, if W is a
projective left B-module, then the left Λ-module 0⇀ W is projective.

Second, let T be a simple B-module and let 0 ⇀ T the corresponding simple
Λ-module. Let R• → T be a finite B-projective resolution of T ; then, we have that
(0⇀ R•)→ (0⇀ T) is a finite resolution of 0⇀ T by projective Λ-modules. ❐

Now, we will define E-triangular algebras with respect to a chosen system E.
We define first a quiver inferred from the Peirce decompositionΛ =

⊕
x,y∈E yΛx.

Definition 2.13. Let Λ be a k-algebra and let E be a system of Λ. The Peirce
E-quiver QE has set of vertices E; for x and y different elements of E, there is an
arrow from x to y in case yΛx ≠ 0. Note that QE contains no loops.

Definition 2.14. An algebra Λ is E-triangular with respect to a non-trivial
system E if QE has no oriented cycles.

Remark 2.15. In case |E| = 2, the Peirce E-quiver of an E-triangular algebra
is an arrow, and the algebra is a corner algebra. Observe that a finite-dimensional
algebra which is E-triangular with respect to a system E may have oriented cycles
in its Gabriel quiver.
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Lemma 2.16. Let Λ be a k-algebra which is E-triangular. There exists a system
F of two idempotents such that Λ is a corner algebra.

Proof. The Peirce E-quiver has no oriented cycles, is finite and has at least
two vertices. Then, there exists a source vertex e, that is, a vertex with no arrows
ending at it. The idempotent f =

∑
x≠e x is not zero. Since eΛf = 0, the algebra

Λ is a corner algebra with respect to the system F = {e, f }. ❐

Corollary 2.17. Let Λ be a finite-dimensional k-algebra which is E-triangular
with respect to a system E. If xΛx is smooth for every x ∈ E, then Λ is smooth.

Proof. We proceed by induction on the number of vertices. Let e be a source
vertex of QE, let f =

∑
x≠e x = 1− e, and let F be the system {e, f }.

Let E′ = E\{e}, which is a system of the algebra fΛf . The E′-quiver of fΛf
has no oriented cycles sincey(fΛf )x = yΛx for every x,y ∈ E′. By hypothesis,
the algebras x(fΛf )x = xΛx are smooth for every x ∈ E′. By induction, fΛf
is smooth. Theorem 2.12 provides the result since eΛe is smooth and Λ is a corner
algebra with respect to F , as in the proof of the previous lemma. ❐

By definition, the Hochschild homology vector spaces of a k-algebra Λ with
coefficients in a Λ-bimodule Z are

H∗(Λ, Z) = TorΛ⊗Λ
op

∗ (Λ, Z),

where the latter is also denoted by TorΛ−Λ∗ (Λ, Z).
Next, we recall the computation of the Hochschild homology of a corner

algebra (see, e.g., [10, 15]). The following well known result will be required; we
provide a sketch of its proof for the convenience of the reader.

Lemma 2.18. Let Λ be a k-algebra, let D be a separable subalgebra of Λ, let Z
be a Λ-bimodule, and let ZD = Z/〈dz − zd | z ∈ Z,d ∈ D〉. The homology of the
complex

· · ·
b
→ Z ⊗D−D (Λ⊗D Λ⊗D Λ)

b
→ Z ⊗D−D (Λ⊗D Λ)

b
→ Z ⊗D−D Λ

b
→ ZD → 0

is H∗(Λ, Z), where ⊗D−D stands for ⊗D⊗Dop , and where the maps b are given by the
usual formulas for computing Hochschild homology:

b(x0 ⊗ x1 ⊗ · · · ⊗ xn) = x0x1 ⊗ x2 ⊗ · · · ⊗ xn

+

n−1∑

0

(−1)ix0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn

+ (−1)nxnx0 ⊗ x2 ⊗ · · · ⊗ xn−1.

Proof. Consider the complex with differential d defined by the usual formulas
for the canonical resolution of Λ over the ground field

· · ·
d
→ Λ⊗D Λ⊗D Λ

d
→ Λ⊗D Λ

d
→ Λ→ 0.
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The map s given by s(x1 ⊗ · · · ⊗ xn) = 1 ⊗ x1 ⊗ · · · ⊗ xn is well defined and
verifies ds + sd = 1; this proves that the complex is acyclic. Since D is separable,
D ⊗ Dop is also separable, and any D-bimodule is projective. Consequently, the
acyclic complex above is a projective resolution of Λ by projective Λ-bimodules.
The statement of the lemma is obtained by applying the functor Z⊗D−D- to this
resolution and observing that Z ⊗Λ−Λ (Λ ⊗D X ⊗D Λ) is canonically isomorphic
to Z ⊗D−D X for any D-bimodule X. ❐

Theorem 2.19 ([10, 15]). Let Λ =
(
A 0
M B

)
be a corner algebra, where A and B

are k-algebras and M is a B −A-bimodule. There is a decomposition

HH∗(Λ) = HH∗(A)⊕HH∗(B).

Proof. Let e be the idempotent

(
1A 0
0 0

)
,

and let

f = 1− e =

(
0 0
0 1B

)
.

Let D =
(
k 0
0 k

)
= ke × kf ; note that D is a separable subalgebra of Λ. We assert

that the complex of the previous lemma is actually the direct sum of the com-
plexes that compute HH∗(A) and HH∗(B). Indeed, notice that the D-bimodule
decomposition Λ = A⊕ B ⊕M provides a direct sum decomposition

Λ⊗D−D (Λ⊗D · · · ⊗D Λ) = (A⊗ · · · ⊗A)⊕ (B ⊗ · · · ⊗ B)

since

0 = M ⊗D−D B =M ⊗D−D A =M ⊗D−D M = B ⊗D−D M = A⊗D−D M

and A ⊗D−D A = A ⊗ A while B ⊗D−D B = B ⊗ B. Observe that in degree 0 we
obtain Λ⊗D−D D = A⊕ B. ❐

Corollary 2.20. For any k-algebra Λ which is E-triangular with respect to a
system E, there is a decomposition

HH∗(Λ) =
⊕

x∈E

HH∗(xΛx).

Proof. The idea of the proof is similar to the proof of Corollary 2.17. It follows
by induction once a source vertex of QE is chosen. ❐
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Next, we turn to Han’s conjecture that we recall: if A is a finite-dimensional
algebra over a field such that HHn(A) = 0 for n large enough, then A is smooth.

Theorem 2.21. Finite-dimensional corner k-algebras built on the class of k-
algebras H verifying Han’s conjecture also belong to H .

Proof. Let Λ =
(
A 0
M B

)
be a finite-dimensional corner algebra, and suppose

HH∗(Λ) = 0 for large enough degrees. Theorem 2.19 shows that the same holds
for A and B. Since A and B belong to H , they are smooth. By Theorem 2.12, Λ
is smooth. ❐

Corollary 2.22. Let Λ be a finite-dimensional k-algebra which is E-triangular
with respect to a system E of Λ. If for every x ∈ E the algebras xΛx belong to H ,
then Λ belongs to H .

Proof. The proof follows from Corollaries 2.17 and 2.20. ❐

Remark 2.23. Let Λ be a smooth finite-dimensional algebra such that
Λ/ radΛ is a product of copies of the ground field k, and which admits a Wed-
derburm decomposition Λ = D ⊕ radΛ where D is a subalgebra of Λ. Note that
if k is perfect, a Wedderburm decomposition always exists. If Λ is smooth, it is
proven by B. Keller in [14, 2.5] that there is a K-theoretical equivalence between
Λ and D. In particular, the cyclic homologies of these algebras are isomorphic,
as well as the Hochschild homologies because of the Connes long exact sequences
relating cyclic and Hochschild homologies, for Λ and Λ/ radΛ (see, e.g., [20]).
Consequently, the Hochschild homology of Λ is concentrated in degree zero. In
this situation, it follows from Han’s conjecture that if the Hochschild homology
vanishes in large enough degrees, then it actually vanishes in all positive degrees.

We observe that in the situation of Corollary 2.22, the result that we have
proven agrees with the previous observation. Indeed, we have shown using Corol-
lary 2.20 that Hochschild homology is the direct sum of the Hochschild homolo-
gies at the idempotents of the system.

3. HOCHSCHILD HOMOLOGY OF NULL-SQUARE PROJECTIVE

ALGEBRAS

In this section we consider a null-square projective algebra Λ, that is, a null-square

algebra Λ =
(
A N
M B

)
where M and N are projective B − A and A − B-bimodules,

respectively; we recall that MN = NM = 0. We will provide a long exact sequence
which computes HH∗(Λ).

First, we consider a cleft extension algebra Λ = C ⊕ I, where C is a subalgebra
and I is a two-sided ideal (see [16, p. 284]). Let

K1
C(Λ) = Ker(Λ⊗C Λ

d
-→ Λ),
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where d is given by the product of Λ. In case I is projective as a C-bimodule
we will provide a resolution of K1

C(Λ) by projective Λ-bimodules. This reso-
lution specialized to a null-square projective algebra will allow us to compute

TorΛ−Λ∗ (K1
C(Λ),Λ). The mentioned long exact sequence will be obtained as the

Tor exact sequence associated with the short exact sequence of Λ-bimodules

(3.1) 0 -→ K1
C(Λ) -→ Λ⊗C Λ -→ Λ -→ 0.

Remark 3.1. This short exact sequence splits as a sequence of C-bimodules,
but it does not split as a sequence of Λ-bimodules.

Lemma 3.2. Let Λ = C ⊕ I be a cleft extension algebra. The complex

· · ·
d
-→ Λ⊗C I ⊗C I ⊗C Λ

d
-→ Λ⊗C I ⊗C Λ

d
-→ Λ⊗C Λ

d
-→ Λ -→ 0

is acyclic, with differentials for n ≥ 3

d(ℓ1 ⊗ x2 ⊗ · · · ⊗ xn−1 ⊗ ℓn) =

= ℓ1x2 ⊗ x3 ⊗ . . . xn−1 ⊗ ℓn +
n−2∑

2

(−1)i+1ℓ1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ ℓn

+ (−1)nℓ1 ⊗ x2 ⊗ · · · ⊗ xn−1ℓn,

and, for n = 2, the product of the algebra is denoted by d as before.

Proof. Let ℓ ∈ Λ and let ℓ = ℓC + ℓI be its decomposition in C ⊕ I. Let s be
the map given as follows:

s(ℓ1 ⊗ x2 ⊗ · · · ⊗ xn−1 ⊗ ℓn) = 1⊗ (ℓ1)I ⊗ x2 ⊗ · · · ⊗ xn−1 ⊗ ℓn.

It is straightforward to check that s is well defined with respect to the tensor prod-
ucts over C. The verification that s is a homotopy contraction is not completely
trivial; we illustrate this by checking the property in degree two:

ds(ℓ⊗ x ⊗ ℓ′) = ℓI ⊗ x ⊗ ℓ
′ − 1⊗ ℓIx ⊗ ℓ′ + 1⊗ ℓI ⊗ xℓ′,

sd(ℓ⊗ x ⊗ ℓ′) = 1⊗ (ℓx)I ⊗ ℓ′ − 1⊗ ℓI ⊗ xℓ′.

Note that (ℓx)I = ℓx = ℓCx + ℓIx. Hence,

(ds + sd)(ℓ⊗ x ⊗ ℓ′)

= ℓI ⊗ x ⊗ ℓ
′ − 1⊗ ℓIx ⊗ ℓ′ + 1⊗ (ℓx)I ⊗ ℓ′

= ℓI ⊗ x ⊗ ℓ
′ − 1⊗ ℓIx ⊗ ℓ′ + 1⊗ ℓCx ⊗ ℓ′ + 1⊗ ℓIx ⊗ ℓ′

= ℓI ⊗ x ⊗ ℓ
′ + 1⊗ ℓcx ⊗ ℓ′ = ℓI ⊗ x ⊗ ℓ′ + ℓC ⊗ x ⊗ ℓ′

= (ℓI + ℓC)⊗ x ⊗ ℓ
′ = ℓ⊗ x ⊗ ℓ′. ❐
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Proposition 3.3. Let Λ = C ⊕ I be a cleft extension algebra and suppose I is
a projective C-bimodule. The following is a resolution of K1

C(Λ) by projective Λ-
bimodules:

· · ·
d
-→ Λ⊗C I ⊗C I ⊗C Λ

d
-→ Λ⊗C I ⊗C Λ

d
-→ K1

C(Λ) -→ 0.

Proof. The complex is acyclic by the previous result. We claim that if P andQ
are projective C-bimodules, then P ⊗C Q is also a projective C-bimodule. Indeed,
(C⊗C)⊗C (C⊗C) is a projective bimodule and the result follows. Consequently,
I⊗C · · ·⊗C I is a projective C-bimodule. Moreover, if P is a projective C-bimodule
it is clear that Λ⊗C P ⊗C Λ is a projective Λ-bimodule. ❐

Let Λ be a k-algebra and Z be a Λ-bimodule. We recall

H0(Λ, Z) = Λ⊗Λ⊗Λop Z = Λ⊗Λ−Λ = Z/〈λz − zλ〉,

where 〈λz − zλ〉 is the vector subspace of Z generated by the set {λz − zλ} for
all λ ∈ Λ and z ∈ Z.

Let Λ be an algebra and let C be a subalgebra. Let U be a C-bimodule and let
Λ⊗C U ⊗C Λ be the induced Λ-bimodule. The next result gives a decomposition
of the Hochschild homology in degree zero of a cleft algebra Λ = C ⊕ I with
coefficients in an induced bimodule. We provide a proof for further use.

Proposition 3.4. Let Λ = C ⊕ I be a cleft algebra and let U be a C-bimodule.
Then,

H0(Λ,Λ⊗C U ⊗C Λ) = H0(C,U)⊕H0(C, I ⊗C U).

Proof. The mutual inverse isomorphisms are given by

a⊗u⊗ b ֏ (ba)Cu+ (ba)I ⊗u,

u+ x ⊗ v ֏ 1⊗u⊗ 1+ x ⊗ v ⊗ 1. ❐

We will use next the previous result for U = I⊗Cn. Let I(n) = H0(C, I
⊗Cn).

Corollary 3.5. Let Λ = C ⊕ I be a cleft algebra. There is a decomposition

H0(Λ, Λ⊗C I⊗Cn ⊗C Λ) = I(n)⊕ I(n+ 1).

Proposition 3.6. Let Λ = C ⊕ I be a cleft algebra where I is a projective C-
bimodule. The vector spaces TorΛ−Λ∗ (K1

C(Λ),Λ) are the homology spaces of the com-
plex

· · ·
b
-→ I(n)⊕ I(n+ 1)

b
-→ I(n− 1)⊕ I(n)

b
-→ ·· ·

· · ·
b
-→ I(2)⊕ I(3)

b
-→ I(1)⊕ I(2) -→ 0,
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where
b : I(n)⊕ I(n+ 1)→ I(n− 1)⊕ I(n)

is as follows:
• If z1 ⊗ · · · ⊗ zn ∈ I(n), then

b(z1 ⊗ · · · ⊗ zn)

= z1 ⊗ · · · ⊗ zn +
n−1∑

1

(−1)iz1 ⊗ · · · ⊗ zizi+1 ⊗ · · · ⊗ zn

+ (−1)nzn ⊗ z1 ⊗ · · · ⊗ zn−1,

where the first and the last terms belong to I(n) and the middle sum belongs
to I(n− 1).

• If z0 ⊗ · · · ⊗ zn ∈ I(n+ 1), then

b(z0 ⊗ · · · ⊗ zn)

= z0z1 ⊗ · · · ⊗ zn +
n−1∑

0

(−1)iz0 ⊗ · · · ⊗ zizi+1 ⊗ · · · ⊗ zn

+ (−1)nznz0 ⊗ · · · ⊗ zn−1,

which belongs to I(n).

Proof. The formulas are obtained by applying the functor H0(Λ,−) to the
projective resolution of K1

C(Λ) of Proposition 3.3, and by translating the dif-
ferentials to the present setting through the isomorphisms provided in Proposi-
tion 3.4. ❐

Lemma 3.7. Let A and B be k-algebras, let C = A×B, and let I be a C-bimodule
of the form I = M ⊕N where M is a B − A-bimodule and N is a A − B-bimodule.
For n odd, I(n) = 0.

Proof. First, we notice that M ⊗C M = 0 = N ⊗C N, since, for instance,
m⊗m′ =m(1A,0)⊗m′ =m⊗ (1A,0)m′ =m⊗ 0 = 0.

Moreover, N ⊗C M = N ⊗B M and M ⊗C N =M ⊗A N.
Consequently,

I⊗Cn = (· · · ⊗A N ⊗B M ⊗A N ⊗B M)⊕ (· · · ⊗B M ⊗A N ⊗B M ⊗A N)

with n tensorands in each summand. In particular, for n odd we have

I⊗Cn = (M ⊗A · · · ⊗B M ⊗A N ⊗B M)⊕ (N ⊗B · · · ⊗A N ⊗B M ⊗A N),

and we assert that H0(C, I
⊗Cn) = 0. Indeed, (1A,0)x = 0 for every x ∈ M , while

x(1A,0) = x, and (0,1B)y = 0, while y(0,1B) = y for every y ∈ N. ❐
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Lemma 3.8. In the same situation as in the previous lemma, for n = 2m,

I⊗Cn = (N ⊗B M)⊗A · · · ⊗A (N ⊗B M)

⊕ (M ⊗A N)⊗B · · · ⊗B (M ⊗A N)

= (N ⊗B M)
⊗Am ⊕ (M ⊗A N)

⊗Bm.

Corollary 3.9. Let A and B be k-algebras, let C = A × B, and let I be a C-
bimodule of the form I = M ⊕ N where M is a B − A-bimodule and where N is a
A− B-bimodule. The following decomposition holds:

I(2m) = H0(A, (N ⊗B M)
⊗Am)⊕H0(B, (M ⊗A N)

⊗Bm).

Definition 3.10. Let Cm = 〈t | tm = 1〉 be a cyclic group of order m. The
kCm-module structures of

H0(B, (M ⊗A N)
⊗Bm) and H0(A, (N ⊗B M)

⊗Am)

are given by the following action of t by cyclic permutation:

t(xm ⊗ ym ⊗ · · ·x2 ⊗y2 ⊗ x1 ⊗ y1) = x1 ⊗y1 ⊗ xm ⊗ym ⊗ · · ·x2 ⊗y2,

t(ym ⊗ xm ⊗ · · ·y2 ⊗ x2 ⊗y1 ⊗ x1) = y1 ⊗ x1 ⊗ym ⊗ xm ⊗ · · ·y2 ⊗ x2.

Note that the above actions are not well defined either on M ⊗A N or on
N ⊗B M ; on the other hand, they are well defined on the 0-degree homology of
these bimodules.

We provide two isomorphisms between these kCm-modules that will be used
in the proof of the next result:

H0(A, (N ⊗B M)
⊗Am)

σ
---------------------------------------------→ H0(B, (M ⊗A N)

⊗Bm)

ym ⊗ xm ⊗ · · · ⊗y1 ⊗ x1 ֏ x1 ⊗ym ⊗ xm ⊗ · · · ⊗y1,

H0(B, (M ⊗A N)
⊗Bm)

τ
---------------------------------------→ H0(A, (N ⊗B M)

⊗Am)

xm ⊗ym ⊗ · · · ⊗ x1 ⊗y1 ֏ y1 ⊗ xm ⊗ym ⊗ · · · ⊗ x1.

Notice that the compositionsστ and τσ are the actions of t on the corresponding
vector spaces.

Finally, we recall that for a group G and a kG-module H, the invariants (or
fixed points) of the action are HG = {x ∈ H | sx = x for all s ∈ G}. The
coinvariants are HG = H/〈sx − x〉 where 〈sx − x〉 is the vector subspace of H
generated by the elements of the form sx − x for all s ∈ G and x ∈ H. If G is
finite and the characteristic of the field does not divide its order, then HG and HG

are canonically isomorphic through the action of (1/|G|)
∑
s∈G s.
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Theorem 3.11. Let Λ =
(
A N
M B

)
be a null-square projective algebra, and let

I = M ⊕N. For m ≥ 0,

TorΛ−Λ2m+1(K
1
C(Λ), Λ) = H0

(
B, (M ⊗A N)

⊗Bm+1
)Cm+1

and

TorΛ−Λ2m (K1
C(Λ), Λ) = H0

(
B, (M ⊗A N)

⊗Bm+1
)
Cm+1

.

Proof. We recall that for a null-square projective algebra MN = 0 = NM , and
hence I2 = 0. Moreover, I(n) = 0 for n odd, by Lemma 3.7. Consequently, the
complex of Proposition 3.6 reduces to

· · ·
b
→ I(6)

0
→ I(4)

b
→ I(4)

0
→ I(2)

b
→ I(2)→ 0,

where for n = 2m,

b(z1 ⊗ · · · ⊗ zn) = z1 ⊗ · · · ⊗ zn + zn ⊗ z1 ⊗ · · · ⊗ zn−1.

Furthermore, the matrix of

b : H0(A, (N ⊗B M)
⊗Am)⊕H0(B, (M ⊗A N)

⊗Bm)

-→ H0(A, (N ⊗B M)
⊗Am)⊕H0(B, (M ⊗A N)

⊗Bm)

with respect to the decomposition of Proposition 3.9 is
(

1 τ
σ 1

)
. Moreover,

Kerb = {(u,v) | u+ τ(v) = 0 = σ(u)+ v}

= {(u,−σu) | u = τσu}

= {u | tu = u}

= H0(A, (N ⊗B M)
⊗Am)Cm .

In order to compute Cokerb, note that (u,v) = −(τv,σu) holds in Cokerb.
Hence, (u,0) = (0,−σu) = (τσ(u),0). This shows that the map

H0(A, (N ⊗B M)
⊗Am)Cm → Cokerb

given by u ֏ (u,0) is well defined. Its inverse is given by (u,v) ֏ u − τ(v).
Hence, Cokerb = H0(A, (N ⊗B M)

⊗Am)Cm . ❐

Towards describing the long exact sequence mentioned above, we consider

now some tools of homological algebra to compute TorΛ−Λ∗ (Λ ⊗C Λ, Λ). The

next result will be used for a null-square projective algebra Λ =
(
A N
M B

)
and for the

inclusion of algebras C ⊗ Cop ⊂ Λ⊗Λop, where C = A× B.
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Lemma 3.12. Let F ⊂ D be an inclusion of k-algebras, and suppose D is pro-
jective as a left F-module. Let U be a right F-module and let U ↑D= U ⊗F D be the
induced right module. Let Z be a left D-module and let F ↓ Z be the left F-module
obtained by restricting the action to F . Then, TorD∗(U ↑

D, Z) = TorF∗(U, F ↓Z).

Proof. The lefthand side functor in the variable Z is characterised by its uni-
versal property:

• TorD0 (U ↑
D, Z) = U ↑D ⊗DZ = U ⊗F Z.

• TorD0 (U ↑
D, Z) = 0 if Z is projective.

• A short exact sequence of D-modules provides a long exact sequence.
It is clear that the righthand side functor in the variable Z verifies the same prop-
erties. Note that the second property is fulfilled precisely because we assume F ↓D
is projective. ❐

Lemma 3.13. Let Λ be a null-square projective algebra, and let C = A×B. The
C-bimodule Λ⊗Λ is projective.

Proof. Note first that by hypothesis M is a projective B−A-bimodule. It be-
comes a C-bimodule by extending the actions by zero; then, M is a projective
C-bimodule. The same holds for N; then, I = M ⊕N is a projective C-bimodule.

Consider the C-bimodule decomposition

Λ⊗Λ = (C ⊗ C) ⊕ (C ⊗ I)⊕ (I ⊗ C)⊕ (I ⊗ I).

We assert that a projective C-bimodule is also projective as a left (or right)
C-module. Indeed, the free rank-one C-bimodule C ⊗ C is free as a left (or right)
C-module. This observation makes the proof of the assertion immediate. We infer
that I is projective as a left and as a right C-module.

We record that if P is a projective left C-module and Q is a projective right
C-module, the C-bimodule P ⊗Q is a projective C-bimodule.

Consequently, the four terms of the above direct sum decomposition of the
C-bimodule Λ⊗Λ are projective C-bimodules. ❐

Theorem 3.14. Let Λ =
(
A N
M B

)
be a null-square projective algebra, and let

C = A× B. There is a decomposition

TorΛ−Λ∗ (Λ⊗C Λ, Λ) = HH∗(A)⊕HH∗(B).

Proof. We consider the inclusion C ⊗ Cop ⊂ Λ ⊗ Λop. By Lemma 3.12 with
U = C, we have the following:

TorΛ−Λ∗ (Λ⊗C Λ, Λ) = TorΛ−Λ∗ (Λ⊗C C ⊗C Λ, Λ)

= TorC−C∗ (C, C ↓Λ↓C)
= H∗(C, C ↓Λ↓C)
= HH∗(C) ⊕H∗(C,M)⊕H∗(C,N).
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We assert that H∗(C,M) = H∗(C,N) = 0. Indeed, let P• → A be a projective
resolution of the A-bimodule A, and analogously for Q• → B. Note that P• ⊕
Q• → A⊕B is a projective resolution of the C-bimodule C, where the C-bimodule
structure of P• is obtained by extending the action to B by zero, and analogously
for Q•. The functor M⊗C−C– applied to P• ⊕ Q• gives the zero complex by
simple arguments already used in the proof of Lemma 3.7 and H∗(C,M) = 0.
Analogously, H∗(C,N) = 0. Note that the assertion also follows from [9, p. 173].

To proveHH∗(C) = HH∗(A)⊕HH∗(B), observe that the summandsA⊗C−C
Q• and B ⊗C−C P• of C ⊗C−C (P• ⊕Q•) are zero for analogous reasons. ❐

The previous results and the exact sequence (3.1) provide the following result.

Theorem 3.15. Let Λ =
(
A N
M B

)
be a null-square projective algebra. There is a

long exact sequence as follows:

· · ·

H0
(
A, (N ⊗B M)

⊗Am+1)Cm+1 → HH2m+1(A)⊕HH2m+1(B)

→ HH2m+1(Λ)→
H0
(
A, (N ⊗B M)

⊗Am+1)
Cm+1

→ HH2m(A)⊕HH2m(B)

→ HH2m(Λ)→
·· ·

H0
(
A, (N ⊗B M)

⊗A3
)C3 → HH5(A)⊕HH5(B) → HH5(Λ)→

H0
(
A, (N ⊗B M)

⊗A3
)
C3
→ HH4(A)⊕HH4(B) → HH4(Λ)→

H0
(
A, (N ⊗B M)

⊗A2)C2 → HH3(A)⊕HH3(B) → HH3(Λ)→
H0
(
A, (N ⊗B M)

⊗A2
)
C2
→ HH2(A)⊕HH2(B) → HH2(Λ)→

H0
(
A, (N ⊗B M)

)
→ HH1(A)⊕HH1(B) → HH1(Λ)→

H0
(
A, (N ⊗B M)

)
→ HH0(A)⊕HH0(B) → HH0(Λ)→ 0.

Corollary 3.16. Let Λ =
(
A N
M B

)
be a null-square projective algebra. If we have

HHn(Λ) = 0 for n large enough, then

H0
(
A, (N ⊗B M)

⊗An
)
Cn
= H0

(
B, (M ⊗A N)

⊗Bn
)Cn = 0

for n large enough.

Proof. Hochschild homology is a functor from the category of algebras to the
category of vector spaces. Let Λ = C⊕I where C is a subalgebra ofΛ and I is a two-
sided ideal. In other words, there is an algebra surjection Λ → C which splits in
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the category of algebras, and so HH∗(C) is a direct summand of HH∗(Λ). Con-
sequently, if HHn(Λ) = 0 for n large enough, then the same holds for HHn(C).
The long exact sequence of the previous theorem provides the result. ❐

Remark 3.17. The morphisms induced by the inclusion K1
C(Λ)→ Λ⊗C Λ of

the short exact sequence (3.1) are zero. Indeed, if f : M → M ′ and g : N → N′ are
C-bimodule morphisms, we associate functorially with them a morphism between
the corresponding short exact sequences (3.1) for the corresponding algebras Λ
and Λ′. This induces a functorial morphism between the corresponding long
exact sequences of Theorem 3.15. In particular, forM ′ = N′ = 0 we infer that the
morphisms induced by the inclusion of (3.1) factor through zero, and so they are
zero. Consequently, there are short exact sequences as follows form > 0:

0 → HH2m(A)⊕HH2m(B)→ HH2m(Λ)
→ H0(A, (N ⊗B M)

⊗Am)Cm → 0

0 → HH2m+1(A)⊕HH2m+1(B)→ HH2m+1(Λ)
→ H0(A, (N ⊗B M)

⊗Am+1)Cm+1 → 0.

For m = 0 we obtain that HH0(A) ⊕HH0(B) and HH0(Λ) are isomorphic;
this can of course be verified by a direct computation.

4. HAN’S CONJECTURE FOR NULL-SQUARE PROJECTIVE ALGEBRAS

Our first aim is to prove that if the algebras A and B are finite dimensional and
basic, and if the invariants under the action of the cyclic groups Cm on the spaces
considered in Theorem 3.15 are zero, then the spaces themselves are zero.

Let A and B be finite-dimensional and basic algebras. Let E and F be complete
sets of primitive orthogonal idempotents of A and B, respectively. If k is perfect,
then

rad(B ⊗Aop) = B ⊗ radAop + radB ⊗Aop

and {g ⊗ e}(g,e)∈F×E is a complete set of primitive orthogonal idempotents of
B ⊗ Aop. Consequently, {Bg ⊗ eA}(g,e)∈F×E is a complete set of representatives,
without repetitions, of the isomorphism classes of projective B−A-bimodules. Let

(4.1) BMA =
⊕

(g,e)∈F×E

gme(Bg ⊗ eA)

be a projective finitely generated B − A-bimodule, where by the Krull-Schmidt
theorem, the integers gme are uniquely determined by M . Similarly, let

(4.2) ANB =
⊕

(f ,h)∈E×F

fnh(Af ⊗ hB)

be a finitely generated projective A− B-bimodule.
The next definition is pictured in Figure 4.1 on page 659.
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Definition 4.1. In the situation considered above, the (N,M)-quiver is de-
fined as follows: its vertices are E ∪ F , where we agree to distribute E in a first
horizontal floor and F in a ground floor.

There are two sort of arrows:

• Horizontal, distributed into the following:
– first floor ones, which provide the Peirce E-quiver of A (see Defini-

tion 2.13);
– ground floor ones, namely, the Peirce F-quiver of B.

• Vertical, distributed into the following:
– down ones, where there are gme arrows from e to g in one-to-one

correspondence with the direct summands Bg ⊗ eA of M ;
– up ones, defined according to N in a way analogous to that of M .

We agree to write the sequence of arrows of a path from right to left, as for
composition of morphisms. Recall that the length of a path is the length of the
corresponding sequence, and that a cycle is a path which starts and ends at the
same vertex. Next, we define some particular kinds of paths in the (N,M)-quiver.

Definition 4.2. Let γ be a path of the (N,M)-quiver. We say the following:

• γ is balanced if it does not contain two consecutive horizontal arrows. In
case γ starts and ends at the same floor, its revolution number is half of the
number of the vertical arrows of the sequence of γ.

• γ is E-balanced if it is balanced and it starts and ends at the first floor, that
is, at E-vertices. The set of E-balanced paths with revolution number m
is denoted by PEm.

• γ is an E-vertical balanced cycle if it is an E-balanced cycle whose first arrow
is down vertical. The set of E-vertical balanced cycles with revolution
number m is denoted by CV

E
m.

Theorem 4.3. Let A and B be basic finite-dimensional algebras over a perfect
field k, and let M and N be projective bimodules as above. Let Cm be the cyclic group
of orderm with generator t acting on H0(A, (N ⊗BM)⊗Am) by cyclic permutation as
given in Definition 3.10.

If H0(A, (N ⊗B M)⊗Am)Cm = 0, then H0(A, (N ⊗B M)⊗Am) = 0.

Proof. We assert that H0(A, (N ⊗B M)⊗Am) is a direct sum of vector spaces
indexed by CV

E
m. In order to provide an outline of the evidence, let us consider

the particular

N = (Af ⊗ hB)⊕ (Af ′ ⊗ h′B) and M = (Bg ⊗ eA)⊕ (Bg′ ⊗ e′A).

Notice that the (M,N)-quiver has two down arrows and two up arrows. Then,

N ⊗B M = (Af ⊗ hBg ⊗ eA)⊕ (Af ⊗ hBg′ ⊗ e′A)(4.3)

⊗ (Af ′ ⊗ h′Bg ⊗ eA)⊕ (Af ′ ⊗ h′Bg′ ⊗ e′A)
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and

H0(A, (N ⊗B M)) = (eAf ⊗ hBg)⊕ (e
′Af ⊗ hBg′)

⊗ (eAf ′ ⊗ h′Bg)⊕ (e′Af ′ ⊗ h′Bg′).

If the first summand is non-zero, then eAf ≠ 0 and hBg ≠ 0, and by definition
there are corresponding arrows in the E and Peirce F-quivers, respectively, from f
to e and from g to h. We associate with this non-zero summand the following
E-vertical balanced cycle with revolution number 1:

– the first vertical down arrow from e to g, corresponding to the pro-
jective direct summand Bg ⊗ eA of M ;

– the subsequent horizontal arrow at the ground floor from g to h, due
to hBg ≠ 0;

– the vertical up arrow from h to f , corresponding to the projective
bimodule Af ⊗ hB;

– the horizontal arrow at the first floor from f to e, due to eAf ≠ 0.

The decomposition of H0(A, (N ⊗B M)⊗A2) contains the direct summand

(eAf ′ ⊗ h′Bg′ ⊗ e′Af ⊗ hBg).

This corresponds to the E-vertical balanced cycle γ with revolution number 2,
described by the following sequence of vertices (from right to left) and drawn
below:

e, f ′, h′, g′, e′, f , h, g, e.

h

g

e

f

h′

g′

e′

f ′

B

A

FIGURE 4.1. (N,M)-quiver

The direct summands ofH0(A, (N⊗BM)⊗A2) originate from the indecompos-
able direct summands of M and N. The vertical arrows of the E-vertical balanced
cycle keep track of them. For instance, the vertical arrow from e′ to g′ corresponds
to the projective direct summand Bg′ ⊗ e′A of M .
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Note that the E-vertical balanced cycle drawn above is not the square of a
vertical balanced cycle of revolution number 1. On the other hand, E-vertical
balanced cycles which are powers of shorter ones do exist.

Let γ ∈ CV
E
m. We consider the non-zero vector subspaces of A and B cor-

responding to the horizontal arrows of γ, which belong to the respective E and
Peirce F-quivers. Let Vγ be their tensor product, obtained by following the order
of the arrows of γ.

Conversely, as sketched above, a non-zero vector space direct summand of
H0(A, (N ⊗BM)⊗Am) determines an E-vertical balanced cycle of revolution num-
ber m. Then,

H0(A, (N ⊗B M)
⊗Am) =

⊕

γ∈CV
E
m

Vγ .

We describe now the transported action of Cm on CV
E
m. Let γ be an E-vertical

balanced cycle at a vertex e, of revolution number m. Let γ′ be the E-balanced
path obtained from γ by removing at its beginning the balanced oriented path
α defined as follows: α is the first arrow of γ followed by the next ones until
reaching the source of the second vertical down arrow of γ. Note that α begins at
e, it has revolution number 1, and in general α is not a cycle. The target of γ′ is
still e, and we have t · γ = αγ′.

We suppose nowH0(A, (N⊗BM)⊗Am) ≠ 0, that is, CVEm ≠∅. Let γ ∈ CV
E
m,

and let γ be the E-vertical balanced cycle of smallest length such that γ = (γ)ℓ;
in particular, γ is not a power of a shorter E-vertical balanced cycle.

The stabilizer subgroup of γ in Cm is generated by tm/ℓ. That is, tm/ℓ ·γ = γ
and {tiγ}i=0,...,m/ℓ−1 are distinct. Let k[CVEm] be the vector space with basis
CV

E
m. The trace element γ̂ = γ+ t ·γ+ t2 ·γ+· · ·+ tm/ℓ−1 ·γ ∈ k[CVEm] is a

sum of different basis elements, and so γ̂ ≠ 0. Moreover, t · γ̂ = γ̂. We will infer
from γ a non-zero element of H0(A, (N ⊗B M)⊗Am).

Let u be a non-zero element of Vγ , and let u = u⊗ℓ ∈ Vγ . This way, u ≠ 0

and tm/ℓ · u = u. Moreover, ti · u ∈ Vtiγ . Observe that the vector spaces Vti·γ
are distinct for i = 0, . . . ,m/ℓ − 1 since the corresponding E-vertical balanced
paths are different. Consequently, û = u+ t ·u+ · · · + tℓ−1 ·u ≠ 0. Moreover,
t · û = û; then, H0(A, (N ⊗B M)⊗Am)Cm ≠ 0. ❐

Theorem 4.4. LetΛ =
(
A N
M B

)
be a null-square projective algebra whereA and B

are basic finite-dimensional algebras over a perfect field k, and let M and N be finitely
generated projective bimodules, given as in (4.1) and (4.2). If HHn(Λ) = 0 for n
large enough, then H0(A, (N ⊗B M)

⊗An = 0 for all n > 0, and (N ⊗B M)⊗An = 0
for n large enough.

Proof. The hypothesis that Hochschild homology of Λ vanishes in sufficiently
large degrees implies by Corollary 3.16 that H0(A, (N ⊗B M)⊗Am)Cm = 0 for m
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large enough. By Theorem 4.3, we infer H0(A, (N ⊗B M)⊗Am) = 0 for the same
values ofm, so CV

E
m = ∅ form large enough.

However, if CVEn0
≠ ∅ for some n0, then CV

E
rn0

≠ ∅ for all r > 0. Hence,
CV

E
n = ∅ for all n > 0. As a consequence, H0(A, (N ⊗B M)⊗An) = 0 for all

n > 0.
We assert that in the same way as in the proof of Theorem 4.3, (N⊗BM)⊗Am

is a direct sum of non-zero vector spaces which are in one-to-one correspondence
with PEm (see Definition 4.2). For instance, in the decomposition (4.3), the first
summand Af ⊗ hBg ⊗ eA corresponds to the E-balanced paths which contain
the vertical down arrow from e to g and the vertical up arrow from h to f . More
precisely, there is a subsequent decomposition

Af ⊗ hBg ⊗ eA =
⊕

y,x∈E

yAf ⊗ hBg ⊗ eAx,

and for each non-zero summand yAf ⊗ hBg ⊗ eAx, the E-balanced path is
determined by the sequence of vertices y, f ,h, g, e, x.

In particular, (N ⊗B M)⊗Am = 0 if and only if PEm = ∅.
We have shown before that the (N,M)-quiver has no E-balanced vertical

cycles. Since the (N,M)-quiver is finite, the E-balanced paths have a maximal
length. Then, PEn = ∅ for n large enough, and (N ⊗B M)⊗An = 0 for the same
set of values of n. ❐

The long exact sequence of Theorem 3.15 provides then the following result.

Corollary 4.5. Let Λ =
(
A N
M B

)
be a null-square projective algebra where A

and B are basic finite-dimensional algebras over a perfect field k, where M and N are
finitely generated projective bimodules. If HHn(Λ) = 0 for n large enough, then for
all n,

HHn(Λ) = HHn(A)⊕HHn(B).

Our next aim is to provide a tool for bounding above the global dimension
of a null-square projective algebra. For this purpose, we first briefly recall the
mapping cone construction. Let

(C•, c) = {Cn
cn
----------------------------------------------------------→ Cn−1}n∈Z and (D•, d) = {Dn

dn
-----------------------------------------------------------------→ Dn−1}n∈Z

be complexes with differentials c and d. Let f : C• → D• be a map of complexes.
Let C•[1] be the complex defined by Cn[1] = Cn−1. There exists a complex
(co(f )•, e) called the mapping cone of f , and a short exact sequence of complexes

0 → C•[1] → co(f )• → D• → 0

such that the connecting homomorphism in the long exact sequence of cohomol-
ogy is the morphism induced by f . In particular, f induces isomorphisms (i.e., f



662 HAN’S CONJECTURE AND HOCHSCHILD HOMOLOGY

is a quasi-isomorphism) if and only if the mapping cone complex is acyclic. Actu-

ally, co(f )n = Cn ⊕ Dn−1 with differential e =
(
c f
0 −d

)
; note that the change of

sign for d guarantees e2 = 0, since fc = df .
We simplify the tensor product notation as follows: let U be a C-B-bimodule,

and let V be a B-A-bimodule; we will write UV instead of U ⊗B V and VU instead
of V ⊗A U .

Theorem 4.6. Let Λ =
(
A N
M B

)
be a null-square projective algebra where A and

B are k-algebras, andM and N are B−A and A−B-projective bimodules, respectively.
Let X be a left A-module and P• → X be a projective resolution.

Associated with P• → X there is aΛ-projective resolutionQ• → (X ⇌ 0) such that
if P• → X is finite and if (N ⊗BM)⊗An = 0 for n large enough, then Q• → (X ⇌ 0)
is finite.

Proof. We define the modules of Q• as follows:

Q0 =
(
P0

1
⇌
0
MP0

)

Q1 =
(
P1

1
⇌
0
MP1

)
⊕
(
NMP0

0
⇌
1
MP0

)

Q2 =
(
P2

1
⇌
0
MP2

)
⊕
(
NMP1

0
⇌
1
MP1

)
⊕
(
NMP0

1
⇌
0
M(NM)P0

)

Q3 =
(
P3

1
⇌
0
MP3

)
⊕
(
NMP2

0
⇌
1
MP2

)
⊕
(
NMP1

1
⇌
0
M(NM)P1

)

⊕
(
(NM)2P0

0
⇌
1
M(NM)P0

)

Q4 =
(
P4

1
⇌
0
MP4)⊕

(
NMP3

0
⇌
1
MP3

)
⊕
(
NMP2

1
⇌
0
M(NM)P2

)

⊕
(
(NM)2P1

0
⇌
1
M(NM)P1

)
⊕
(
(NM)2P0

1
⇌
0
M(NM)2P0

)

...

Q2m =
(
P2m

1
⇌
0
MP2m

)
⊕
(
NMP2m−1

0
⇌
1
MP2m−1

)

⊕ · · · ⊕
(
(NM)mP0

1
⇌
0
M(NM)mP0

)

Q2m+1 =
(
P2m+1

1
⇌
0
MP2m+1

)
⊕
(
NMP2m

0
⇌
1
MP2m

)

⊕ · · · ⊕
(
(NM)m+1P0

0
⇌
1
M(NM)mP0

)

...

We observe that the Qi are projective Λ-modules. Indeed, first we note that
the free rank-one bimodule B ⊗ A is projective as a left (or right) module, so any



Claude Cibils, Marı́a Julia Redondo & Andrea Solotar 663

projective bimodule (e.g., M) is projective as a left (or right) module. Conse-
quently, for any left A-module X, the left B-moduleM ⊗AX is projective. Finally,
Lemma 2.8 shows that each direct summand of Qi is a projective Λ-module.

The differentials are defined in Figure 4.2.
It is immediate to check that the differentials are morphisms of Λ-modules,

that is, the corresponding squares commute (see Definition 2.6 and Proposi-
tion 2.7).

The column with X in the bottom is the projective resolution P• → X. We
observe that the two columns on its right give the mapping cone of the identity of
the complex (MP•,−1 ⊗ p). Since the identity is an isomorphism, the mapping
cone is exact. Similarly, the next two columns on the right provide the mapping
cone of the identity for the complex (M(NM)P•,−1⊗ p), and so forth.

The two columns on the left of P• → X correspond to the mapping cone of
the identity of the complex (NMP•,1⊗p). The next two columns on the left are
the mapping cone of the identity of ((NM)2P•,1⊗ p), and so forth.

Consequently, Q• is a resolution of X ⇌ 0 by projective Λ-modules.
Let r be an integer such that (NM)i = 0 for i > r . Moreover, let ℓ be an

integer such that Pj = 0 for j > ℓ. For a given m, the module Qm is the direct
sum of vector spaces of the form (NM)iPj for 2i+ j =m or 2i+ j =m+1, and
of vector spaces of the form M(NM)iPj for 2i + j = m or 2i + j = m + 1. Let
m > 2r + ℓ. In case 2i+ j =m or m+ 1, either i > r or j > ℓ since otherwise
2i+ j ≤ 2r + ℓ < m. Hence, Qm = 0 for allm> 2r + ℓ. ❐

Theorem 4.7. Let k be a perfect field, and letΛ =
(
A N
M B

)
be a finite-dimensional

null-square projective algebra where A and B are smooth.
If (NM)n = 0 for large enough n, then Λ is smooth.

Proof. The complete list of simple Λ-modules is {S ⇌ 0} ∪ {0 ⇌ T} where
S and T are simple modules over A and B respectively (see Proposition 2.9). The
previous theorem shows that S ⇌ 0 is of finite projective dimension. The analo-
gous theorem holds for Λ-modules of the form 0 ⇌ Y where Y is a B-module.

Then, the simple modules 0 ⇌ T are also of finite projective dimension. ❐

Theorem 4.8. Let k be a perfect field. Any finite-dimensional null-square projec-
tive k-algebra built on the class H of basic k-algebras verifying Han’s conjecture also
belongs to H .

Proof. Let Λ =
(
A N
M B

)
, where A and B are finite-dimensional basic k-algebras

which belong to H , and M and N are projective bimodules. Suppose HHn(Λ) =
0 for n large enough. Then, by Corollary 4.5, HHn(A) and HHn(B) vanish for
the same set of values of n, so A and B are smooth. Moreover, by Theorem 4.4
we have (NM)n = 0 for n large enough. The previous corollary shows that Λ is
smooth. ❐
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Remark 4.9. As much as in Remark 2.23, we observe that according to Corol-
lary 4.5 this result agrees with the property proved by B. Keller in [14, 2.5]:
namely, the Hochschild homology of a finite-dimensional smooth algebra over
a perfect field is concentrated in degree zero.

5. GABRIEL QUIVER AND RELATIONS OF

A NULL-SQUARE PROJECTIVE ALGEBRA

Let A be a finite-dimensional algebra such that A/ radA is a product of copies of
k; in other words, A is basic. Equivalently, A is Morita reduced and sober; that
is, the algebra of A-endomorphisms of each simple A-module is just k. Let E be a
complete system of primitive and orthogonal idempotents. The set of vertices of
the Gabriel quiver QA is E; the number of arrows from x to y is the dimension of

the vector space y(radA/ rad2A)x. It is well known that QA is canonical, in the
sense that QA does not depend on the choice of E.

Let Q be a quiver with finite set of vertices Q0 and set of arrows Q1. The
vector space kQ0 is endowed with a semisimple algebra structure where Q0 is a
complete set of primitive orthogonal idempotents. Note that kQ0 is basic and
sober. The vector space kQ1 is a kQ0-bimodule in the natural way. The path
algebra kQ is by definition the tensor algebra TkQ0(kQ1); it has a canonical basis
given by the oriented paths of Q. The universal property of kQ is as follows: any
algebra map ϕ : kQ → X is determined by an algebra map ϕ0 : kQ0 → X (i.e.,
a set map from Q0 to a system of X) and a kQ0-bimodule map ϕ1 : kQ1 → X,
where the structure of X as kQ0-bimodule is being inferred from ϕ0.

A finite-dimensional algebra A as above can be presented ; specifically, there
exists a (non-canonical) algebra surjection kQ → A such that its kernel I is an
admissible two-sided ideal; that is, there exists a positive integer m such that
Fm ⊂ I ⊂ F2, where F is the two sided ideal generated by (QA)1. Moreover, the
ideal I decomposes as

⊕
x,y∈E yIx since (QA)0 is complete. The system of gen-

erators R of I considered in a presentation is adapted ; that is, R is graded with
respect to this decomposition, and its elements are called relations. Note that any
system of generators R′ gives rise to a graded one, namely, R =

⊔
x,y∈E yR

′x,
where for a set of paths Z, we denote by yZx the paths of Z starting at x and
ending at y .

Let Λ =
(
A N
M B

)
be a finite-dimensional null-square projective algebra, where

A and B are basic and sober, with presentations (QA, RA) and (QB , RB), respec-
tively, and where the projective bimodulesM and N are given as in (4.1) and (4.2).

Lemma 5.1. The Gabriel quiver of Λ is the disjoint union of QA, QB , and new
arrows as follows:

• gme arrows from e ∈ E to g ∈ F , which we call down arrows,
• fnh arrows from h ∈ F to f ∈ E, which we call up arrows.

Proof. The description of the Jacobson radical of Λ as given in the proof of
Lemma 2.9 provides immediately the result. ❐
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Let TA×B(M⊕N) be the tensor algebra of the A×B-bimoduleM⊕N, where,
as already mentioned, the given actions are extended by zero in order to consider
M and N as A×B-bimodules. For instance, we inferM⊗A×BM = N⊗A×BN = 0.

The next two results are easy to prove, by using both that M and N are pro-
jective bimodules, and the universal properties of the algebras involved.

Lemma 5.2. There is an algebra isomorphism

ϕ : TA×B(M ⊕N)→ kQΛ/〈RA, RB〉.

Lemma 5.3. Let ψ : TA×B(M ⊕ N) → Λ be the algebra map given by the
inclusions of A× B and M ⊕N; we have

Kerψ = 〈(M ⊕N)⊗(A×B)2〉 = 〈N ⊗B M +M ⊗A N〉.

The set of all oriented paths of QA generates the vector space kQA/〈RA〉;
hence, we can choose a subset PA which is a basis of kQA/〈RA〉. Let also PB be a
basis of kQB/〈RB〉, where PB is a subset of the oriented paths of QB .

Let u be a down arrow from e to g, and let v be an up arrow from h to f in
QΛ. We define the sets v ⋎u and u⋎ v of oriented paths of QΛ as follows:

v ⋎u = v(hPBg)u and u⋎ v = u(ePAf )v.

Let R be the disjoint union of RA, RB , and v ⋎ u and u ⋎ v for all pairs
(u,v), where u is a down arrow and v is an up arrow.

Theorem 5.4. Let Λ =
(
A N
M B

)
be a finite-dimensional null-square projective

algebra, where A and B are basic and sober algebras with presentations (QA, RA) and
(QB, RB) respectively, and where the projective bimodules M and N are given as in
(4.1) and (4.2). The algebra Λ is presented by (QΛ, R).

Proof. The key point of the proof is the following. Consider the image of
Kerψ byϕ (see Lemma 5.2) in kQΛ/〈RA, RB〉. Let Bg⊗eA be a direct summand
ofM , and Af ⊗hB be a direct summand of N. They provide the direct summand
Bg ⊗ eAf ⊗hB of M ⊗A N ⊂ (TA×B(M ⊕N))2 ⊂ Kerψ. In order to consider its
image byϕ, let u and v be the arrows inQΛ associated, respectively, with Bg⊗eA
and Af ⊗ hB. The image of Bg ⊗ eAf ⊗ hB in kQΛ/〈RA, RB〉 is generated by
u⋎ v. ❐

Example 5.5. Let QA be a crown quiver with three arrows a0, a1, and a2;
these arrows start, respectively, at e0, e1, and e2, and end at, respectively, e1, e2,
and e0. Let RA = {a2a0}. It is easy to establish that A = kQA/〈RA〉 is smooth.
Let (QB, RB) be a presentation of a basic and sober algebra B, and let g and h be
vertices of B.

Let M = Bh ⊗ e1A and N = Ae2 ⊗ gB, and u from e1 to h and v from
g to e2 the corresponding arrows. Note that the (N,M)-quiver has no oriented
cycles. Let Λ be the corresponding null-square projective algebra; we next describe
its Gabriel quiver and a set of relations:
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• QΛ = QA ∪QB ∪ {u,v}.
• R = {a2a0, RB} ∪ {vγu}γ∈gPBh, where PB is a basis of oriented paths of
B.

Moreover, it follows from the previous results that if B is smooth, then Λ is
smooth.
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