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Preface

Biomedical Engineering can be seen as a mix of Medicine, Engineering and Science. In fact, 
this is a natural connection, as the most complicated engineering masterpiece is the human 
body. And it is exactly to help our “body machine” that Biomedical Engineering has its niche. 

The link thus formed between Engineering and Medicine is so important that we cannot 
think of disassembling it anymore. From all Engineering subspecialties we see progress: from 
signal processing of heart and brain signals to mechanical human-like organs; from robust, 
precise and accurate devices for clinical analysis to devices for real-time applications in the 
surgical theater; and so on. 

Nowadays, Biomedical Engineering has spread all over the world. There are many universi-
ties with strong undergraduate and post-graduate courses, well-established communities and 
societies and well-known conferences. 

This book brings the state-of-the-art of some of the most important current research related 
to Biomedical Engineering. I am very honored to be editing such a valuable book, which has 
contributions of a selected group of researchers describing the best of their work. Through its 
36 chapters, the reader will have access to works related to ECG, image processing, sensors, 
artificial intelligence, and several other exciting fields. 

We hope you will enjoy the reading of this book and that it can be used as handbook to 
students and professionals seeking to gain a better understanding of where Biomedical Engi-
neering stands today.

October, 2009

Editor

Carlos Alexandre Barros de Mello
Center of Informatics, Federal Univeristy of Pernambuco

Brazil
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1. Introduction 
 

The electroencephalogram (EEG) is the non-invasive recording of the neuronal electrical 
activity. The analysis of EEG signals has become, over the last 20 years, a broad field of 
research, including many areas such as brain diseases (Parkinson, Alzheimer, etc.), sleep 
disorders, anaesthesia monitoring and more recently, in new augmentatives ways of 
communication, such as Brain-Computer Interfaces (BCI).  
BCI are devices that provide the brain with a new, non-muscular communication channel 
(Wolpaw et al., 2002), which can be useful for persons with motor impairments. A wide 
variety of methods to extract features from the EEG signals can be used; these include 
spectral estimation techniques, wavelet transform, time-frequency representations, and 
others. At this moment, the spectral estimation techniques are the most used methods in the 
BCI field.  
The processing of EEG signals is an important part in the design of a BCI (Wolpaw et al., 
2002). It is commonly divided in the features extraction and the feature translation (Mason & 
Birch, 2003). In this work, we will focus in the EEG features extraction using three different 
spectral estimation techniques. 
In many studies, the researchers use different spectral estimation techniques like Fourier 
Transform (Krusienski et al., 2007), Welch periodogram (Millán et al., 2002); (Millán et al., 
2004) or Autoregressive (AR) modeling (Bufalari et al., 2006); (Krusienski et al., 2006); 
(Schlögl et al., 1997) in EEG signals. A review of methods for features extraction and features 
translation from these signals can be found in a review from the Third BCI meeting 
(McFarland et al., 2006). A comparison between the periodogram and the AR model applied 
to EEG signals aimed to clinical areas is presented in (Akin & Kiymik, 2000). Finally, an 
extended comparison of classification algorithms can be found in (Lotte et al., 2007). 
In this chapter, we compare the performance of three different spectral estimation 
techniques for the classification of different mental tasks over two EEG databases. These 
techniques are the standard periodogram, the Welch periodogram (both based on Fourier 
transform) and Burg method (for AR model-based spectral analysis). For each one of these 
methods we compute two parameters: the mean power and the root mean square (RMS) in 
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different frequency bands. Both databases used in this work, are composed by a set of EEG 
signals acquired on healthy people. One database is related with motor-imagery tasks and 
the other one is related with math and imagery tasks. 
The classification of the mental tasks was conducted with different classifiers, such as, linear 
discriminate analysis, learning vector quantization, neural networks and support vector 
machine. 
This chapter is organized as follows. In the next section the databases utilized in this work 
are explained. The section 3 contains a description of the estimation spectral methods used. 
An explanation of the procedure applies to each database is arrived in section 4. The 
different classifiers are briefly described in section 5 and the obtained results are shown in 
section 6. Finally, in sections 7 and 8 a discussion about results and the conclusions are 
presented.  

 
2. EEG Databases 
 

In this work, we have used two different databases, each one with diverse mental tasks. 

 
2.1. Math-Imagine database 
This database was collected in a previous work (Diez & Pi Marti, 2006) in the Laboratory of 
Digital Electronics, Faculty of Engineering, National University of San Juan (Argentina). 
EEG signals from the scalp of six healthy subjects (4 males and 2 females, 28±2 years) were 
acquired while they performed three different mental tasks, namely: (a) Relax task: the 
subjects close his eyes and try to relax and think in nothing in particular; (b) Math Task: the 
subjects make a regressive count from 3 to 3 beginning in 30, i.e. 30, 27, 24,...3, 0. The subjects 
were asked to begin the count once again and try to not verbalize; and (c) Imagine task: the 
subjects have to imagine an incandescent lamp at the moment that it is turn on. 
For each subject, the EEG signals were acquired using six electrodes of Ag/AgCL in 
positions F3, F4, C3, C4, P3 and P4 according to the 10-20 positioning system. With this 
electrodes were configured 4 bipolar channels of measurement (ch1: F3-C3; ch2:F4-C4; ch3:P3-
C3; ch4: P4-C4). Each channel is composed by an instrumentation amplifier with gain 7000 
and CMRR greater than 90dB, a bandpass analogical filter set at 0.1-45Hz and an analogical 
to digital converter ADC121S101 of 12 bits accuracy with a sampling rate of 150Hz.  
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Fig. 1. Electrodes position indicated by grey circles (left), on F3, F4, C3, C4, P3 and P4

according to 10-20 positioning system. The acquisition protocol is presented on the right. 

 

The subjects were trained to keep the maximal concentration while perform the mental 
tasks. Each mental task has a duration of 5s (750 samples) with 3s between them. The 
subjects were seated comfortably, with dim lighting, in front of a PC monitor. In which, 
were presented to subjects the proposed mental tasks (0-2s), the start signal to begin the trial 
(3s) and the final of the trial (8s), in according with the protocol illustrated in Figure 1. No 
feedback was presented to subjects during the trials. Every session had 15 trials for each 
mental task, i.e., 45 trials in total. Two subjects (Subj#1 and Subj#2) performed 3 sessions; 
the others performed only 2 sessions, i.e., two subjects had 135 trials and the rest 90 trials. 
The EEG of this database were digitally filtered using a Butterworth bi-directional bandpass 
filter, order 10, with 6 and 40Hz as lower and upper cut-off frequencies respectively. 

 
2.2. Motor-Imagery database 
This database was acquired in the Department of Medical Informatics, Institute for 
Biomedical Engineering, University of Technology Graz (Austria) and it is available free on-
line from http://ida.first.fraunhofer.de/projects/bci/competition_iii/ (BCI-Competition III 
web page). It was recorded from a normal subject (female, 25 years) during a feedback 
session. The subject sat in a relaxing chair with armrests. The task was to control a feedback 
bar by means of (a) imagery left hand and (b) imagery right hand movements. The order of left 
and right cues was random. The experiment consists of 140 trials, conducted on the same 
day.  
Each trial had the first 2s in silence, at t=2s an acoustic stimulus indicates the beginning of 
the trial and a “+” was displayed for 1s; then at t=3s, an arrow (left or right) was displayed 
as cue. At the same time the subject was asked to move a bar into the direction of the arrow 
(Figure 2). Similar acquisition protocols were implemented in several studies (Schlögl et al., 
1997); (Neuper et al., 1999). The recording was made using a G.tec amplifier and Ag/AgCl 
electrodes. Three bipolar EEG channels (anterior ‘+’, posterior ‘-‘) were measured over C3, Cz 
and C4. The EEG was sampled with 128 Hz and analogically filtered between 0.5 and 30 Hz. 
The feedback was based on AAR parameters of channel over C3 and C4, the AAR 
parameters were combined with a discriminate analysis into one output parameter. 
Each EEG record of the motor-imagery database was digitally filtered using a Butterworth 
filter, order 8, with 6 and 30 Hz as lower and upper cut-off frequencies respectively. 
 

C3      Cz     C4 

Fig. 2. Electrodes position indicated by grey circles (left), located ±2.5 cm over the crosses.
The crosses indicates the position of C3, CZ and C4 according to 10-20 positioning system.
The acquisition protocol is presented on the right. 
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3. Spectral Analysis 
 

EEG signals were processed in order to estimate the signal Power Spectral Density (PSD), 
this section explain the different PSD estimation methods regardless the database used. The 
three analysed techniques were: (a) standard periodogram, (b) Welch periodogram and  
(c) Burg method. 

 
3.1. Standard Periodogram 
The periodogram is considered as a non-parametric spectral analysis since no parametric 
assumptions about the signal are incorporated. 
This technique was introduced at an early stage in the processing of EEG signals and it is 
based in the Fourier Transform. Considering that EEG rhythms are essentially oscillatory 
signals, its decomposition in terms of sine and cosine, was found useful (Sörnmo & Laguna, 
2005). Basically, the Fourier spectral analysis correlates the signal with sines and cosines of 
diverse frequencies and produces a set of coefficients that defines the spectral content of the 
analyzed signal. The Fourier Transform computed in the discrete field is known as Discrete 
Time Fourier Transform (DTFT). 
Thus, the periodogram is an estimation of the PSD based on DTFT of the signal x[n] and it is 
defined by the following equation: 
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where SP(f) is the periodogram, TS is the sampling period, N is the number of samples of the 
signal and f is the frequency. Hence, the periodogram is estimated as the squared magnitude 
of the N points DTFT of x[n]. The DTFT is easily computed through the Fast Fourier 
Transform (FFT) algorithm and, therefore, also the periodogram.  
A variation of the periodogram is the windowed periodogram, i.e., we apply a window, in 
the process of computing periodogram. Each kind of window has specific characteristics. 
There are many types of windows, such as triangular windows (like Bartlett’s), gaussian 
windows (like Hanning’s) and others kinds. These windows are used to deal with the 
problem of smearing and leakage, due to the presence of main lobe and side lobes. For more 
details see (Sörnmo & Laguna, 2005). 
In the standard periodogram, no window is used (although no using window is the same as 
using a rectangular window).  
In Figure 3, it is presented two periodograms (computed with a 1024 points FFT) of EEG 
signals from Motor-Imagery database, where an Event Related Desynchronization (ERD) is 
observed (Pfurtscheller & Lopes da Silva, 1999). That means, in channel 1 over C3 (left 
figure) the mean power in μ-band (8 to 12 Hz) is higher than the other one in channel 2 over 
C4 (right figure), i.e., in this trial, it is observed easily that subject imagines a left motor task. 

 

 
3.2. Welch Periodogram 
Welch periodogram is a version modified of the periodogram, it can use windowing or not, 
but the principal feature of this method is the averaging periodogram. The consequence of 
this averaging is the reduction of the variance of the spectrum, at the expense of a reduction 
of spectral resolution 
The Welch periodogram can be computed performing the following steps: 

1. Split the signal in M overlapped segments of D samples length each. 
2. Calculates the periodogram for each segment SP(f)(m). Each segment had applied a 

window.  
3. Hence, the Welch periodogram SW(f) is calculated as: 
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The quantity of segments M could be calculated as: 
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where N is the number of samples of the signal and L is the number of samples overlapping 
between the segments. In this work, the overlapping was selected in 50% in all cases, which 
is the standard value in computation of Welch periodogram.  
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Fig. 3. Standard Periodograms from Motor-Imagery database, trial nº1, between 4 to 6 s;
from (a) channel 1 (over C3) and (b) from channel 2 (over C4). In this trial the subject 
imagines a left motor task, then the mean power in μ-band over C4 is lower than C3. Both 
periodograms were estimated with a 1024 points FFT. EEG signals were previously filtered 
between 6 and 30 Hz. 
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C4 (right figure), i.e., in this trial, it is observed easily that subject imagines a left motor task. 
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where N is the number of samples of the signal and L is the number of samples overlapping 
between the segments. In this work, the overlapping was selected in 50% in all cases, which 
is the standard value in computation of Welch periodogram.  
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Fig. 3. Standard Periodograms from Motor-Imagery database, trial nº1, between 4 to 6 s;
from (a) channel 1 (over C3) and (b) from channel 2 (over C4). In this trial the subject 
imagines a left motor task, then the mean power in μ-band over C4 is lower than C3. Both 
periodograms were estimated with a 1024 points FFT. EEG signals were previously filtered 
between 6 and 30 Hz. 
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The resolution R depends on the length of segment D according to: 
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Hence, high values of D (higher than 75 %, approximately, of the number of samples of the 
signal N) obtain a PSD similar to the standard periodogram. On the contrary, with small 
values of D the periodogram is smoothed. This fact can be observed in the Figure 4, where 
several Welch periodogram are shown, for different Hamming window lengths (16, 32, 64 
and 128 points).  
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Fig. 4. Welch periodogram computed with a 512 points FFT, for different window length
(128, 64, 32 and 16 points), from Motor-Imagery database, trial nº1, between 4 to 6 s; from
channel 1 (over C3). The periodogram is smoothed when decreasing the window length. A
Hamming window was applied in all cases. The EEG signal was filtered between 6 to 30 Hz. 

 

3.3. Burg method 
If consider the EEG like a linear stochastic signal, the EEG can be modelled as an 
autoregressive (AR) model, i.e., the estimation of PSD becomes a problem of system 
identification. 
An AR modelling is, as depicted in Figure 5, based on white noise υ(n) feeding a filter H(z), 
thus we obtain the signal x(n). The white noise is considered as zero-mean and variance συ2. 
The filter H(z) is expressed as: 
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where A(z) is a polynomial of order p with coefficients ap. Those can be estimated through 
different methods, such as autocorrelation (Yule-Walker), covariance, modified covariance 
and Burg method. In this work, the Burg method was utilized.  
Once we are estimated the coefficients ap, the PSD is calculated as: 
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where σ is the variance of the input signal and P is the order of the AR model. 
The Burg method is a technique to estimate the coefficients ap of the AR model. This method 
joint the minimization of the forward and backward prediction error variances using the 
Levinson-Durbin recursion in the minimization process. The prediction error filter is 
estimated using a lattice structure; afterwards, the parameters are transformed into direct 
form FIR predictor parameters. Thus, the PSD can be calculated using (6). The Burg 
description algorithm is beyond of the scope of this work, for mathematical concerns see 
(Sörnmo & Laguna, 2005). 

 
3.3.1. Model order 
An issue in parametric PSD is choosing the model order, since it influences the shape of 
estimated PSD. A low order means a smooth spectrum and, on the other hand, a high order 
results in a PSD with spurious peaks. One more pair of roots of polynomial A(z), i.e., increase 
the model order in two,  force another peak in the estimated spectrum. 
There are a few criteria to estimate “the best order” of the model. These criteria penalises the 
complexity of the model when increasing the model order. The most known criteria are the 

H(z)     1 
                  A(z) 

υ(n) x(n) 

Fig. 5. Autoregressive modeling: Modeled signal x(n) obtained through filtering white noise
υ(n) with filter H(z).  
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Fig. 4. Welch periodogram computed with a 512 points FFT, for different window length
(128, 64, 32 and 16 points), from Motor-Imagery database, trial nº1, between 4 to 6 s; from
channel 1 (over C3). The periodogram is smoothed when decreasing the window length. A
Hamming window was applied in all cases. The EEG signal was filtered between 6 to 30 Hz. 
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Final Prediction Error (FPE), Akaike and modified Akaike (minimum description length of 
Rissanen).  
For a signal of length N, the penalty function of each criterion is: 
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where σe2 is the prediction error variance. 
Figure 6 illustrates the penalty function of the different criteria and it is indicated the best 
order found for each method. It was observed, generally, that Akaike and FPE methods 
provide the same order of AR model, whereas the modified Akaike criterion does not. 
Besides, Akaike and FPE usually overvalue the order of AR model, therefore, it would be 
preferable to use the modified Akaike criterion. 
In this work, the three criteria were tested, unfortunately, no reliable results were found. 
This is, the optimal order varies for each method, also varies for every acquisition channel, 
and for data of the same mental task. Hence, the Burg method was analyzed for several 
orders on each database, regardless of the order determined by the mentioned criteria. 
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Fig. 6. Penalty functions of the different criteria (σe2, FPE, Akaike and Modified Akaike),
analyzed on Math-Imagery database, channel 2 in first trial. 
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Fig. 7. PSD estimated under Burg method for different order of AR model (2, 4 8 and 20). 
The spectrum has more peaks when increase the order, according to nº of peaks= AR model 
order/2. 
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Fig. 6. Penalty functions of the different criteria (σe2, FPE, Akaike and Modified Akaike),
analyzed on Math-Imagery database, channel 2 in first trial. 
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Fig. 7. PSD estimated under Burg method for different order of AR model (2, 4 8 and 20). 
The spectrum has more peaks when increase the order, according to nº of peaks= AR model 
order/2. 
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the EEG spectrum (for higher frequencies, lower amplitudes), each sub-band is wider than 
precedent sub-band. This is with the intention of compensation on the values of parameters 
calculated.  
The standard periodogram was calculated using a 1024 points FFT with zero padding, 
allowing a frequency resolution of 0.147 Hz. The Welch periodogram, for our 750 samples 
signal, was computed using a Hamming window of lengths D=300, D=100 and D=50, with 
50% overlapping. The Burg method was computed for various orders of the AR model, 
ranging from 5 to 50. 
The PSD estimation methods were computed using the complete duration of trial after cue 
signal, i.e., a signal of 5 s. 

4.2. Features extraction on Motor-Imagery database 
This database was digitally filtered, as explained in section 2, between 6 and 30 Hz. In this 
case, the μ (8 to 12 Hz) and β (14 to 30 Hz) bands are on focus, since we tracking the Event 
Related Synchronization/Desyncronization (ERS/ERD) related with Motor-Imagery 
(Pfurtscheller & Lopes da Silva, 1999). 
The subjects performed the mental task over a period of 6 s (see Figure 2), but the different 
PSD estimation were computed over a period of 2 s included between 4 s to 6 s. This is 
performed in this way due to the best results were found over this period of time (Ferreira et 
al., 2008).  
The standard periodogram was calculated using 1024 points FFT with zero padding, 
allowing a frequency resolution of 0.125 Hz. 
For the computing of Welch periodogram were utilized Hamming windows of 128, 64, 32 
and 16 points length, always with a 50% overlapping and with 512 points FFT.  
The Burg method was computed using several orders of the AR model, between 4 up to 20 
in steps of 2. 

 
4.3. Spectral parameters 
For the proposed bands in each database, two parameters were computed: the mean Power 
(Pm) and the Root Mean Square (RMS) of the signal, both evaluated in frequency domain. 
They are calculated as: 

 

Bands Frequency (Hz) 
Pre-α 6 to 8 
α 8 to 12  
β1 12 to 14 
β2 14 to 18 
β3 18 to 25 
γ1 25 to 32 
γ2 32 to 40 

 

Table 1. Bands and sub-bands in which the PSD estimation methods were divided when 
applied on the Math-Imagery database. The pre-α band, is just the half of θ band. 
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where S(k) are the sampled values of the periodogram S(f), L and H are the indexes 
corresponding to the higher and lower sampled frequency values for  each analyzed  sub- 
band. 

 
4.4. Feature Vector 
The feature vector is the input vector presented to the classifier. There were two 
configuration of the input vector: 

 Using the Pm of the frequency bands. 
 Using the RMS of the frequency bands. 

These configurations were used with the three estimation methods of the PSD. 

 
5. Classification 
 

The classification was conducted with some different classifier for each database in order to 
the results were unbiased by the classifier. 
For the Math-Imagery database the classifiers used were: a Linear Discriminate Analysis 
(LDA), a Learning Vector Quantization (LVQ). This classification was performed for the 
three mental tasks at the same time. To validate the results the Leave-One-Out Cross-
Validation method was utilized. 
For the motor-imagery dataset were implemented a LDA, a Multilayer Perceptron (MLP) 
and a Support Vector Machine (SVM). 
For a comparison of most used classifiers algorithms in BCI see (Lotte et al., 2007). Following 
a briefly description of each method used in this work: 

 
5.1. Linear Discriminate Analysis 
Basically, the LDA is a linear combination of variables, on the form: 
 

0 1 1 2 2km km km p pkmy u u X u X u X       (12) 

 
where ykm is the value of the discriminate function for the case m on the group k, Xikm is the 
discriminate variable Xi for the case m on the group k, ui are the required coefficients (with 
i=1, 2, …, p). 
The number of discriminate functions is determined by the number of considered groups. 
Thus, the values of all discriminate functions (needed to separate all groups between them) 
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discriminate variable Xi for the case m on the group k, ui are the required coefficients (with 
i=1, 2, …, p). 
The number of discriminate functions is determined by the number of considered groups. 
Thus, the values of all discriminate functions (needed to separate all groups between them) 
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determine the belonging group of the considered case. For more detailed concerns see the 
specific bibliography (Tinsley & Brown, 2000);(Gil et al., 2001). 

 
5.2. Learning Vector Quantization  
The LVQ is essentially a kind of neural network; it was based in the self-organizing map 
(Kohonen, 1990) as first layer and a second layer of linear perceptrons. The first layer is 
trained with a competitive algorithm with the concept of neighbouring. The linear layer 
transforms the competitive layer’s classes into the target classifications. For more detailed 
explanation of LVQ see (Kohonen, 1990) and (Haykin, 1999). 
The LVQ was used, only, to classify the mental tasks on Math-Imagery database. The 
architecture was 50 neurons on competitive layer and 3 neurons in second layer. This layer 
is the output layer and each neurons represents a different mental task, i.e., only one neuron 
can be active at time.  
The LVQ was trained by 300 epochs, this value was determined in a preliminary experiment 
using a subset of the entire data. The same procedure was implemented to determine the 
number of neurons in the competitive layer.  

 
5.3. Multilayer Perceptron 
Possibly, this may be the more spread used neural network in general applications. The 
MLP was composed with an input layer, two hidden layers and an output layer. The input 
layer has the same size of the input feature vector, the output layer has many neurons as 
classes to classify and the neurons in hidden layers are determined empirically. In this case, 
10 and 5 neurons are placed in the first and second hidden layer, respectively. 
The training algorithm utilized was the Levenberg-Marquardt backpropagation with an 
early-stopping method (Haykin, 1999). 

 
5.4. Support Vector Machine 
SVM is another tool used BCI for the classification of EEG. The SVM maps input vectors into 
a higher dimensional space where the classification can be easily. Then SVM finds a linear 
separating hyperplane with the maximal margin in this higher dimensional space. 

Given a training set of instance-label pairs (xi; yi); i = 1, ..., l where xi 
n and y l  such 

that yi  1, 1  , the SVM require the solution of the following optimization problem: 
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where C is the penalty parameter of the error term i . The kernel function used in this work 
is a radial basis function on the form: 
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( , ) ( ) ( ) , 0i jx xT
i j i jK x x x x e                   (14) 

 
Therefore, for the implementation of a SVM is needed to determine the parameters C and γ. 
The searching of C and γ is conducted through a grid-search using cross-validation (Hsu et 
al., 2008). The SVM used in this work is the one implemented in LIBSVM (Chang & Lin, 
2008). Finally, it was implemented two cross-validation schemes nested, an inner loop cross-
validation in order to determine the parameters C and γ and an outer cross-validation in 
order to evaluate the performance of the SVM. 

 
6. Results 
 

In this section we present the results obtained in this work. In the case of Math-Imagery 
database, the results were obtained using a Leave-one-out-cross-validation scheme and in 
the case of Motor-Imagery dataset, the presented results were attained using a 10-fold-cross-
validation repeated over 10 times, i.e., a 10x10-fold-CV (this is performed in order to achieve 
a more accuracy results). 
Figure 8 and 9 show the results obtained with the standard periodogram on Math-Imagery 
and motor-imagery databases, respectively. In Figure 8, the accuracy achieved by the LDA is 
better than LVQ (except in S2) and RMS feature allows obtaining better results. In Figure 9, 
the performances of classifiers are similar, but once again RMS presents better results than 
Pm. 
The results obtained with Welch periodogram on Math-Imagery database are presented in 
Figure 10, forthe different chosen window length. The optimal window length varies for 
each subject. The difference between Pm and RMS is not so clear, but still remains a little 
superiority of RMS. In Figure 11, are presented the results on motor-imagery dataset, we can 
see a superiority of RMS over Pm. The performance of LDA and MLP are similar, but the 
SVM are a little inferior. 
 

 
Fig. 8. Results attained with the standard periodogram, the bars represent the accuracy 
obtained using the Pm and RMD of bands with LDA and LVQ evaluated in the non-
traditional database. 
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Fig. 9. Accuracy classification on motor-imagery dataset using standard periodogram for 
three proposed classifiers. 

 
With Burg method, the results are presented in Figure 12 for the motor-imagery dataset and 
for the Math-Imagery database the values of accuracy classification are shown in Table 2 
and Table 3. The order of AR model that allows the better accuracy classification is different 
for each subject, but generally the RMS performance is better than Pm. 

 
 

   
 

Fig. 10. Results obtained using LDA with Welch periodogram, for different window lengths.
The length were 300, 100 and 50 all with 50% overlapping, for a signal of 750 samples
duration 

 

Finally, a comparison of the best results attained with each PSD estimation method is 
presented in Figures 13 and 14. For the Math-Imagery dataset, it is observed in Figure 13 
that the best results are obtained using Welch periodogram or Burg method. Similar results 
are obtained using LDA or using LVQ. 
For the motor-imagery dataset, in Figure 14, it is shown the best results obtained for each 
classifier proposed for this dataset. 
 

 
Fig. 11. Accuracy classification obtained with Welch periodogram for LDA (▲), MLP (■) 
and SVM (♦). The features are calculated using the Pm (dashed black line) and RMS features 
(continuous grey line). 
 

 
Fig. 12. Accuracy classification obtained with Burg method on motor-imagery dataset for 
different order of AR model with LDA (▲), MLP (■) and SVM (♦). The features are 
calculated using the mean power (dashed black line) and RMS (continuous grey line). 
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Fig. 13. Best accuracy classification obtained with each PSD estimation method proposed 
with the LDA (left) and LVQ (right) on Math-Imagery database. 
 

 Order S1 S2 S3 S4 S5 S6 Mean Std. 

P m
 

5 80,0% 74,1% 80,0% 70,0% 78,9% 80,0% 77,2% 4,2% 
10 84,4% 67,4% 67,8% 68,9% 81,1% 77,8% 74,6% 7,5% 
15 82,2% 66,7% 72,2% 73,3% 80,0% 80,0% 75,7% 6,0% 
20 84,4% 64,4% 72,2% 75,6% 78,9% 77,8% 75,6% 6,8% 
30 85,2% 65,2% 71,1% 77,8% 75,6% 77,8% 75,5% 6,8% 
40 77,0% 61,5% 65,6% 71,1% 82,2% 78,9% 72,7% 8,1% 
50 81,5% 61,5% 68,9% 75,6% 76,7% 76,7% 73,5% 7,1% 

R
M

S 

5 80,0% 72,6% 75,6% 67,8% 81,1% 83,3% 76,7% 5,9% 
10 85,2% 63,0% 71,1% 73,3% 80,0% 83,3% 76,0% 8,4% 
15 85,2% 66,7% 74,4% 75,6% 80,0% 85,6% 77,9% 7,2% 
20 84,4% 63,7% 74,4% 78,9% 84,4% 82,2% 78,0% 8,0% 
30 84,4% 68,9% 73,3% 77,8% 80,0% 81,1% 77,6% 5,6% 
40 85,2% 69,6% 71,1% 74,4% 83,3% 81,1% 77,5% 6,6% 
50 86,7% 68,1% 70,0% 76,7% 82,2% 82,2% 77,7% 7,4% 

Table 2. Accuracy classification obtained with Burg method and LDA on Math-Imagery 
database. The higher values for each subject are shaded. 
 

 Orden S1 S2 S3 S4 S5 S6 Media Std. 

P m
 

5 68,2% 64,4% 67,8% 58,9% 80,0% 67,8% 67,8% 6,9% 
10 70,4% 65,9% 63,3% 50,0% 83,3% 66,7% 66,6% 10,7% 
15 73,3% 62,2% 58,9% 54,4% 82,2% 64,4% 65,9% 10,1% 
20 70,4% 62,2% 58,9% 48,9% 76,7% 65,6% 63,8% 9,6% 
30 72,6% 64,4% 58,9% 58,9% 80,0% 66,7% 66,9% 8,2% 
40 74,1% 66,7% 62,2% 60,0% 83,3% 61,1% 67,9% 9,15 
50 71,9% 61,5% 65,6% 50,0% 84,4% 64,4% 66,3% 11,4% 

R
M

S 

5 73,3% 66,7% 68,9% 72,2% 85,6% 76,7% 73,9% 6,6% 
10 80,0% 62,2% 74,4% 67,8% 86,7% 75,6% 74,4% 8,6% 
15 79,3% 62,9% 68,9% 68,9% 83,3% 77,8% 73,5% 7,7% 
20 77,1% 66,7% 66,7% 67,8% 86,7% 80,0% 74,1% 8,3% 
30 79,3% 65,2% 67,8% 72,2% 83,3% 75,6% 73,9% 6,8% 
40 78,5% 68,9% 66,7% 67,8% 82,2% 84,4% 74,8% 7,9% 
50 79,3% 64,4% 66,7% 73,3% 86,7% 77,8% 74,7% 8,3% 

Table 3. Accuracy classification obtained with Burg method and LVQ on Math-Imagery 
database. The higher values for each subject are shaded. 

 

7. Discussion 
 

Although the standard periodogram is the simplest method and does not need to chose 
parameters for its implementation (except the points of FFT), generally, it not presents the 
best accuracy achieved in the classification on each database. 
In the other hand, the Welch periodogram and Burg method obtain better results than 
standard periodogram, but these methods present the difficulty of having to choose some 
parameters for its implementation. The window length parameter in Welch method is more 
intuitive to choose, since it represents the smoothing in the periodogram, i.e. with smaller 
window length more smoothed periodogram. For Burg method, the chosen of order of AR 
model is more difficult, since it exists a relationship between AR model order and the 
number of PSD peaks (number of peaks=AR model/2), which a-priori are unknown. This 
fact can be observed in Figure 7. 
In Math-Imagery database, the results for the Welch periodogram show that the best results 
were obtained using the RMS parameter, except for Subj#1. Also, it can observed that D=100 
and D=50 are the best choice for the window’s length. The mean values shows that RMS 
obtained with D=100 has the best classification (81.78%), but the RMS obtained with D=50 is 
just a little bit lower (81.73%). In the case of Burg method, it is not easy to select the optimal 
order, due to this value varies for each subject. According to the obtained results the optimal 
order appears between 5 and 30, for higher orders the classification results are worse. The 
RMS parameter do not obtained always the best results, in some cases, the Pm performed 
better. However, the RMS seems to be the least affected with the order of AR model. The 
mean values present the RMS as the superior values, except for order 5. 
 

 
Fig. 14. Best accuracy classification obtained with each PSD estimation method proposed 
with the LDA, MLP and SVM. 
 
In Figure 13, the advantages of use the Welch periodogram and the Burg method to estimate 
the PSD periodogram over the standard periodogram are shown. The standard 
periodogram obtain the worst results, except in S5 where Burg method performance is 
worse. Welch periodogram has better results in subjects S2 and S5 and the Burg method in 
the other subjects. 
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The mean value does not show big differences between these methods, i.e., standard 
periodogram, Welch periodogram and Burg method achieve 77.5%, 79.3% and 78% of 
accuracy classification over all subjects, respectively. In the same Figure, using the LVQ, 
similar results and conclusion are achieved; but with LVQ lower results are reached. 
For the motor-imagery database, the RMS obtains better performances than Pm with the 
standard periodogram (see Figure 9) using any classifier. For Welch, the best results are 
reached with a window length of 64 and 32, i.e., a periodogram no so smoothed. Again the 
RMS presents higher values. In Burg method case, do not seem to be an optimal chose for 
AR model order. However, orders higher than 12 present a tendency to inferior results with 
any classifier and in the other side, the lower orders seems do not affect seriously the results. 
But with order lower than 6 it is expected that the periodogram do not describe accurately 
the EEG properties. 
In Figure 14, the Welch periodogram present the best results using LDA and MLP. With 
SVM the best result is achieved by standard periodogram, but there is not a great difference 
between these values. 
Although, out of the scope of this work, is presented a briefly comparison of the difference 
classifiers used in this work. The LDA present, almost in every case, good results, the MLP 
has a similar performance. The LVQ, do not obtain good results. The SVM obtain always 
lower values than LDA and MLP, but the difference is short. In the related bibliography, 
generally, the SVM achieve better results than other classification techniques. The poor 
results achieved in this work, are due possibly to the two nested cross-validation loops 
implemented in SVM training. This was made in order to obtain better future generalization 
performance and may be the results obtained with LDA and MLP are overvalued 
(Dornhege et al., 2007). 

 
8. Conclusions 
 

In this work, parametric (Burg) and non parametric (standard and Welch) spectral methods 
were utilized in order to estimate the spectral content of EEG signals for different mental 
tasks. Two parameters were utilized to analyze the behaviour of every spectral estimation 
methods: the Pm and the RMS of different frequency bands. These methods were tested in 
two different databases. 
We found that the use of the RMS allows higher classification accuracies with any spectral 
estimation technique. The Welch periodogram and Burg method are preferable in front of 
the standard periodogram. The use of Welch or Burg methods seems to be indistinct due to 
they performed similar, although in some subjects performed better one than other. 
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The mean value does not show big differences between these methods, i.e., standard 
periodogram, Welch periodogram and Burg method achieve 77.5%, 79.3% and 78% of 
accuracy classification over all subjects, respectively. In the same Figure, using the LVQ, 
similar results and conclusion are achieved; but with LVQ lower results are reached. 
For the motor-imagery database, the RMS obtains better performances than Pm with the 
standard periodogram (see Figure 9) using any classifier. For Welch, the best results are 
reached with a window length of 64 and 32, i.e., a periodogram no so smoothed. Again the 
RMS presents higher values. In Burg method case, do not seem to be an optimal chose for 
AR model order. However, orders higher than 12 present a tendency to inferior results with 
any classifier and in the other side, the lower orders seems do not affect seriously the results. 
But with order lower than 6 it is expected that the periodogram do not describe accurately 
the EEG properties. 
In Figure 14, the Welch periodogram present the best results using LDA and MLP. With 
SVM the best result is achieved by standard periodogram, but there is not a great difference 
between these values. 
Although, out of the scope of this work, is presented a briefly comparison of the difference 
classifiers used in this work. The LDA present, almost in every case, good results, the MLP 
has a similar performance. The LVQ, do not obtain good results. The SVM obtain always 
lower values than LDA and MLP, but the difference is short. In the related bibliography, 
generally, the SVM achieve better results than other classification techniques. The poor 
results achieved in this work, are due possibly to the two nested cross-validation loops 
implemented in SVM training. This was made in order to obtain better future generalization 
performance and may be the results obtained with LDA and MLP are overvalued 
(Dornhege et al., 2007). 

 
8. Conclusions 
 

In this work, parametric (Burg) and non parametric (standard and Welch) spectral methods 
were utilized in order to estimate the spectral content of EEG signals for different mental 
tasks. Two parameters were utilized to analyze the behaviour of every spectral estimation 
methods: the Pm and the RMS of different frequency bands. These methods were tested in 
two different databases. 
We found that the use of the RMS allows higher classification accuracies with any spectral 
estimation technique. The Welch periodogram and Burg method are preferable in front of 
the standard periodogram. The use of Welch or Burg methods seems to be indistinct due to 
they performed similar, although in some subjects performed better one than other. 
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