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Computational magnetogasdynamics (MGD) represents one of the most promising interdisciplinary
computational technologies for aerospace design. However, the numerical techniques developed for the
MGD equations must be able to solve correctly nonlinear hyperbolic differential equation system. In this
work we present a modification of the original Harten–Yee scheme by incorporating a new sonic fix
for the acoustic causality points using the finite volume technique. The proposed technique is used to
simulate the coplanar MGD Riemann problem where results using the new sonic fix are compared with
those given by the traditional Harten–Yee scheme. The obtained 2-D numerical results correctly satisfy
the 1-D numerical solutions, and the oscillations present using the Harten–Yee traditional scheme, are
reduced.

© 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

The interaction between the flow of an electrically conduct-
ing medium and a magnetic field is a phenomenon with applica-
tions in aerospace, astrophysics, geophysics, interstellar gas masses
dynamics, etc. [14,15,31]. Recent innovative aerodynamic designs
modify the high-speed flow of an electrically conducting fluid
by aerodynamic and electromagnetic field interactions [33]. The
same phenomenon is used in aerospace application such as electric
propulsion. This is presently being used for satellite orbit raising
and station-keeping maneuvers. However, there are developments
aimed to send electrically propelled spaceships to the Moon and
Mars [6,13]. Electromagnetic plasma propulsion systems offer sig-
nificantly higher exhaust velocities than chemical propulsion sys-
tems. The electric propulsion can be defined as the acceleration of
gases for propulsion by electromagnetic means; according to the
propulsive effects underlying physics, the electric thrusters can be
grouped in three categories: electrothermal, electrostatic and elec-
tromagnetic.

Simulations of the physical processes occurring in the high den-
sity plasma that is ejected from the solid propellant surface in a
small laser ablation thruster, are described in [25] using MACH2
code and [24] presents a one-dimensional hydrodynamic model
of the atoms, electrons and ions used to solve the dynamics of
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a stationary plasma thruster. Argentine researchers are developing
theoretical models and scientific software to solve the magneto-
gasdynamics (MGD) equations with the objective of applying it to
a plasma thruster under construction in Argentina [4,9].

Magnetogasdynamics is an interdisciplinary area requiring the
interplay of gasdynamics, electromagnetic field theory, ionized gas
physics, chemical physics, and quantum physics [16,34,35]. A MGD
model is generally based on the assumption that plasma can be
regarded as a continuum and thus may be characterized by rel-
atively few macroscopic quantities. A revision about the physical
models used in aerospace applications is given in Ref. [7]. The
MGD system is described by means of continuity, momentum, en-
ergy, and state equations. A full model (full magnetofluid dynamics
equations—FMFD) for a flow affected by electromagnetic forces in-
cludes the full set of Maxwell’s equations coupled with the Navier–
Stokes equations. In the “simplified magnetofluid dynamics equa-
tions (SMFD)” or “magnetohydrodynamic approximation (MHD)”,
the Maxwell equations are replaced by the magnetic induction
equation, which is still coupled to the Navier–Stokes equations. The
real MGD equations constitute a parabolic–hyperbolic partial dif-
ferential system. The parabolic part represents the non-ideal effects
and it includes transport effects such as viscous and resistive dif-
fusion and heat transfer. The hyperbolic or ideal part of the MGD
equations presents non-convex singularities and the wave structure
is more complicated than for the Euler equations [18]. The nonlin-
ear coupling of these waves plays an important role in determining
physical phenomenon and in the numerical solution [36].

The ideal MGD numerical simulations are a very important
tool, by reducing expensive, and sometimes unviable, experimental
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Nomenclature

ρ non-dimensional density
p non-dimensional pressure
u non-dimensional velocity vector
B non-dimensional magnetic field vector
e total non-dimensional energy density
γ specific heats ratio
W vector of primitive variables
U vector of conservative variables
[Ac] Jacobian of flux function in terms of conservative vari-

ables in the x direction
i, j mesh point locations in the x, y directions

m wave index
n time level
�t time step
F , G vector of numerical flux in the x, y directions
F , G vector of physical flux in the x, y directions
r right eigenvectors of Jacobian fluxes
l left eigenvector of Jacobian fluxes
Φ dissipation function
ψ entropy correction function
α wave strength
parametric studies. However, the numerical simulations always are
limited by the ability to analyze and to solve accurately the hyper-
bolic nonlinear differential equation system.

To solve the ideal MGD equation system is convenient to use
a conservative form. Then it is possible to implement numerical
schemes for conservative equations which are also conservative
and allow obtaining the correct jump conditions at discontinuities
and shocks [20,36]. The utilization of the numerical conservative
scheme is desirable because ensures that mass, momentum, and
energy are indeed conserved. Several schemes has been proposed
and implemented to solve the ideal MGD equations [1,26,38]; in
this work, the Harten–Yee TVD (total variation diminishing) tech-
nique is used [40]. It has proven to be accurate and reliable for
the simulation of supersonic flows of gases [10,12,41]. This tech-
nique is implemented here, with a modification, to numerically
solve ideal MGD flows.

Among the difficulties to reach accurate numerical solutions for
the ideal MGD equations, are the acoustic causality points where
a new wave structure can be produced by the nonlinear wave
interaction [5,19]. In ideal MGD the sonic points and the points
where non-convexity appears, are points of acoustic causality [32].
In theses points it is necessary to apply a corrector entropy scheme
introducing the necessary artificial viscosity.

In this paper we present a modification of the original Harten–
Yee TVD scheme by incorporating a new sonic fix for the acoustic
causality points. The proposed sonic fix is implemented by means
of software specifically developed to solve the transient, two-
dimensional ideal MGD equations. Finally, this software is used to
simulate the Brio and Wu coplanar MGD Riemann problem [10]
where results using the new sonic fix are compared with those
given by the traditional Harten–Yee scheme.

2. Ideal magnetogasdynamics equations

The ideal MGD equations accurately describe the macroscopic
dynamics of perfectly conducting plasma. This ideal MGD system
expresses conservation of mass, momentum, energy, and magnetic
flux and conforms a nonlinear conservative system of eight partial
differential equations.

The equations of non-dimensional ideal one-fluid MGD in con-
servative form are given by [35]

∂

∂t

⎡
⎢⎣

ρ
ρu
B
e

⎤
⎥⎦+ ∇ ·

⎡
⎢⎢⎢⎣

ρu

ρuu − B B + I
(

p + 1
2 B2

)
u B − Bu(

e + p + 1
2 B2

)
u − (B · u)B

⎤
⎥⎥⎥⎦= 0 (1)

where ρ , u, B , e and p represent the mass density, the velocity
vector, the magnetic field vector, the total energy and the pressure.
The ninth equation that closes the system is the equation of state;
for plasma that obeys the perfect gas equation the specific internal
energy depends on temperature only. Substitution of the perfect
gas state equation in the expression for the total energy produces

e = p

γ − 1
+ ρ

u · u

2
+ B · B

2
(2)

γ is the ratio between the specific heats.
By introducing a Cartesian coordinate system Eq. (1) can be

written for two dimensions as

∂U

∂t
+ ∂ F

∂x
+ ∂G

∂ y
= 0 (3)

where the physical flux vectors are

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρux

ρu2
x − B2

x + p + 1
2 B2

ρuxu y − Bx B y

ρuxuz − Bx Bz

0

ux B y − u y Bx

ux Bz − uz Bx(
e + p + 1

2 B2
)
ux − (B · u)Bx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu y

ρuxu y − Bx B y

ρu2
y − B2

y + p + 1
2 B2

ρuzu y − Bz B y

u y Bx − B yux

0

u y Bz − B yuz(
e + p + 1

2 B2
)
u y − (B · u)B y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

and the vector of conservative variables U is

U = (ρ,ρux,ρu y,ρuz, Bx, B y, Bz, e)T (5)

Eq. (3) can be written in the quasi-linear form as

∂U

∂t
+ [Ac]∂U

∂x
+ [Bc]∂U

∂ y
= 0 (6)

where [Ac], [Bc] are the Jacobian matrices in terms of conservative
variables. The evaluation of the eigenvalues and the eigenvectors is
simpler using the conservative variables:

W = (ρ, ux, u y, uz, Bx, B y, Bz, p)T (7)

In the system given by Eq. (6) each Jacobian matrix has a null
eigenvalue. To overcome this restriction the eight-wave technique
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introduced by Powell [28] is used in this work and the eigenvectors
are normalized according to Zachary et al. [42] and Roe and Balsara
[29]. The expressions resulting for the eigenvalues and eigenvectors
are:

• entropy wave λ1 = ux

re =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
0
0
0
0
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0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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1
0
0
0
0
0
0

− 1
c2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

• Alfvén waves λ2, λ3 = ux ± |Bx|√
ρ

r±
a = 1√

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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0

0

−βz
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0

±√
ρβz

∓√
ρβy

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

l±a = 1√
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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0

0

−βz
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0
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ρ
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

• fast magneto-acoustic waves

λ4, λ5 = ux ±
√

1
2ρ

[
γ p + B · B +

√
(γ p + B · B)2 − 4γ pB2

x
]

r±
f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρα f
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0
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√

ρcβy
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√

ρcβz

α f γ p
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l±f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

±α f c f

2c2

∓ αs
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0
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2
√

ρc βy

∓ αs
2
√

ρc βz

α f

2ρc2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

• slow magneto-acoustic waves

λ6, λ7 = ux ±
√

1
2ρ

[
γ p + B · B −

√
(γ p + B · B)2 − 4γ pB2

x
]

r±
s =
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l±s =
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0
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0
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2
√
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α f
2
√

ρc βz

αs
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

• magnetic flux wave λ8 = ux
rd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
1
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ld =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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0
0
0
0
1
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

where

c =
√

γ
p

ρ
c2

f ,s = 1

2

(
γ p + B2

ρ
±
√(

γ p + B2

ρ

)2

− 4
γ pB2

x

ρ2

)

c A = |Bx|√
ρ

(13)

α2
f = c2 − c2

s

c2
f − c2

s
α2

s = c2
f − c2

c2
f − c2

s

sgn(x) =
{

1 if x � 0
−1 otherwise

(14)

βy =

⎧⎪⎪⎨
⎪⎪⎩

B y

B⊥
B⊥ �= 0

1√
2

B⊥ = 0
βz =

⎧⎪⎪⎨
⎪⎪⎩

Bz

B⊥
B⊥ �= 0

1√
2

B⊥ = 0

β⊥ =
√

B2
y + B2

z (15)

The characteristic velocity λi defines a characteristic field.
Sometimes one also speaks of the R i -field, that is the characteris-
tic field defined by the right eigenvectors. A λi -characteristic field
is said to be linearly degenerate if

∇λi(U ) · ri(U ) = 0 ∀U ∈ 
m (16)

A λi-characteristic field is said to be genuinely nonlinear if

∇λi(U ) · ri(U ) �= 0 ∀U ∈ 
m (17)

The Alfvén waves, the entropy wave and the magnetic flux
wave, are linearly degenerate fields; hence the wave velocity is
constant throughout the wave. The slow and fast characteristic
fields are genuinely nonlinear. However, these fields under partic-
ular relations between, the magnetic field, the sound velocity and
the Alfvén velocity; are non-convex characteristic fields [32].

3. Numerical method

This section presents the technique used to obtain the numeri-
cal solution of the PDE system described by Eq. (1). A finite volume
scheme has been implemented using a structured mesh. An ap-
proximate Riemann solver is utilized to calculate the fluxes with
an explicit finite-differences scheme for the time evolution.

The numerical fluxes are evaluated by means of the Harten–Yee
TVD technique, which correctly allows the capturing of discon-
tinuities, simultaneously achieving a second-order approach. This
scheme was developed by gasdynamics equations [40] and latter
was implemented for MGD equations [38].

In the context of shock-capturing MHD codes, three approaches
became rather popular to handle the ∇ · B = 0 constraint. All three
approaches can be regarded as some modification of, or addition
to a base scheme. The base scheme can be, for example, Harten’s
TVD [17]. The three approaches differ in how the base scheme is
modified regarding the induction equation. The first approach is
the eight-wave formulation of the MHD equations suggested by
Powell [28], the second approach was named constrained trans-
port (CT) by Evans and Hawley [11] and the third approach is
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Fig. 1. Five adjacent cells of the two-dimensional domain.

the projection scheme, which, in the context of MHD, was first
suggested by Brackbill and Barnes [2]. In this paper we use the
first approach. Tóth in [37] compared seven schemes to maintain
∇ · B = 0 constraint numerically and showed that, the average er-
ror is the smallest for the eight-wave and projection schemes in
the solution of 2.5 D MGD shock tube test. Also showed the eight-
wave is found to behave better in terms of stability and accuracy
than the discretization of the usual conservative form.

The explicit TVD-finite volume scheme can be expressed as, see
Fig. 1,

U n+1
i j = U n

i j − �t

[ F n
i+ 1

2 ; j
− F n

i− 1
2 ; j

�x
+

Gn
i; j+ 1

2
− Gn

i; j− 1
2

�y

]
(18)

where n, �t , (i, j) are the time level, the time step, and the mesh
point locations in the x, y directions. The function that determines
the second-order numerical flux F̄ is defined as [38]

F n
i+ 1

2 ; j
= 1

2

(
F n

i+1 + F n
i +

(∑
m

rm
i+ 1

2
Φm

i+ 1
2

)(n)
)

(19)

where m, rm , Φ are the wave index, the right eigenvectors of Ja-
cobian matrix and the dissipation function. The latter is defined
as

Φm
i+ 1

2
= (

gm
i+1 + gm

i

)− ψ
(
λm

i+ 1
2

+ γ m
i+ 1

2

)
αm

i+ 1
2

(20)

Here g is the limiter function, ψ the entropy correction function
and α the wave strength. In this work the limiter function used is
one of minmod type,

gm
i = sgn

(
λm

i+ 1
2

)
max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

min

⎡
⎢⎣
σm

i+ 1
2
|αm

i− 1
2
|

σm
i− 1

2

sgn(λm
i+1/2)

2 αm
i− 1

2

⎤
⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

σm
i+ 1

2
= σ

(
λm

i+ 1
2

)
(21)

γ m
i+ 1

2
=

⎧⎪⎪⎨
⎪⎪⎩

1

αm
i+ 1

2

(
gm

i+1 − gm
i

)
αm

i+ 1
2

�= 0

0 αm
1 = 0

(22)
i+ 2
For time-accurate calculations in explicit numerical algorithms

σ(z) = 1

2

[
ψ(z) − �t

�x
z2
]

(23)

The wave strength of the m-th wave is calculated as

αm = lm
p · (W i+1 − W i) (24)

An approximate Roe-type Riemann solver, as indicated in
Eqs. (19)–(24), produces only shock waves so that a rarefaction
shock wave replaces a smooth rarefaction wave. A rarefaction
shock wave violates the entropy condition generating a non-
physical solution. To overcome this intrinsic problem of the Roe
schemes is introduced a “sonic entropy fix” that smoothes out
eigenvalues in the vicinity of the sonic point [36]. Harten [17] sug-
gested an entropy fix for Roe’s method, which has widespread use
for gasdynamics equations:

ψ(z) =
⎧⎨
⎩

|z| |z| � δ

1

2δ

(
z2 + δ2) |z| < δ

(25)

The function ψ in Eq. (25) is an entropy correction to z, whereas
δ is generally a small and constant value that needs to be cali-
brated for each problem. A proper choice of the entropy parameter
δ for higher Mach number flows not only helps in preventing non-
physical solutions but can act, in some sense, as a control in the
convergence rate and in the sharpness of shocks [41].

4. Results and discussion

To assess accuracy and reliability in computational simulations
at first stage of research, after development and implementation
the code was subjected to several tests with emphasis in the ver-
ification of the results. The verification and validation concepts
(V&V) are consistent with the American Institute of Aeronautics
and Astronautics (AIAA) definitions, i.e., verification as the process
of determining that a model implementation accurately represents
the developer’s conceptual description of the model and the solu-
tion to the model, and Validation as the process of determining the
degree to which a model is an accurate representation of the real
world from the perspective of the intended uses of the model [27].

The code was first evaluated through solving the 1-D MGD
case [8]. Then, the software ability to solve 2-D gasdynamics prob-
lems was evaluated, and the results were found to agree with
the analytical solution [22]. Finally, the Riemann problem intro-
duced by Brio and Wu was considered as a “benchmark” [3] and
the correct behavior of the software in 2-D magnetogasdynamics
problems was verified. The proposed MGD Riemann problem has
not analytical solutions but numerical solutions were obtained by
other researches [3,30,38].

Numerical results of the MGD Riemann problem using differ-
ent alternatives are presented in this section. For MGD flows, this
benchmark is called coplanar Riemann problem. This problem ini-
tially has a discontinuity that separates two constant states, a left-
ward one and a rightward one. These states are defined by the
corresponding initials conditions. With the purpose of verifying the
correct operation of the 2-D code being presented here, the mesh
is rotated with respect to the longitudinal axis of the flow. The
code is thus forced to simulate a 2-D flow.

The initial conditions used in the simulation are:

Wl = (1.0,0.0,0.0,0.0,0.75,1.0,0.0,1.0)T

Wr = (0.125,0.0,0.0,0.0,0.75,−1.0,0.0,0.1)T (26)

The traditional Harten–Yee scheme, that was developed for gas-
dynamics equations, was applied to Eq. (1) using the sonic fix,
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(a)

(b)

(c)

Fig. 2. (a) Density for 2-D MGD Riemann problem. (b) Normal velocity for 2-D MGD Riemann problem. (c) Transversal magnetic field for 2-D MGD Riemann problem. Solid
line: benchmark 1D, square: Harten–Yee technique with δ = 1E−3, right triangle: Harten–Yee and Van Leer technique.
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Fig. 3. Normal velocity for 2-D MGD Riemann problem. Solid line: benchmark 1D, square and right triangle: H–Y technique with average δ for different times.
given by Eq. (25). This sonic fix acts only on sonic point, but it
does not act on non-convex point; because the gasdynamics equa-
tions do not present non-convex points. Fig. 2 shows the results
by the Brio and Wu benchmark applying the Harten–Yee scheme
with δ = 0.001. It stands from the figure that large oscillations oc-
cur around the compound wave; these oscillations destabilize the
numerical simulations and prevent to find solutions for relatively
long times.

To obtain “proper” numerical results for the Brio and Wu 2-D
MGD problem, the entropy correction of Harten scheme, Eq. (25),
needs to be calibrated with relatively big values of δ [23]. For gas-
dynamics hypersonic flows, a constant or a variable δ was found
to be insufficient, but a variable δ depending on the spectral ra-
dius of the Jacobian matrices is very helpful in terms of stability
and convergence rate [41]. Numerical experiments show that the
technique of the spectral radius of the Jacobian matrices does not
provide good results on the Brio and Wu 2-D MGD problem [3].
The use of a constant value, for 2-D simulations, equal to the
average in absolute value of the eigenvalues of the Jacobian matri-
ces shows satisfactory results for short time [21,23], however this
technique forces the method to introduce too much numerical vis-
cosity around a big vicinity of the sonic points. As a result of this
scheme the solutions are not particularly satisfactory for long com-
putation time, especially in capturing the fast shock wave moving
to the right (see Fig. 3).

In order to obtain a method that does not need δ calibration
for each MGD problem, it is convenient to improve the Van Leer
technique [39], widely applied for gases.

δGD = max
[∣∣λm

i+ 1
2

− λm
i− 1

2

∣∣,0
]

(27)

δMGD
k =

⎧⎨
⎩

max
[∣∣λm

i+ 1
2

− λm
i− 1

2

∣∣] if λm
i+ 1

2
cuts across zero

min
∣∣λm

i+ 1
2

∣∣ otherwise

with k = 1, . . . ,8 (28)

As an alternative we have implemented the traditional Harten–
Yee technique only in sonic points, but δ defined by Eq. (28).
The results are shown in Fig. 2; we can observe that the results
have more accuracy and the oscillations have been reduced. Ta-
ble 1 shows, for two time values, the eigenvalues that cross over
Table 1
Numerical values of δ for two different times and the eigenvalues that cross over
zero.

Wave m max[|λm
i+ 1

2
− λm

i− 1
2
|] Zero-crossings

Case Case

1D x 2D x 2D y 1D x 2D x 2D y

t = 0.03077
1 and 8 0.262 0.341 0.104 Yes Yes Yes
2 0.147 0.275 0.194 No No Yes
3 0.512 0.677 0.090 No Yes No
4 0.187 0.316 0.223 No No No
5 0.684 0.746 0.079 No Yes No
6 0.348 0.438 0.105 No No Yes
7 0.176 0.244 0.103 No Yes No

t = 0.08081
1 and 8 0.259 0.356 0.103 Yes Yes Yes
2 0.145 0.527 0.192 No No Yes
3 0.491 0.700 0.109 No Yes No
4 0.190 0.600 0.237 No No No
5 0.656 0.762 0.119 No Yes No
6 0.343 0.456 0.104 No No Yes
7 0.175 0.342 0.103 No Yes No

Fig. 4. Comparison between the new sonic fix and Harten’s original (dotted line:
original sonic fix, long dash line: proposed sonic fix).
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(a)

(b)

(c)

Fig. 5. (a) Density for 2-D MGD Riemann problem. (b) Normal velocity for 2-D MGD Riemann problem. (c) Transversal magnetic field for 2-D MGD Riemann problem. Solid
line: benchmark 1D, square: new technique implemented in all acoustic points, right triangle: new technique implemented only in non-convex points.
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Table 2
Numerical errors in the normal magnetic field.

H–Y technique with δ = 1E−3 New function, Eq. (29),
and δ by Eq. (28)

εmax 0.0743 0.016
εave 0.00396 0.00359

zero and the values of δ, Eq. (28), when the modified Van Leer’s
technique is used for the magnetogasdynamic problem of Brio and
Wu [3]. It can also been observed that in the two-dimensional
case, more zero crossings appear than for the one-dimensional
case. This situation is particularly important in the compound wave
(7-th). To include the treatment of non-convex points in the nu-
merical method, we have implemented Eq. (25) together with δ as
given by Eq. (28) for all acoustic points; however, we found con-
vergence difficulties.

For increasing the accuracy obtained with the previous schemes
and to avoid the spurious oscillations, a new entropy correction
function is proposed so that greater numerical viscosity only re-
stricted to the proximity of the acoustic points can be achieved,

ψ(z) =
⎧⎨
⎩

|z| others

z2

δ2
+ δ − 2

δ
|z| + 1 acoustic points

(29)

Although the correction is applied not only in sonic points but
also non-convex points, we keep the terminology “sonic fix” for the
entropy correction function, to be widely used in the simulation of
gas flows.

A comparison between Harten’s original sonic entropy fix,
Eq. (25), and the new proposed fix, Eq. (20), is shown in Fig. 4.
This new function, Eq. (29), is a continuously differentiable ap-
proximation to |z|, fulfilling

ψ(δ)δ− = ψ(δ)δ+

ψ(0)δ− = 1

dψ(z)δ−

dz

∣∣∣∣
z=δ

= dψ(z)δ+

dz

∣∣∣∣
z=δ

(30)

Firstly this new function was implemented only for non-convex
points, whereas for sonic points Eq. (25) was used; for both types
of points δ was evaluated according to Eq. (28). Under these con-
ditions we can reach convergence and the results are presented in
Fig. 5, although the oscillations hardly show a slight reduction.

Finally we have applied in all acoustic points the new func-
tion given by Eq. (29) together with δ calculated by Eq. (28). The
results are shown in Fig. 5. We stress that the oscillations were
significantly reduced around the compound wave. In the problem
of Brio and Wu 2-D MGD theoretical solution for the normal mag-
netic field is a constant value equal to 0.75, while the numerical
solution are variations around 0.75. For a quantitative comparison
of the various schemes handling the ∇ · B = 0 constraint is usual
to calculate the numerical error in the normal magnetic field [37].
The maximum relative error of a variable u on an N × M mesh, is
defined as

εmax = max[|uAprx
i, j − uTheor

i, j |]
|uTheor

(i, j)max
| (31)

and the average relative error,

εave =
∑N

i=1
∑M

j=1 |uAprx
i, j − uTheor

i, j |∑N
i=1

∑M
j=1 |uTheor

i, j | (32)

where Aprx corresponds to the numerical solution and Theor to
an analytic solution or absence of a high resolution numerical
(a)

(b)

(c)

Fig. 6. (a) Density in 2-D MGD Riemann problem. (b) Component x of the velocity
vector for the 2-D MGD Riemann problem. (c) Component y of the magnetic field
vector for the 2-D MGD Riemann problem.

solution. Table 2 shows the numerical errors in the normal mag-
netic field with the techniques presented previously; the scheme
presented in this work satisfies more accurately the condition
∇ · B = 0 that the traditional Harten–Yee scheme. Also highlights
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that the error introduced by the new scheme is significantly less
than that given in Ref. [37].

At the present stage of development, the entropy parameter
seems still highly geometric and problem dependent. A universal
method is yet to be discovered. However, we note that the joint
implementation of Eqs. (28) and (29) has proven to be an effective
method for the magnetogasdynamic Riemann problem.

Fig. 6 shows the density, the x component of the velocity vector
and the y component of the magnetic field vector obtained with
the joint implementation of Eqs. (28) and (29). The waves present
in MGD flows are visible in the picture.

5. Conclusion

The modification of Harten and Yee’s original method presented
in this work, incorporating a new sonic fix, has proven reliable
through verification by using a very demanding benchmark (2-D
magnetogasdynamic shock tube constitutes a well known test case
to evaluate the behavior of numerical codes).

The obtained 2-D numerical results correctly satisfy the 1-D nu-
merical solutions already published. The oscillations, present when
using Harten–Yee traditional scheme, are notably reduced and the
new sonic fix is applied in sonic and non-convex points. This new
technique has two important advantages:

– The method does not need particular calibration.
– The method increases the numerical viscosity in the proximity

of the acoustic points, only.

The next objective of this research is to develop a 3-D, non-
steady magnetogasdynamics numerical code using non-structured
meshes and finite volumes. In a near future, the objective is to
achieve the capability of simulating flows for plasma propulsion in
complex geometries.
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