
1



Model-Based Quality Assurance of Protocol Documentation:
Tools and Methodology

 Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie Victor Braberman
 Microsoft Corporation University of Buenos Aires

Abstract— Microsoft is producing high-quality documentation for Windows client-server and

server-server protocols. The Protocol Engineering Team in the Windows organization is responsible

for verifying the documentation to ensure it is of the highest quality. Various test-driven methods are

being applied, including when appropriate, a model-based approach. This paper describes core

aspects of the quality assurance process and tools that were put in place, and specifically focuses on

model-based testing (MBT). Experience so far confirms that MBT works and that it scales, provided

it is accompanied by sound tool support and clear methodological guidance.

Index Terms—quality assurance process, test-driven, model-based, protocols, Spec Explorer.

1 Introduction

Protocol documentation is an important part of Microsoft’s compliance obligations with the US Justice

Department and the European Union. Microsoft is committed to producing high-quality documentation for

certain Windows client-server and server-server protocols. These documents enable third parties to

interoperate with Microsoft’s client and server operating systems. The Protocol Engineering Team in the

Windows organization acts as a major stakeholder inside of Microsoft in the quality assurance process for

this documentation. More than 25,000 pages of documentation for over 250 protocols have to be

thoroughly verified to ensure that they are accurate, so that developers can implement protocols from the

information they contain plus basic domain knowledge. This significant effort requires the application of

innovative methods and tools. The team has devised a methodology called the protocol documentation

quality assurance process (PQAP), with model-based testing (MBT) as one of its cornerstones. Model-

based testing has a decade-long tradition inside of Microsoft. The first tools supporting it were deployed at

the end of the 1990s. Various MBT tools exist today in the company, including the product family called

Spec Explorer [2][3][4], which was originally developed at Microsoft Research, and today is productized as

part of this effort.

This paper gives an overview of the PQAP and its supporting tools. Though MBT has been applied

successfully to features and products before [5][2], this is the first attempt to use it in such a large scale and in

the context of a business-critical area within Microsoft, and to the best of the authors’ knowledge throughout

the whole industry. Experience so far confirms that MBT works and that it scales, provided it is accompanied

by good tool support and clear methodological guidance, and backed up by investment in training.

2 Overview of the Process

The basic idea behind the process presented in this article is test-driven analysis of the documents. Deriving

a functional test-suite from protocol documentation ensures that it is thoroughly studied and that its

2

normative statements are converted into assertions to be checked against the actual implementation. This

formalization process naturally also validates internal consistency. It is furthermore close to the actual task

of writing an implementation from the document, simulating a potential implementer’s attempts.

All test suite development in this effort is performed by vendors in India and China. Employing vendors

has a significant methodological dimension, since it establishes a clean-room environment that excludes

interference of knowledge Microsoft employees may have about protocol implementations. Employing the

large number of vendors required for the task also poses significant challenges for the management and

control of the test suite development work itself. This was one of the major design drivers for the PQAP.

This section provides an outline of the PQAP. Later sections drill down on some of its particular aspects, in

particular those related to model-based testing.

2.1 Phases of the PQAP

The PQAP is phase-oriented, guiding the development of a test suite for a given protocol from a Technical

Document (TD) through all the required steps. Its phases are described in Figure 1.

Figure 1: Phases of the PQAP

Every phase is followed by a formal review. A disposition of Conditional Accept or Re-review by

reviewers requires the test suite development team to (partially) reiterate the phase and submit a new

review request.

The progress and results of the PQAP are reflected in the PQAR (protocol quality assurance report), a

single document to report on all phases of the process. Test suite developers fill in the PQAR

incrementally. It is used as a basis for the reviews, and it constitutes the major artifact documenting the test

suite. The PQAR is a template-based document with a fixed structure and a number of accompanying

guidance documents for the various steps, stages, and phases.

Final phase

Generate tests Deploy test suite Execute and capture

Design phase

Create model Implement adapters

Plan phase

Classify requirements Plan model Suggest architecture

Study phase

Read TD Elicit Requirements Suggest Approach

3

2.2 Requirements Specification

While the PQAR is a central document to the process, the requirements specification (RS) is equally

important.

Figure 2: A Sample Requirements Specification

Req ID
Doc
Sect Description Pos Neg Derived Scenario Scope Pri

Inform
/Norm

Verifi
catio
n

TSCH
_R113

2.3.
10

The column field of the
TASK_XML_ERROR_INFO structure MUST
contain the column where parsing failed.

 S11,S12 Server p0 Normative
Adap
ter

TSCH
_R142

2.4.
1

The client MUST set the File Version
(2bytes, it contains the Version of the
.JOB file format) field of the
FIXDLEN_DATA structure to 0x0001. R1102 R1131

 Client p0 Normative

TSCH
_R145

2.4.
1

The server MUST ignore the value in the
App Name Len Offset field of the
FIXDLEN_DATA structure.

 Server p0 Normative
Non-
testa
ble

TSCH
_R146

2.4.
1

The Trigger Offset (2 bytes) field of the
FIXDLEN_DATA structure MUST contain
the offset in bytes within the .JOB file
where the task triggers are located. R1102 R1131

 Client p0 Normative

TSCH
_R133
2

3.2.
5.4.
6

Upon receipt of the SchRpcGetSecurity
call, the server MUST return S_OK on
success.

 S16, S17 Server p0 Normative
Test
Case

TSCH
_R133
3

3.2.
5.4.
7

The SchRpcEnumFolders method MUST
retrieve a list of folders on the server.

 S18 Both p0 Normative

Adap
ter

TSCH
_R133
5

3.2.
5.4.
7

Through the SchRpcEnumFolders
method if client requests items 1-10 and
then 11-20, the second call MAY return
duplicate entries if the folder list has
changed in between calls.

 Server p2 Informative
Unve
rified

TSCH
_R133
7

3.2.
5.4.
7

path field MUST contain the full path
associated with a folder using the format
specified in section 2.3.11.(R117 -R120) R1364 R1350

 Client p0 Normative

TSCH
_R135
0

3.2.
5.4.
7

Upon receipt of the SchRpcEnumFolders
call, the server MUST return the value
0x80070003, the HRESULT version of the
Win32 error ERROR_PATH_NOT_FOUND,
if the path argument does not name a
folder in the XML task store, or if the
caller does not have either read or write
access to that folder.

 S18 Server p0 Normative
Test
Case

TSCH
_R135
1

Upon receipt of the SchRpcEnumFolders
call, the server MUST return the value
0x80070003, the HRESULT version of the
Win32 error ERROR_PATH_NOT_FOUND,
if the path argument does not name a
folder in the XML task store.

R1350:c S18 Server p0 Normative
Test
Case

TSCH
_R135
2

Upon receipt of the SchRpcEnumFolders
call, the server MUST return the value
0x80070003, the HRESULT version of the
Win32 error ERROR_PATH_NOT_FOUND,
if the caller does not have read access to
that folder.

R1350:c S18 Server p0 Normative
Test
Case

4

Figure 2 shows an example of an RS. This document is a table derived by test suite authors from the

protocol documentation containing one entry for each explicit or implicit normative statement, which

defines a unique identifier for the requirement to be referenced from other artifacts in the process.

Requirement gathering does not require previous domain knowledge and is not specific to protocol

documentation. It consists in identifying statements in a document that can be proven right or wrong.

The RS specifies a description (usually a verbatim statement from the technical document, sometimes

slightly modified to include context information) and other properties used to classify the requirement. The

most important here are the protocol endpoint (Scope) to which the requirement associates (usually client

or server), whether it is normative (Inform/Norm), and which approach is taken to validate it (Verification).

The Verification column in the RS is used to express several (mutually exclusive) verification decisions

through keywords. It is left blank for informative requirements. For a normative requirement, gatherers

have to ask themselves whether the requirement can be tested. Requirement testability is based on the fact

that test suites produced focus on interoperability and hence only aim at controlling or observing behavior

over the wire (at the protocol transport level). In addition to such requirements, protocol documentation

also contains guidance for the implementation of endpoints that cannot be externally observable, which is

considered Non-testable for the purposes of the PQAP. If a requirement is testable, testers may choose for a

variety of reasons not to actually test it, and consequently mark it as Unverified, although this needs to be

done sparsely to keep the overall requirement coverage percentage within acceptable limits (e.g. over 80%

for most protocols). Finally, if a requirement is testable and will be verified, the decision has to be made to

test it in a Test Case (either manually written or generated from a model) or in a test Adapter. Typically,

behavior or data that depends on previous history is validated in a test case (e.g. “packet A follows packet

B”, or “field F contains the value previously written by packet C”). Requirements pertaining to data format

are validated in an adapter (e.g. “the contents of field F must be of type T”).

Test suites usually play the role of one endpoint in order to test another one. For example, a client test suite

is used to test a server implementation as a system under test (SUT).

Test plans given in the PQAR refer to the RS; so do models and test suites; and also test logs generated

during test execution. This allows tracking back from test execution results to the technical documentation

via the requirements. Requirement coverage is also the main measurement of the completeness of a test

suite.

2.3 Testing Approach

Test approach definition starts in the study phase and is refined and finished in the plan phase. It covers two

major aspects: how to harness the system-under-test, and which approach is used to define test cases.

2.3.1 Approach to harnessing

One of two general approaches is usually applied to harness a protocol for testing. In the first approach, one

protocol endpoint is completely replaced by a synthetic endpoint, consisting of the test suite and adapters,

which drives and monitors the tested endpoint. Typically, the tested endpoint is thereby a protocol server,

but in general it can be also a protocol client. This approach is depicted in Figure 3.

5

Figure 3: Replacing One Endpoint

In a second approach, an existing component or application is used to generate protocol traffic, monitored

and validated using a network monitor, as shown in Figure 4.

Figure 4: Driving an Existing Application

Both approaches use test adapters (described in Section 3) to abstract the access to the SUT and harness for

the actual test cases. Both approaches may require, in addition to the operations provided by the tested

protocol, some additional control of the tested endpoint, shown in both figures as “Control”.

The preferred approach is to completely replace an endpoint for testing, since driving an existing

application introduces additional challenges. First, the monitor might not be able to interpret encrypted

traffic on the protocol transport. Second, an existing application may not produce all behaviors required to

achieve suitable test coverage. However, engineering a synthetic testing endpoint is overly complex or even

not possible at all for some protocols, in which case testers fall back to the approach in Figure 4.

Note that the chosen approach for harnessing does not affect the one used for test case definition: both

harnessing approaches can be used for model-based as well as traditional testing.

Tester Endpoint SUT

Adapters

Test Suite

Transport

Tested Endpoint

Control
(optional)

Transport Application

Monitor

Tester Endpoint SUT

Adapters

Test Suite

Transport

Tested Endpoint

Control
(optional)

Transport

6

2.3.2 Approach to defining test cases

The PQAP does not prescribe whether to use traditional (manually coded) or model-based testing for

defining test cases. Rather, test suite developers are asked to submit a suggestion for the approach after the

study phase, to be considered by reviewers.

It is rather common to apply a hybrid approach, where model-based testing is used to develop the main test

suite, but some special scenarios are tested by manually written tests. The hybrid approach is supported by

a unique test adapter that can be used both from models and from traditional test suites. Test adapters are

defined in the managed Protocol Test Framework (PTF), an extension to Visual Studio Test Tools, and are

discussed in more detail in the next section.

3 Test Representation and Test Adapters

One of the major problems for developing test suites for protocols is to get protocol elements on the wire

and back. Elements can be data packets in various encodings, remote procedure or web service calls, and so

on. The problem is well known in the protocol testing community, resulting in efforts like TTCN-3.

For this project, an extension to Visual Studio Test Tools (VSTT) has been developed, called Protocol Test

Framework (PTF), based on the Visual Studio Unit Testing framework and .Net. Using a mainstream

programming system constitutes an advantage, since it allows leveraging a high-level programming

environment and IDE, a language well known to test engineers working in the project (C#), and access to

the variety of features provided by the .Net framework, Microsoft’s major platform for interoperable code.

The Unit Testing framework, in addition, provides a concise way to represent test cases and to manage their

execution under VSTT.

PTF adds to VSTT custom support for dealing with protocols, including ways to automatically serialize and

de-serialize data packages based on declarative definitions in .Net types and attributes, and access to RPC

calls directly from .Net. In the rare cases where necessary, Visual Studio’s C++/CLI subsystem, which

allows mixed managed/native development, is used to deal with issues such as access to the Windows API

or other low-level system levels. In general, the usage of C/C++ in adapter and test code is discouraged; as

languages like C# are considered to generate simpler and more robust test suites.

Test adapters are a central concept of PTF. A test adapter defines an interface to the protocol under test or

its harness at a problem-oriented level of abstraction. It is given as a managed (C#) interface that contains

methods for sending data to the server, and events for receiving data back.

Figure 5: Test Adapters

7

Figure 5 depicts the role of test adapters in the process. Test adapter interfaces are developed and used

independently of their implementation. At deployment time, test adapter implementations are associated

with adapter interfaces, supporting different implementations with the same logical functionality for

different protocol transports and/or operating systems.

Like any interface in component-oriented design, an adapter interface is a grouping of related methods

following the usual principles of high cohesion and low coupling. The PQAP includes guidelines to design

adapter interfaces. For instance, the level of abstraction for adapter interfaces should be potentially useful

both for a model and a traditional testing approach. Test validation steps usually happen in the actual test

cases, but some checks can also be performed by the adapter. The general guideline is that protocol

behavior should not be encoded in the test adapter, whereas state-independent data invariants on protocol

elements can well be validated there.

Test adapters are thus specifically designed for each protocol so that they provide to test cases a high-level

interface, abstracting away details about data encoding and formatting. Packet fields or parameters that are

only relevant to message-local data format validations, such as buffer sizes or encryption flags are typically

hidden from the test cases (or model) and resolved at the adapter level for communication in both

directions.

An interesting example of data abstraction by a test adapter is the Abstract Identifier pattern, defined as part

of the PQAP. The pattern is applied to information coming from the SUT that cannot be determined at

modeling or test case coding time, such as identifiers or encryption keys. The pattern guides testers to

maintain a table mapping concrete values for these data points to abstract (integer) values that are used for

the communication with the test cases. A test case (or model) will thus expect the identifier for the first

session it establishes to be simply 0, while the second session will be 1. The adapter will add an entry to the

table when the first concrete identifier is received from the SUT mapping it to value 0. From then on, a 0

received from a test case for a session identifier parameter will be sent over the wire as the actual identifier,

and this session identifier will be sent to the test case as 0 whenever it is received from the SUT.

Test adapters can be implemented in diverse ways in PTF. It is possible to wrap an existing API or

program, or to synthesize packets and directly parse them from the wire. The last approach is supported by

the Protocol Adapter Compiler (PAC), a tool that comes with PTF, which extracts definitions of protocol

elements directly from the protocol document, and generates data structures ready to be consumed by the

PTF framework. Protocol element serializers and de-serializers can be thus directly generated from the

technical document with a minimal amount of human intervention.

4 Model-Based Test Suite Development

Model-based testing has been discussed extensively in academic and industrial communities. For a

comprehensive text book see e.g. [10]. The general workflow of how MBT is applied as part of the PQAP

is shown in Figure 6.

8

Figure 6: MBT in the PQAP

Dotted lines represent feedback towards the document, in the form of TDIs (Technical Document Issues –

documentation bugs). As seen in Figure 6, TDIs are generated in most steps. Over 10,000 TDIs have been

found as a result of applying the PQAP, of which more than 8,000 have been resolved as fixed so far

(acknowledged as documentation issues and corrected). Typically, more than 50% of the TDIs in the

project are actually detected before any test is ever executed, confirming community wisdom that the value

of MBT is not only in the testing itself but in the mere development of the model.

In the context of the project for which the PQAP was developed, any discrepancy detected between the

actual implementation and the documentation is considered an error in the latter, which must conform to

the shipped version of the product. Nothing prevents the same process to be applied in a setting where the

documents are considered a “golden” specification and conformance failures are thus treated as product

bugs that need to be fixed.

In fact, model authoring usually requires test-suite developers to not only consider the SUT’s expected

behavior (oracle), but also forces them to think in generic (parametric) terms what the tester endpoint (SUT

environment) may generate as valid stimuli for the SUT. Traditional test cases, although also useful in

practice, do not necessarily push the envelope of that kind of analysis, which is especially rewarding in

terms of detecting issues in the documentation.

The use of MBT is strongly recommended when protocol behavior is history dependent. History

dependency may either come from modalities of allowed actions or from heavy data dependencies of

actions from the current SUT data state. In all those cases, models tend to closely mimic technical

document statements about protocol endpoints. The technical document usually describes a protocol action

as a set of conditions under which the action is enabled in terms of an abstract data state model, plus a

change (update) of this state when the action happens. This (informal) pre/post-condition description maps

directly to the modeling style used in the project.

9

4.1 Spec Explorer

The model-based testing tool used in the project is Spec Explorer. It has been developed as the third

incarnation in a series of MBT tools [4][3]. Its conception and foundation has been described in previous

papers [2][6][8]. An introduction to its application in the protocol documentation domain has been given in

a preliminary version of this paper [11]. Here, that introduction is expanded by providing details and

samples to illustrate each of the phases in the methodology.

Spec Explorer is a modeling and model-based testing environment originally developed at Microsoft

Research to overcome some of the obstacles that prevent a broader adoption of these techniques in the

software development lifecycle. It is fully integrated into the development environment of Visual Studio,

supporting multiple notations (programs, diagrams) and modeling styles (state machines, scenarios), with

an emphasis on the capability to combine those different behavioral descriptions using model composition.

It is internally based on the framework of action machines [6], which allows for uniform encoding of

models stemming from a variety of notations.

4.2 Model Programs

The core notation used in Spec Explorer for state-oriented modeling derives from Abstract State Machines

(ASM) [9]. Models are described in a programmatic style by guarded update rules on a global data state.

The resulting artifacts are called model programs. Rules describe transitions between data states and are

labeled with actions corresponding to method invocations on a test adapter or on the actual SUT. Rules can

be parameterized (and their arguments then also appear in the associated action labels).

Model programs have similarities with extended finite state machines (EFSM) in the way they are written,

but there are substantial conceptual differences. First, the machine defined by a model program is usually

not finite, as the state can consist of complex data elements like collections, objects that can be dynamically

created, etc. The slicing of an infinite state space into a finite subset for the purpose of state exploration and

test generation is therefore a central aspect of MBT with Spec Explorer, discussed in Section 4.2.1. Second,

inputs and outputs are distinguished in state transition labels, and multiple outputs can be enabled in one

state allowing for specification and/or implementation non-determinism, the semantic framework for test

conformance is not based on finite state machine test theory, but on transition systems and alternating

simulation [15]. Detailed discussions of Spec Explorer's notion of conformance can be found in the

literature [3][6].

4.2.1 Example Model Program: Chat Room Server

As an example for demonstrating modeling in Spec Explorer, a chat room server is used. This simple

example has sufficient complexity to illustrate the usage of rich (infinite) model state and alternating

simulation as a conformance notion.

The chat room server allows users to logon, logoff and post messages to be broadcast to all users in a

session. Message broadcasting has to obey certain basic ordering constraints: the messages posted by one

user must arrive in the order they have been emitted; however, messages posted by different users may

arrive in any order.

The state of the chat room server is defined in the following C# fragment:

10

 enum UserState

 {

 WaitingForLogon,LoggedOn, WaitingForLogoff

 }

 class User

 {

 internal UserState state;

 private MapContainer<int, SequenceContainer<string>> waitingForDelivery;

 internal bool HasPendingDeliveryFrom(int senderId) {

 return waitingForDelivery.ContainsKey(senderId);

 }

 internal bool HasPendingDeliveryFrom(int senderId, string message) {

 return HasPendingDeliveryFrom(senderId) &&

 waitingForDelivery[senderId].Contains(message);

 }

 internal string FirstPendingMessageFrom(int senderId) {

 return waitingForDelivery[senderId][0];

 }

 internal void AddLastMessageFrom(int senderId, string message) {

 if (!HasPendingDeliveryFrom(senderId))

 waitingForDelivery[senderId] = new Sequence<string>();

 waitingForDelivery[senderId].Add(message);

 }

 internal void ConsumeFirstMessageFrom(int senderId) {

 if (waitingForDelivery[senderId].Count == 1)

 waitingForDelivery.Remove(senderId);

 else

 waitingForDelivery[senderId].RemoveAt(0);

 }

 }

 static MapContainer<int, User> users = new MapContainer<int,User>();

The static variable users describes the entire state of the model. It is a mapping (dictionary) from user

identifiers to objects representing user state. Each user object consists of a value indicating the user’s

current status, plus a queue of messages that have been posted to the user but have not yet been delivered.

This queue is again a mapping from identifiers of senders who have posted messages for the given user to

an ordered sequence of message contents for each sender. This representation allows for two levels of non-

determinism. On the one hand, the user who will next receive a broadcast message in the users mapping is

not fixed. On the other hand, the sender who will be selected for the given user in the waitingForDelivery

mapping can also vary.

The listing below shows guarded update rules for two actions of the system. The first action stands for

posting a message to the room. This is an input stimulus to the SUT. The second one represents receiving a

message. This is an output response from the SUT. At the model program level, this difference is not

relevant, as rules just state when these actions are enabled and what will be their effect on model state.

11

 [Rule]

 static void BroadcastRequest(int userId, string message)

 {

 // enabling condition

 User user = GetLoggedOnUser(userId);

 // update

 foreach (User loggedOnUser in users.Values)

 loggedOnUser.AddLastMessageFrom(userId, message);

 }

 }

 [Rule]

 static void BroadcastAck(int userId, int senderId, string message)

 {

 // enabling condition

 User user = GetLoggedOnUser(userId);

 Condition.IsTrue(user.HasPendingDeliveryFrom(senderId));

 Condition.IsTrue(user.FirstPendingMessageFrom(senderId) == message);

 Requirement.Capture(5, “Messages from one sender MUST be received in order”);

 // update

 user.ConsumeFirstMessageFrom(senderId);

 if (EveryoneReceived(senderId, message))

 Requirements.Capture(7, “All logged-on users MUST receive a broadcast”);

 }

 static User GetLoggedOnUser(int userId)

 {

 Condition.IsTrue(users.ContainsKey(userId));

 User user = users[userId];

 Condition.IsTrue(user.state == UserState.LoggedOn);

 return user;

 }

 static bool EveryoneReceived(int senderId, string message)

 {

 return !users.Exists(u => u.Value.state == UserState.LoggedOn &&

 u.Value.HasPendingDeliveryFrom(senderId, message));

 }

The enabling condition of an action is declared in the C# statement Contracts.Requires, which calls a

particular modeling library. In contrast to earlier versions of Spec Explorer based on an extension of the C#

language called Spec# [3], all the infrastructure for modeling is provided in the current version by libraries;

no language extensions are required. Contract.Requires statements can appear anywhere in the body of an

update rule and even in helper methods (e.g. helper method GetLoggedOnUser). If the Boolean condition

passed as an argument is false in the current state, then the model execution path containing the call is cut

off, and any state updates performed until that point are forgotten.

In this example, posting a message (BroadcastRequest) is only enabled for logged-on users, and causes the

message to be distributed to the queues of all users registered in the room. Receiving a message

(BroadcastAck) is also only enabled for logged-on users, and for the first queued messages associated with

the given sender. If these conditions are met, the message is consumed from the queue.

12

The model captures two requirements in the rule for action BroadcastAck. Requirement 5 (“Messages from

one sender MUST be received in order”) is declared to be captured by fulfilling the enabling conditions of

the rule, which restrict the implementation to acknowledge the reception of the first message received from

one sender before other messages from the same source are consumed. Requirement 7 (“All logged-on

users MUST receive a broadcast”) is considered to have been captured only when the last receiver has

consumed the message. Both validations rely on the model behavior imposed by the rule for action

BroadcastRequest. Validation of requirement 5 is based on the fact that messages are added at the end of

the queue. Capturing requirement 7 leverages the knowledge that each message is added to all logged on

users.

Note that the above model program is unbounded in various respects.

 First the message parameter to a post is not fixed to a finite domain. (Note that, given a number of

users logged on to the system, all other parameters of the update rules are fixed indirectly by the

constraints that relate them to model state: user identifiers can only be drawn from the domain of

the global user mapping or the delivery map of an individual user, as ensured by the enabling

condition through a ContainsKey call).

 Second, there is no bound on how often a user can post messages and when these posted messages

are actually received.

So the model program state is obviously infinite. The next section will describe how this is dealt with.

4.3 Slicing

Slicing of unbound model state is a central activity when using Spec Explorer. Even for a bound finite

model state, slicing is a way to extract manageable subsets from an otherwise huge and intractable finite

state space.

Slicing relies on the assumption that, from a testing perspective, a user can make the explicit decision to

prune away some of the potential stimuli (inputs) accepted by the SUT. This does not alter the correctness

of test results; it just produces fewer tests. In contrast, a user should never prune away responses (outputs)

as this may result in tests that fail after slicing, although they would have passed in the unsliced full model.

Henceforth, (proper) slicing is a human intervention that may impact test coverage and completeness, but

not correctness.

Mastering the “art” of slicing is the key to mastering state explosion and making model-based testing

practical. Several Spec Explorer features support the user in this activity. They are intended to be applied

not as part of the model program itself – which is supposed to represent the pure contract of the behavior

and shall remain unmodified – but from the outside, using a configuration and coordination scripting

language to augment the model program. This language, called Cord, has been first described by

Grieskamp and Kicillof [8].

Cord allows configuring a model program for slicing and test generation in the following basic ways:

 Parameter selection and combination: allows assigning parameter domains to actions, including

domains derived from the dynamic model state; as well as defining combinatorial goals like

pairwise and n-way interactions.

 State predicate filtering: allows setting bounds on states by pruning state space exploration from

states that do not satisfy a Boolean predicate defined on the state variables.

 Trace pattern filtering: allows restricting the model graph to traces matching a certain pattern,

where the pattern is given in a regular-expression style, which may be mixed with control-flow-

dependent state predicates.

13

 Coverage-based reduction: when applied to an already finite model graph, allows restricting it to a

smaller sub-graph that still guarantees certain model coverage criteria. A typical criterion is

requirement coverage, where capturing of requirements by individual actions is declared in the

model program with a special statement.

The main principle followed by practitioners (besides never pruning away output responses) when creating

slices together with their models is to maintain a basic separation of concerns between expected system

behavior and test purposes. A model has to be correct in itself (no spurious states or transitions)

representing all potential protocol behaviors, and only those, independent of slices. Modelers cannot

assume that the model will be used only in combination with the provided scenarios, as other users may

want to define different scenarios for checking or testing different properties.

Two mechanisms prevent modelers from accidentally slicing away requirements that their model was

supposed to capture. A static check is enforced when applying coverage-based reduction in combination

with other forms of slicing. The user must specify the requirements that should be captured either by

identifier or by count. The reduction algorithm will check that the requirement coverage goal is achievable

by comparing the set (or count) provided by the user with those reachable in the exploration graph. A more

general dynamic check is applied by a coverage reporting tool that collects information from logs after

running the test suites against an implementation. This tool compares the set of requirements contained in

execution logs with those declared in the Requirements Specification and outputs a human-readable report

with enumerations, counts and percentages of requirements verified versus those extracted from the

documentation.

Among these techniques, a closer look will be taken, in the context of the chat room server example, at

trace patterns, which turn out to be the most widely used mechanism in current practice.

4.3.1 Example Trace Pattern: Chat Room Server

As discussed earlier, the state space of the chat room server model program is unbounded, as it allows both

arbitrary values for the message parameter and an arbitrary number of broadcasts. Using a trace pattern and

composing this with the actual model program, a finite trace can be extracted.

This can be done in Spec Explorer’s Cord language, for example, as follows:

machine BroadcastSlice() : Actions

{

 LogonSequence; BroadcastRequest(_, "a"); BroadcastRequest(_, "b");

 BroadcastAck*

||

 ModelProgram

}

The above machine composes a trace pattern with the actual model program using the parallel composition

operator ||, which forces both of its operands to synchronize in lockstep (the transitions possible in the

composition are those and only those that can be performed by both operands). The trace pattern consists of

a logon sequence (described in another machine, including logging on two users to the system), followed

by two broadcast requests, and then by an arbitrary number of broadcast acknowledgments. Note that

parameter values in the trace pattern are only partially fixed, as is the control flow, allowing any

possibilities determined by the model program in the composition result.

14

Figure 7: Excerpt from the state exploration graph of sliced Chat

Figure 7 shows an excerpt of the graph generated by Spec Explorer for machine BroadcastSlice. The

snapshot corresponds to the case where the same user broadcasts two messages, which results in a strict

ordering. Requirement capture can be seen in transition labels (e.g. “Captured: ms-chat_R5”). The part of

the graph not shown covers the case where different users broadcast, and the number of possible orderings

is therefore higher. Spec Explorer shows states as nodes with two different shapes. Ellipses stand for input

states (states in which a test case would send a stimulus to the SUT). Diamonds are output states (states in

which a test case would expect a response from the SUT).

Note that Spec Explorer's notion of test conformance using alternating simulation implies that output

responses of the system under test are buffered; henceforth it is possible to first issue a number of stimuli

and then analyze the responses.

Application of trace patterns go beyond extraction of finite behaviors for testing. In general, slices are also

used for model analysis. With a well-defined slice, a user can visually validate whether the model presents

the expected behavior. Slices can also be used for model-checking. To that end, a user can define a trace

pattern ending in an unwanted state, and check whether the resulting composition with the model program

is non-empty, in which case the graph of that composition represents the counter examples. Cord’s trace-

pattern syntax supports this by allowing Boolean conditions on state variables mixed into the patterns.

4.4 Test Generation and Execution

Spec Explorer supports both on-the-fly testing, where model exploration is fused with testing, and

generation of test code that can run standalone, independent of the model. In the protocol document testing

15

context, only the test code generation feature is used, since it allows for systematic and explicit engineering

of test suites and does not depend on random exploration strategies.

Generated test suites are represented by default in the VSTT Unit Testing format, but the code generation

infrastructure can easily be reconfigured to target other test frameworks via provided extension points.

Before test suite code can be generated, test selection strategies must be applied in the form of traversals on

the exploration graph. The most widely used strategy is transition coverage. In Spec Explorer, traversals are

transformations on the model graph. They result in a new graph that fulfills the coverage goal of the test

selection strategy and is in Test Normal Form: every state has at most one stimulus outgoing transition.

This means that all testing choices (which stimulus to provide to the system at each point) have been made

before test-execution time. System choices, on the other hand, are preserved by traversals, as they represent

potential non-determinism on the part of the tested system. Test code generated for a graph containing such

a choice will accept any of the potential system responses at that point, and proceed accordingly.

This principle is illustrated in Figure 8, which contains the graph for one of the test cases generated from

the sliced model in Figure 7, using All-Transitions as a coverage criterion. For this test case, the algorithm

has made the testing choices resulting in user 1 broadcasting both messages. Other test cases cover the case

where user 2 broadcasts both messages and those where each user broadcasts one message in both possible

orders. The traversal algorithm has however left system choices intact (in states S40, S44, S45, S49 and

S57). The resulting generated code will consequently accept all possible system responses in these states.

Figure 8: Test case generated from the sliced Chat

16

For systems with unfair non-determinism (some non-deterministic paths might never be chosen by specific

implementations), and models for which no “winning strategy” (meaning covering any transition is

possible independent of choices made by the SUT) exists, test generation as it is currently performed may

result in test suites missing possible coverage. The solution for this issue is subject of ongoing work, and

needs to be treated by moving the traversal computation for these particular systems to test-execution

instead of test generation time.

4.5 Requirement Tracing

Tracing requirements gathered from an informal specification all the way to test-run reports is an integral

aspect of the PQAP. Spec Explorer supports declaratively associating requirements to preconditions and

updates by calling specific library methods in C# code. Requirements covered in each step (and in the path

leading to each state) are recorded as part of exploration results and transferred to generated test code. At

test-run time, dynamic requirement capturing is logged and output as part of test reports. In addition, PTF

provides direct mechanisms for adapter and traditional test code to explicitly log the requirements they

cover. These combined features provide requirement coverage information all along the process, an

essential feedback to determine the correctness of slicing, to analyze exploration and model checking

results, to debug individual test case execution and to interpret global test suite verdicts.

4.6 Adoption

When the protocol documentation QA effort was started, the biggest concern for rolling out a model-based

testing approach in this context was whether this technology can be effectively adopted by lay people or is

just confined to formal methods experts. Currently, almost all of the Windows protocols to be tested were

done by vendors performing the test development. This has built confidence, empirically established, that

the MBT approach works and that it is more productive than traditional testing. This evidence is backed by

the fact that, in addition to MBT, traditional testing techniques are being applied to some documents in the

same domain with the same people.

The key factors for adoption seem to be providing systematic training for new hires, and a fairly self-

supporting critical-mass community growing at vendor sites. As an example, the vendor team in China

hired many professionals with limited testing experience directly out of college; after attending a three-day

ramp up training, the majority became capable of modeling simple protocols; and after three months of

working in teams with experienced colleagues, they were able to smoothly model complex protocols by

themselves. The biggest challenge for adoption appears to be in the paradigm shift, not actually in

mastering the complexity of the modeling problem and tools. This results in inexperienced people

performing relatively better during ramp up than those bringing in mature patterns and practices from other

paradigms as baggage. Thus, the experience indicates a steep but not very high learning curve.

5 Effort Measurements and Comparison

Table 1 shows the time spent performing several tasks in the protocol documentation testing project, in

terms of the total requirements identified in the documents. The sample includes all 105 documents tested

in one of the testing sites, as a way to eliminate any potential bias introduced by differences in effort

recording and distribution of work between sites.

Statistical analysis indicates that the number of requirements is a good predictor for the effort, with

significant correlation coefficients at the 0.01 level with respect to other indicators, such as number of

pages in a document (0.867), testable requirements (0.881), requirements covered in test cases (0.690),

requirements covered in adapter (0.410), number of modeled test cases (0.485) and number of traditional

test cases (0.216).

17

Table 1: Effort per Total Requirement

Task Average person-days per requirement

Technical document review 0.13563

Requirement gathering 0.10444

Model authoring 0.05803

Traditional test coding 0.06760

Adapter development 0.15014

Test case execution 0.07469

Final adjustments 0.04429

Total test suite development 0.635409

Figure 9: Effort Reduction using MBT

Preliminary analyses show a significant advantage when comparing test suites that were developed using

MBT with the remaining test suites (see Figure 9). The average effort per tested requirement for test suites

where MBT was applied was 1.39 person-days, whereas testing each requirement in test suites not applying

MBT took in average 2.37 person-days. (Note the difference between total requirements used in Table 1

and tested requirements used for the effort comparison. Requirements related to the behavior of a client

were collected but not tested in the project.) That resulted in a 42% productivity gain from the usage of

MBT the test site also listed in Table 1, with a similar number of requirements tested with each approach

(9,844 requirements in test suites using MBT; 8,728 requirements in non-MBT test suites).

While the comparison between approaches yields a lower performance improvement (34%) for the other

site, the team in that location has applied MBT in most of their test suites, resulting in a much less balanced

distribution of requirement coverage. Only 2,411 out of 15,892 were tested in test suites not using MBT,

which renders the comparison for this site less significant.

0

20

40

60

80

100

Site 1 Site 2

58
66

100 100

Model-Based

Traditional

18

Notice that the effort strictly invested in model authoring according to Table 1 is relatively low compared

with the overall efficiency gain from applying MBT. This is due to the fact that modeling has an impact on

all phases of the process, not just on model creation. Also, the table measures the effort in terms of total

requirements (as an early estimate of future phases), while the comparisons above are in terms of tested

requirements, a magnitude known only after a test suite is concluded.

6 Related Work

To the authors’ knowledge, there is no comparable project in industry or Academia applying model-based

testing in a comparable scale and with a scope similar to those of the project described here. The closest is a

project conducted by ISPRAS for the testing of the Linux operating system, using the UniTESK toolset

[16]. In that project, besides other activities, POSIX standards are translated into models to generate

conformance tests for different Linux versions. However, the goal is mostly API testing, rather than

network protocol testing. Moreover, the model and test suite development is not part of an industrial scale

process. From the same group also comes work for deriving formal specifications from standards [23],

applying a process for gathering requirements from an English document similar to the PQAP’s. However,

this work does not yet apply a full tool chain down to model-based testing from these requirements.

On the tools level, material about Spec Explorer has been published and compared with other work before.

A summary is provided here, but the reader is referred to previous articles [2][3][6][8] for a more detailed

comparison. Spec Explorer is often classified as finite state machine testing, though there are only some

commonalities: notably that its guarded-update machines are similar to those found in extended finite state

machine notations, and that similar traversal techniques for the final step are applied in both domains. The

approach is actually closer to labeled transition systems (LTS) based testing and IOCO [17], except that

Spec Explorer uses alternating simulation with buffering as the conformance notion. Alternating simulation

has been introduced by Alur et al. [15], and its use for Spec Explorer has been described in several papers

[3][6]. As of today, Spec Explorer seems still to be the only MBT tool which uses alternating simulation

together with output response buffering as the underlying conformance notion. In the authors’ opinion this

has advantages over IOCO, as it does not require input completeness of the implementation and therefore

treats model and implementation symmetrically.

Methodologically, the usage of trace patterns for slicing, as has been proposed for Spec Explorer first by

Grieskamp and Kicillof [8] (at that point in time, trace patterns were simply called scenarios) has proven to

be essential for the success of the model-based testing approach in the context of the PQAP. The approach

by itself is not new, and has been employed in tools like TorX [18], TGV [19] and others before. However,

these tools have special languages for defining test purposes that are applied to the test generation

algorithm. Spec Explorer supports trace patterns not as a special-purpose language, but just as another

modeling notation. The application of a trace pattern to a model program is therefore treated as a general

model composition problem. Consequently, trace patterns can be used for model checking or independent

exploration as well.

Spec Explorer uses symbolic state space exploration techniques and constraint solving, based on the XRT

software model checker [20] to deal with partial models (such as trace patterns), model programs with

unfixed parameter domains, and their composition. Symbolic execution in software model-checkers for

testing has been proposed for Java Pathfinder [21], however, the authors are not aware of any model-based

testing tools stemming from this conceptual work. Conformiq Qtronic [22] is a commercial model-based

testing tool that uses symbolic execution, although it does so for on-the-fly testing and not for slicing.

19

7 Conclusion

This article presents the quality assurance process for protocol documentation established at Microsoft. It

uses novel methodologies and techniques in various dimensions: a test-driven approach applied in general

to the protocol documentation, a detailed methodology for applying this approach in a large-scale vendor

context, and the employment of advanced testing technology such as model-based testing with Spec

Explorer. It contributes to Microsoft’s intention to deliver high quality documentation to the community,

which enables third parties to create interoperable server products.

There are numerous instances of model based testing being successfully used in the industry, but to the

authors’ knowledge, none has the scale of the one presented here. The magnitude of the current effort is

expected to help model-based testing become main-stream in the software industry. The feasibility and

scalability of MBT is evident in the fact that the project has delivered “model to metal” test suites for over

75 protocols, and this number is growing. At the end of the project, around half of the 250 protocols in

scope will have been modeled, reflecting an investment of over 50 person years in model-based testing

application alone. In addition a substantial investment has been made in tool development, based on a

continuous feedback loop from the test suite development process into the Spec Explorer development

team. According to a preliminary statistical analysis, the application of MBT resulted in a 42% productivity

gain when compared with traditional test suites in a site where similar numbers of requirements have been

verified with each approach.

An aspect to note of this success story is that the application of MBT in the PAQP is confined to medium-

sized systems. Protocols can be considered to be, based on their complexity, somewhere between

embedded systems and general software systems. Typically, model programs developed in this project

consist of up to 1000 lines of C# code (while many are significantly smaller) with a dozen or more slices.

From the first prototype to successfully running MBT tests, test suite teams require around 1 to 2 person-

months. Slicing is essential even for these medium size systems, as the state space is too large for

exhaustive test generation. With the aid of slicing, there is no technical reason why MBT should not scale

to larger systems.

Ramping up engineers without a background in formal methods to do model-based testing has worked well

in the context of the PQAP. The experience indicates that while ramping is steep because of new and

unacquainted concepts, the final skills necessary to master the technology are not particularly challenging.

They may in fact be much more moderate than professional software engineering requires, indicating that

model-based testing can become a mainstream technology in testing.

Acknowledgements

This work would not have been possible without the tireless efforts of the Protocol Engineering Team, in

Redmond, Hyderabad, and Beijing, and with process and reviewing assistance from Robert V. Binder and

MVerify. Thanks also go to colleagues at Microsoft Research who contributed to create the Spec Explorer

technology: Colin Campbell, Yuri Gurevich, Lev Nachmanson, Wolfram Schulte, Nikolai Tillmann and

Margus Veanes. The authors would like to particularly thank The Technical Committee and especially

Harry Saal, as well as the EU Monitoring Trustee Neil Barrett and his staff, who have evaluated and

influenced this work.

References
[1] Microsoft. MSDN protocol documentation (http://msdn.microsoft.com/en-us/library/cc216514.aspx)

[2] Wolfgang Grieskamp. Multi-Paradigmatic Model-Based Testing. Invited talk in Klaus Havelund and

Manuel Nunez and Grigore Rosu and Burkhart Wolff, FATES/RV, LNCS 4262, 2006.

20

[3] Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Tillmann, and

Margus Veanes. Model-based testing of object-oriented reactive systems with Spec Explorer. Formal

Methods and Testing 2008, LNCS 4949, Springer, 2008, pp. 39-76.

[4] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Generating finite state

machines from abstract state machines. In Proceedings of ISSTA’02, volume 27 of Software

Engineering Notes, pages 112–122. ACM, 2002.

[5] Keith Stobie. Model based testing in practice at Microsoft. In Proceedings of the Workshop on Model

Based Testing (MBT 2004), volume 111 of Electronic Notes in Theoretical Computer Science.

Elsevier, 2004.

[6] Wolfgang Grieskamp, Nicolas Kicillof, Nikolai Tillmann. Action Machines: a Framework for

Encoding and Composing Partial Behaviors. International Journal of Software Engineering and

Knowledge Engineering 16(5): 705-726, 2006.

[7] Jonathan Jacky, Margus Veanes, Colin Campbell, Wolfram Schulte. Model-based software testing and

analysis with C#. Cambridge University Press, 2008.

[8] Wolfgang Grieskamp and Nicolas Kicillof. A schema language for coordinating construction and

composition of partial behaviors. In Proceedings of the 28th International Conference on Software

Engineering & Co-Located Workshops – 5th International Workshop on Scenarios and State Machines.

ACM, May 2006.

[9] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Boerger, editor, Specification and

Validation Methods, pages 9–36. Oxford University Press, 1995.

[10] Mark Utting and Bruno Legeard. Practical Model-Based Testing. Morgan-Kaufmann, 2007.

[11] Wolfgang Grieskamp, Dave MacDonald, Nicolas Kicillof, Alok Nandan, Keith Stobie, and Fred

Wurden. Model-Based Quality Assurance of Windows Protocol Documentation. In Proceedings of the

1
st
 IEEE International Conference on Software Testing (ICST 2008), Lillihammer, Norway, April 2008.

[12] C. Willcock, T. Deiss, S. Tobies, S. Keil, F. Engler, S. Schulz, An Introduction to TTCN-3, Wiley,

2005.

[13] A. Grinevich, A. Khoroshilov, V. Kuliamin, D. Markovtsev, A. Petrenko, V. Rubanov, “Formal

Methods in Industrial Software Standards Enforcement”. In I.Virbitskaite, A.Voronkov, eds.

Proceedings of PSI'2006, LNCS 4378, pp.456-466.

[14] M. B. Dwyer, G. S. Avrunin, J. C. Corbett: Patterns in Property Specifications for Finite-State

Verification. ICSE 1999: 411-420

[15] R. Alur, T. A. Henzinger, O. Kupferman, M. Y. Vardi: Alternating Refinement Relations.In

Proceedings of the Ninth International Conference on Concurrency Theory (CONCUR), LNCS 1466,

Springer, 1998.

[16] Linux verification center at IPSRAS, http://www.linuxtesting.org.

[17] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software, Concepts and

Tools, 17(3):103-120, 1996.

[18] J. Tretmans and E. Brinksma. TorX: Automated model based testing. In 1st European Conference on

Model Driven Software Engineering, pages 31–43, Nuremberg, Germany, December 2003.

[19] J. Fernandez, C. Jard, T. Jeron, and C. Viho: An experiment in automatic generation of test suites for

protocols with verification technology. Science of Computer Programming - Special Issue on

COST247, Verification and Validation Methods for Formal Descriptions, 29(1-2):123–146, 1997

[20] W. Grieskamp, N. Tillmann, and W. Schulte: XRT - Exploring Runtime for .NET - Architecture and

Applications. In SoftMC 2005: Workshop on Software Model Checking, Electronic Notes in Theoretical

Computer Science, July 2005.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kicillof:Nicolas.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tillmann:Nikolai.html
http://www.informatik.uni-trier.de/~ley/db/journals/ijseke/ijseke16.html#GrieskampKT06
http://www.informatik.uni-trier.de/~ley/db/journals/ijseke/ijseke16.html#GrieskampKT06

21

[21] S. Khurshid, C. S. Pasareanu, and W. Visser: Generalized symbolic execution for model checking and

testing. In Proc. 9th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 553–568, April 2003.

[22] Antti Huima: Implementing Conformiq Qtronic. In Testing of Software and Communicating Systems

(TestCom/FATES 2007), LNCS 4581, Springer 2007.

[23] A. Grinevich, A. Khoroshilov, V. Kuliamin, D. Markovtsev, A. Petrenko, V. Rubanov, “Formal

Methods in Industrial Software Standards Enforcement”, in I.Virbitskaite, A.Voronkov, eds.

Proceedings of PSI'2006, LNCS 4378, pp.456-466.

