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a b s t r a c t

Many existing methods for functional regression are based on the minimization of an L2
norm of the residuals and are therefore sensitive to atypical observations, whichmay affect
the predictive power and/or the smoothness of the resulting estimate. A robust version of
a spline-based estimate is presented, which has the form of an MM estimate, where the
L2 loss is replaced by a bounded loss function. The estimate can be computed by a fast
iterative algorithm. The proposed approach is compared, with favorable results, to the one
based on L2 and to both classical and robust Partial Least Squares through an example with
high-dimensional real data and a simulation study.1

© 2011 Elsevier B.V. All rights reserved.

1. Introduction1

Q1

We consider the analysis of data described by a linear functional regression model. That is, our data are independent2

identically distributed (i.i.d.) pairs (Xi, yi), i = 1, . . . , n, where yi ∈ R and Xi (.) are random functions defined on an interval

Q2

3

I , such that4

yi = α0 +


I
α(t)Xi(t)dt + ei, i = 1, . . . , n, (1)5

where the number α0 and the function α(t) are unknown, and {ei} are i.i.d. random errors independent of {Xi}. In practice6

one actually observes at given points t1 < · · · < tp in I the values xij = Xi

tj

. Henceforth we shall denote X = [xij] ∈ Rn×p

7

and y = [yi] ∈ Rn;8

These data sets are often high-dimensional, in many cases with p ≫ n. The functional framework allows to profit9

from qualitative assumptions like smoothness of underlying curves. This type of regression model was first considered in10

Ramsay and Dalzell (1991). Ramsay and Silverman (2002, 2005) and Ferraty and Vieu (2006), present several case studies11

demonstrating the advantages of these models. Among recent applications, Goldsmith et al. (2010) present an application12

to diffusion tensor imaging (DTI) tractography, and Delaigle et al. (2009) deal with ameteorological application. Cardot et al.13

(2005, 2006) present the theory and applications of quantile regression for functional data.14

One of the most important approaches for the estimation of α0 and α is regularization through a penalized least squares15

approach after expanding in some basis such as splines: see Ramsay and Dalzell (1991), Eilers and Marx (1996), Marx16

and Eilers (1999), Cardot et al. (2003). Crambes et al. (2009) proposed a smoothing splines approach prolonging previous17

work from Cardot et al. (2007). They show that the rates of convergence of their estimators are optimal in the sense

∗ Correspondence to: Departamento de Matemáticas, Facultad de Ciencias Exactas, C.C. 172, La Plata 1900, Argentina.
E-mail address: rmaronna@retina.ar (R.A. Maronna).

1 Matlab code for the proposed procedure is provided as supplemental material.
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that they are minimax over large classes of distributions of Xi and of functions α. Their approach boils down to an easy 1

to implement procedure. Recently Wang et al. (2012) proposed a spline-based nonparametric transformation model for 2

functional regression. 3

Most approaches to functional regression are based on minimizing some L2 norm, and are therefore sensitive to outliers, 4

which calls for the development of robust methods. There are numerous articles on robust methods for functional data. In 5

particular, Crambes et al. (2008) propose a robust estimator for nonparametricmodels, and Gervini (2010) deals with robustQ3 6

regression between two stochastic processes; But we are not aware of any robust approach for model (1). The purpose of 7

this article is to propose a robust version of the estimator proposed by Crambes et al. (2009), based on the approach of MM 8

estimation (Yohai, 1987). 9

Section 2 describes the proposed estimator, the advantages of which are demonstrated in Sections 3 and 4 through their 10

performances with real and simulated data sets, respectively. The computing times of the different estimators are compared 11

in Section 5. Finally Section 6 contains the conclusions of the study. 12

2. The proposed estimator 13

We first describe the estimator proposed by Crambes et al. (2009). LetX = [xij] andy = [yi] be X and y centered by their 14

averages. The estimator is the functionα(t) in the Sobolev spaceWm,2 (I) (see e.g. Adams and Fournier, 2003) such that 15

1
n

n
i=1

yi − 1
p

p
j=1

α tjxij2

+ λ


1
p

p
j=1

πα tj2 +


I
α(m) (t)2 dt


= min (2) 16

where in general α(m)(t) denotes the m-th derivative of α(t), λ > 0 is a penalty parameter and 17

πα(t) =

m
l=1

γb,lt l−1
= argmin

π

p
j=1

α tj− π

tj
2

, 18

whereπ ranges over the polynomials in t of degreem−1. Theπα terms ensure the existence of a unique solution. The terms 19

with

Iα(m)(t)2dt penalize the solutions’

∧
roughness. 20

Theproblem (2) has an explicit solution. Letb(t) =

b1(t), . . . , bp(t)

′ be a functional basis of the spaceNSm(t1, . . . , tp)of 21

natural splines of order 2m on I with knots t1, . . . , tp. CallB the p×pmatrixwith elements bi

tj

. PutU =


I b

(m)(t)b(m)(t)′dt 22

and let Pm be the p× p projection matrix projecting Rp onto them-dimensional linear space of all (discretized) polynomials 23

of degree m − 1; i.e., Pm = GG+, where G has elements gjk = tkj , j = 1, . . . , p, k = 0, . . . ,m − 1, and G+ stands for its 24

pseudo-inverse. Let A∗
m = B+′UB+ and let 25

Am = Pm + pA∗

m, (3) 26

Then Crambes et al. (2009) show thatα ∈ NSm(t1, . . . , tp) and that the solution for the vectorα =
α (t1) , . . . ,α tp′ is 27

α = argmin
a∈Rp


1
n

n
i=1

yi − p−1x′

ia
2

+ p−1λa′Ama


, (4) 28

wherex′

i is the i-th row ofX. 29

As a robustification of the former approach, we propose to find a functionα and a numberα0 such that 30

σ 2
ini

n
i=1

ρ


yi −α0 − p−1

p
j=1

xijα tj
σini

+ λ


1
p

p
j=1

πα tj2 +


I
α(m)(t)2dt


= min, (5) 31

where ρ is a bounded ‘‘ρ-function’’ in the sense of (Maronna et al., 2006), i.e., ρ(t) is a nondecreasing function of |t| with 32

supt ρ(t) = 1; and σini is a residual M-estimator of scale from an initial estimator (to be described later). The factor σ 2
ini 33

before the summation is employed to make the estimator coincide with the classic one when ρ (t) = t2. 34

It is not difficult to show that again α ∈ NSm(t1, . . . , tp), since {πα tj , j = 1, . . . , p} depends only on the values 35

of α at t1, . . . , tp, and it is well-known that given these values, the function α minimizing the integral in (5) belongs to 36

NSm(t1, . . . , tp). Letα1 =
α (t1) , . . . ,α tp′ and xi =


xi1, . . . , xip

′. Then it follows that (5) implies 37

σ 2
ini

n
i=1

ρ


yi −α0 − p−1x′

iα1σini


+ p−1λα′

1Amα1 = min . (6) 38
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This situation can be reduced to an already studied one. Let C be a square root ofAm, i.e. a p×pmatrix such thatAm = C′C,1

and put Z = XC−1. Letβ =
β0,β1


withβ1 = p−1Cα1, and λ′

= pλ. Thenβ satisfies2

σ 2
ini

n
i=1

ρ


yi −β0 − z′

i
β1σini


+ λ′

β1
2 = min, (7)3

that is,β is an MM ridge estimator, proposed by Maronna (2010). Q44

We now define the initial estimator βini =
βini,0,βini,1


needed for (7). For r = (r1, . . . , rn)′ let S (r) be a scale M5

estimator defined as solution of6

1
n

n
i=1

ρ0


ri

S (r)


= δ (8)7

whereρ0 is a boundedρ-function and δ ∈ (0, 1) controls the estimator’s breakdownpoint. Thenβini is defined as a penalized8

regression S estimator, defined as follows. For β = (β0, β1) put ri (β) = yi − β0 − z′

iβ1. Then9

βini = argmin
β


nS (r (β)) + λ′

∥β1∥
2 , (9)10

andσini = cS

r
βini


where c is a constant that controls the scale’s consistency. An S estimate similar to (9) is employed11

by Tharmaratnam et al. (2010) for nonparametric regression.12

The MM estimator is computed by an iterative algorithm starting fromβini, such that the criterion (7) decreases at each13

iteration. Details on the computation of the MM and S estimators are given in Maronna (2010). We choose the functions ρ14

and ρ0 in the bisquare family, i.e., they are of the form ρ(r) = ρbis (r/c), where c is some positive constant and15

ρbis(r) = 1 −

1 − r2

3
I (|r| ≤ 1) ,16

where I () stands for the indicator function; the choice of c is described in Maronna (2010). We takem = 2 (cubic splines).17

The matrix C is theoretically positive definite, but we have found that for p > n it may be numerically ill-conditioned.18

To overcome this difficulty, let γmin and γmax be the smallest and largest eigenvalues of C, and δ a small tolerance (we take19

δ = 10−6). Then if γmin < δγmax we replace C by C + δγmaxIp.20

The degree of ‘‘shrinking’’ is measured by the ‘‘equivalent degrees of freedom’’ (edf); see e.g. (Friedman et al., 2009). Call21

y andy the vectors of observed and fitted values, respectively. Thenwe canwritey = Hy, where the ‘‘hat matrix’’H depends22

on the data. The edf are defined as the trace of H; see (Maronna, 2010) for details.23

The minimization is performed over a set of Nλ penalty values: λ′
∈ Λ = {λ1, . . . , λNλ

}. Crambes et al. (2009) employ24

generalized cross-validation (GCV), taking advantage of the fact that for linear estimators based on the L2 norm, the leave-25

one-out prediction errors can be computed explicitly. An overall GCV estimator of the prediction error for each λ is obtained26

as the average of the squared prediction errors. For our MM estimator, approximate prediction errors can be obtained27

through a Taylor expansion, given in Eq. (20) of (Maronna, 2010). An overall error estimator is obtained as a robust scale28

estimator of the squared prediction errors; the complete method employed to select λ is described in Sections 2.4 and 2.529

of (Maronna, 2010).30

For both the L2 and the MM estimator we have observed in both real and simulated data that the estimated α is rather31

rough. At the same time it was observed the curve of prediction error as a function of λ to be very flat around its minimum.32

This fact leads to the thought that λ – and hence the smoothness of α –may be increased above its ‘‘optimum’’ valuewithout33

serious damage to prediction. To this end we use an approach similar to the ‘‘one standard deviation rule’’ (Friedman et al.,34

2009, pp. 21 and 218), implemented as follows.35

For each trial value of λ ∈ Λ call u (λ) = (u1(λ), . . . , un (λ))′ the vector of cross-validation prediction errors. For the L236

estimator put37

M(λ) = avei{ui(λ)2}, s(λ) =
1

√
n
sdi{ui(λ)2}, (10)38

where ave and sd stand respectively for the average and the sample standard deviation, so that s(λ) is the estimated sd of39

M(λ). Let λopt = argminλ∈Λ M(λ) and s0 = s

λopt


. For a given CCV we takeλ = max{λ ∈ Λ : M(λ) ≤ M


λopt


+ CCVs0}.40

We tried CCV = 0, 1 and 2.41

For the robust estimator we use a robust version of (10), replacing the average of squares by a robust and efficient scale,42

namely43

M(λ) = Si{ui(λ)}2, s(λ) =
1

√
n
S{ui(λ)2 − M(λ)},44

where S is a τ -scale with constant 5 (Yohai and Zamar, 1988), which may be considered as a robust mean squared error. Q545
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Fig. 1. Vessel data: first two principal components of predictors.

Fig. 2. Vessel data: ‘‘Typical’’ X curves from left-hand and right-hand clusters.

3. An example with real data 1

In this section the performances of L2 and MM are compared through a high-dimensional real dataset corresponding 2

to electron-probe X ray microanalysis of archeological glass vessels (Janssens et al., 1998), where each of n = 180 vessels 3

is represented by a spectrum on 1920 frequencies. For each vessel the contents of 13 chemical compounds are registered. 4

Since for frequencies below 15 and above 500 the values of xij are almost null, we keep frequencies 15–500, so that we have 5

p = 486. 6

In order to gain some insight on the data, Fig. 1 shows the representation of the X data on the first two principal 7

components, which account for 85% of the variability. The plot shows two clusters, of which the one on the right contains 8

37 observations. Fig. 2 shows a ‘‘typical’’ X(t) curve from each cluster. It is seen that the shapes of both curves are similar, 9

but they differ on the sizes of the main peaks. 10

The estimators considered were the
∧
ones proposed by Crambes et al. (2009) and our proposal with nominal efficiency 11

0.85 (henceforth ‘‘L2’’ and ‘‘MM’’ respectively), with CCV equal to 0, 1 and 2. Henceforth L2 and MM with CCV = C will be 12

abbreviated by L2(C) and MM(C), respectively. 13

We also included for comparison two versions of Partial Least Squares (PLS): the classical one, and the ‘‘partial robust 14

M-regression’’ proposed by Serneels et al. (2005). In both versions the number of componentswas chosen through 5-fold CV. 15

The classical and robust versions will be henceforth denoted by C-PLS and R-PLS respectively. There are other proposals for 16
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Fig. 3. Vessel data: residual QQ plots for compound 4.

Table 1

∧
Vessel data: prediction CV RMSEs of estimators for compound 5.

L2 MM C-PLS R-PLS
CCV = 0 1 2 0 1 2

RMSE 0.68 0.66 0.65 0.85 0.87 0.91 0.71 1.44
RMSE (0.9) 0.50 0.49 0.48 0.37 0.38 0.40 0.51 0.69

robust PLS, such as Hubert and Vanden Branden (2003), but we preferred the partial robustM-regression since exploratory1

simulations indicated that it had a better performance.2

Except for compounds 2, 3 and 6, the residual QQ plots from MM showed several clear outliers, while those from L23

showed none or almost none. Fig. 3 shows the residual QQ plots for compound 4 (SiO2). For both L2 and MM, the results for4

CCV = 0, 1 and 2 were similar. We give those for CCV = 2 for brevity. It is seen that L2(2) and C-PLS point out no outliers;5

both MM(2) and R-PLS point out about 10–12 outliers, but the respective configurations are quite different. All outliers6

correspond to X data in the right-hand cluster of Fig. 1.7

The equivalent degrees of freedom for L2(2) and MM(2) are respectively 62 and 26, which suggests that the latter gives8

smoother parameters. R-PLS chooses 14 components.9

The left-hand panel of Fig. 4 compares the ordered absolute residuals from MM(2) with those from L2(2); the dotted10

line corresponds to the identity. The center panel gives an enlarged view of the lower left-hand corner of the former panel,11

corresponding to the smallest 152 (out of 180)values; it is seen that the values from MM(2) are smaller than those from12

L2(2). The right-hand panel compares MM and R-PLS; here we see that all ordered absolute residuals from MM are smaller13

than those from R-PLS, which indicates a much better fit.14

We now compare the degrees of smoothness of the different parameter sequences. Fig. 5 displays, from top to bottom,15

the functionsα(t) corresponding to L2(2),MM(2) and R-PLS. Since the purpose of the plot is just to compare degrees of16

smoothness, the curves have been shifted to avoid overlapping. It is seen that MM(2) gives a smoother curve than L2(2) – as17

could be expected from the respective edf’s – and that R-PLS gives the roughest curve, which can also be expected since its18

definition does not involve any smoothness restrictions. We may thus say that MM(2) gives a better fit than L2(2) for 90%19

of the data, while yielding much smoother estimated parameters.20

The predictive behavior of the estimators was assessed through 5-fold CV; the criteria used were the root mean squared21

error (RMSE) and RMSE with upper 10% trimming (RMSE(0.9)), considered to be safer in the presence of outliers. Table 122

shows the results.23

It is seen that increasing CCV does not damage the behavior of the estimators. According to RMSE, L2 is superior to MM,24

while the values of RMSE(0.9) for L2 are about 20%–35%higher than those forMM. Thedifference is attributable to the outliers25

shown in the former
∧
figures. C-PLS behaves similarly to L2. It is surprising to see that the behavior of R-PLS is the worst.26
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Fig. 4. Vessel data, ordered absolute residuals. Left panel: MM (2) vs. L2(2), together with the identity line (dotted). Center panel: lowest 152 values in left
panel. Right panel: MM (2) vs. R-PLS.

Fig. 5. From top to bottom: parameters (shifted) of L2(2), MM (2) and R-PLS as functions of the frequency.

4. Simulation 1

The estimators were assessed through a reduced simulation study. The estimators considered were the same as in the 2

former section. We considered two scenarios. 3

4.1. Scenario 1 4

For each situation, Nrep = 500 samples of size n and dimension pwere generated according to (1) to emulate the data in 5

the former example. The following characteristics were observed in the vessel X: 6

• all spectra (rows) have two or three main peaks 7

• the correlation between columns j and k decays approximately exponentially with |j − k| 8

• the dispersions of the columns are approximately proportional to their means 9

• the columns’ distributions look approximately lognormal. 10
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Fig. 6. Simulation: ‘‘True’’ function α(t) and two typical rows of X0 .

To implement these features, let tj = j/p for j = 1, . . . , p. Define for t ∈ [0, 1]1

h (t, u1, u2) = a exp


−


t − u1

b

2


+ (1 − a)


−


t − u2

b

2


,2

where a and b are fixed constants. Call X0 the matrix with elements3

x0,ij = h

tj, u1i, u2i


exp


cvij

,4

where u1i and u2i are independent uniform variables in (0, 0.4) and (0.5, 0.9) respectively, and for each i,

vi1, . . . , vip


have5

a p-variate normal distribution with zero means and covariances σjk = ρ|j−k|. We have chosen a = 0.8, b = 0.05, c = 0.56

and ρ = 0.5, 0.7 and 0.9. Let α (t) = exp

− ((t − 0.25) /0.3)2


and call α the vector with elements α


tj

. Fig. 6 plots α7

and two typical rows of X0.8

Let y0 = X0α. In the case of no contamination, the data are (X, y)withX = X0 and y = y0 +σe, where e has i.i.d. N (0, 1)9

elements. For the value of σ , we choose a ‘‘noise-to-signal’’ parameter NSR, and then take σ = NSR × sd (y0). The values10

of NSR were chosen as 0.02, 0.05 and 0.1, the choice of this range being guided by examination of this and other spectral11

data sets, such as the diesel data of (Eigenvector Research, Inc., 2007). In the case of a contamination rate ε, let m = [nε]12

where [.] stands for the integer part. Then the first rows of X are multiplied by klev, where klev is a parameter that regulates13

the outlier leverage and is fixed at 2; and for i = 1, . . . ,m we put yi = y0iklevkslo, where the parameter kslo regulates the14

outliers’ slope. The effect of this contamination is to pull the estimatorα towards ksloα. The values of kslo were taken on a15

grid between 1.1 and 1.8, in order to find the largest MSE of the robust estimators.16

To evaluate an estimatorα, let for a given sampleMPE = n−1 ∥y0 − X0α∥
2, whichmeasures themean squared prediction17

error ofα if applied to the uncontaminated data. TheNrep values ofMPE can be summarized through their average. However,18

it was observed that in contamination situations, this average was frequently heavily influenced by a few very large values19

(as was seen in Table 1). For this reason we also computed the 10% (upper) trimmed average, henceforth referred to as20

‘‘trimmed MPE’’.21

This scenario involves three values of ρ, three of NSR, two values of n and three of p for each n, two values of ε and about22

15 of kslo for ε = 1, i, which total some 800 sampling situations. In order to simplify the exposition, for each combination Q623

(n, p, ρ,NSR) we took the MPE for ε = 0 and the maximum (over kslo MPE for ε = 0.1.24

We give the values of MPE; the trimmed MPE yielded results more favorable to MM. The three values of ρ yielded gave25

qualitatively similar results; we exhibit the results for ρ = 0.7. Tables 2 and 3 display the simulation results, where the26

MPEs have been multiplied by 100 to improve legibility.27

We postpone the discussion of these results to Section 4.3.28

4.2. Scenario 229

The next scenario is defined as follows. Let µ(t) = sin(6π t)(t + 1); given ρ ∈ (0, 1), let ui ∈ Rp, i = 1, . . . , n be i.i.d.30

such that the correlation between uij and uik is31

1
1 + a (j − k)2

with a =
1
ρ

− 1,32

so that the lag-one correlation is ρ, and the correlations decay more slowly than the exponential rate of Scenario 1.33



8 R.A. Maronna, V.J. Yohai / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

Table 2
Simulation scenario 1: maximumMPEs (×100) for ρ = 0.7 and n = 50.
p NSR L2 MM PLS

CCV = 0 1 2 0 1 2 C-PLS R-PLS
ε

25 0.02 0 0.59 0.51 0.59 0.52 0.57 0.62 0.52 0.60
0.1 28.25 27.45 27.64 2.03 1.78 1.52 32.17 1.46

0.05 0 1.43 1.16 1.37 1.47 1.41 1.51 1.20 1.29
0.1 28.98 27.71 27.96 5.49 4.78 4.11 33.64 3.11

0.10 0 2.76 2.11 2.52 2.82 2.41 2.76 2.22 2.48
0.1 30.17 28.41 28.27 8.97 7.22 5.28 34.75 5.35

60 0.02 0 2.47 1.82 2.00 2.62 2.36 2.74 3.40 3.61
0.1 125.68 134.10 140.54 6.16 5.22 4.32 162.26 9.20

0.05 0 6.15 4.42 4.68 6.28 5.64 6.19 7.40 8.43
0.1 128.96 136.53 142.35 15.07 10.28 9.11 169.85 18.36

0.10 0 12.20 8.57 9.67 11.07 11.19 12.45 13.28 14.34
0.1 134.38 140.54 146.49 28.99 24.23 19.75 180.07 29.84

100 0.02 0 5.88 4.99 5.65 5.77 7.24 8.21 9.96 9.58
0.1 305.06 324.76 345.75 14.91 12.39 13.07 416.37 25.89

0.05 0 14.62 12.14 13.45 13.73 14.56 18.01 21.12 20.43
0.1 311.47 331.54 352.97 48.30 32.23 29.24 446.32 48.18

0.10 0 29.00 23.53 26.52 27.70 33.29 41.39 39.81 37.33
0.1 325.13 342.19 363.59 69.61 58.48 62.22 523.07 75.30

Table 3
Simulation scenario 1: maximumMPEs (×100) for ρ = 0.7 and n = 100.
p NSR L2 MM PLS

CCV = 0 1 2 0 1 2 C-PLS R-PLS
ε

25 0.02 0 0.31 0.31 0.41 0.33 0.36 0.38 0.29 0.35
0.1 35.82 31.56 29.38 0.87 0.67 0.61 38.44 0.86

0.05 0 0.73 0.71 0.95 0.77 0.81 0.93 0.68 0.80
0.1 36.18 31.66 29.45 1.92 1.53 1.38 39.54 1.71

0.10 0 1.41 1.32 1.82 1.45 1.56 1.78 1.25 1.41
0.1 36.73 31.87 29.59 4.04 3.11 2.52 40.45 3.11

50 0.02 0 1.58 1.25 1.46 1.48 1.50 1.60 1.39 1.55
0.1 106.73 103.88 102.14 4.36 3.13 2.51 124.48 3.41

0.05 0 3.83 2.74 3.34 3.12 3.27 3.77 2.89 3.10
0.1 108.96 104.84 102.76 7.67 6.1 5.17 129.92 7.04

0.10 0 7.39 4.97 6.14 5.72 5.89 6.73 5.13 5.44
0.1 112.43 106.33 103.57 17.69 11.9 10.11 133.41 11.72

150 0.02 0 10.20 6.50 5.28 6.75 6.54 7.56 12.71 12.56
0.1 554.79 597.27 639.53 14.24 11.48 11.43 777.44 30.52

0.05 0 25.42 15.92 14.79 15.44 15.12 17.75 25.68 26.34
0.1 567.16 608.12 649.67 39.25 33.56 31.22 820.58 57.03

0.10 0 50.63 30.86 29.49 29.43 30.49 33.83 46.65 47.43
0.1 588.29 626.78 666.10 75.73 54.59 48.57 935.89 94.08

For tj = j/p (j = 1, . . . , p), put xij = µ

tj

+ γ1uij


|µ

tj

|, where γ1 determines the roughness of X (t); we employed 1

γ1 = 0.9 and 0.5. Define α (t) =
√
t and let α ∈ Rp have elements αj = α


tj

. Finally put y = Xα + γ2e with e ∼ N(0, I), 2

where γ2 controls the NSR. 3

Tables 4 and 5 gives the maximum MPEs for n = 50 and 100, respectively, with γ1 = 0.9 and NSR = 0.05. While in 4

Scenario 1, the different values of ρ yielded qualitatively similar results, here ρ has a more important influence, namely, 5

that situations with large ρ are more favorable to PLS. Therefore we display the results for all three values of ρ. 6

4.3. Discussion 7

4.3.1. Scenario 1 8

L2(C) with C = 0 is always worse than with C = 1 or 2. In some cases, L2(0) even has a higher MSE for ε = 0 than 9

MM(0). In these cases we have repeated the simulation with a larger Nrep and a different seed, obtaining the same pattern. 10

We have not found an explanation for this phenomenon. 11

Among the three versions of MM, MM(1) and MM(2) behave in general better than MM(0), and the overall behavior 12

of MM(2) is slightly better than that of MM(1). For n < p both L2 and MM are more efficient than both versions of PLS. 13

It is curious that R-PLS seems slightly more efficient than C-PLS, which might be due to the differences in the respective 14

algorithms. For n < p, R-PLS is slightly more robust than MM(2), but quite the opposite holds for n > p. 15
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Table 4
Simulation scenario 2: maximumMPEs for n = 50.
p ρ L2 MM PLS

CCV = 0 1 2 0 1 2 C-PLS R-PLS
ε

25 0.5 0 0.46 0.31 0.39 0.38 0.40 0.45 0.61 0.62
0.1 3.92 3.37 3.09 0.63 0.55 0.58 4.12 0.90

0.7 0 0.78 0.50 0.57 0.64 0.66 0.77 0.78 0.68
0.1 6.54 5.75 5.23 1.05 0.84 0.98 6.66 1.04

0.9 0 1.75 0.96 1.13 1.21 1.28 1.37 1.27 0.93
0.1 13.92 12.37 11.44 2.27 1.80 1.83 13.32 1.57

60 0.5 0 1.57 1.12 1.17 1.21 1.27 1.46 3.03 3.04
0.1 10.3 9.97 9.44 2.09 1.92 2.04 11.75 4.87

0.7 0 2.77 1.88 1.85 2.17 2.08 2.34 4.00 3.52
0.1 17.75 17.14 16.18 3.35 2.95 3.12 19.15 4.97

0.9 0 7.81 4.60 4.15 4.90 4.68 5.77 6.16 4.58
0.1 46.81 45.11 42.60 7.93 6.48 6.79 49.48 7.11

100 0.02 0 2.79 2.43 2.66 2.62 2.86 3.33 6.27 7.19
0.1 16.42 16.12 15.91 4.19 4.30 5.02 19.26 15.28

0.05 0 5.06 4.16 4.53 4.70 4.97 5.52 10.56 9.73
0.1 29.67 28.82 28.15 7.37 7.15 8.10 33.02 14.79

0.10 0 14.65 10.73 11.34 11.68 12.78 14.25 16.41 12.56
0.1 83.31 80.39 75.93 19.17 16.97 17.48 87.02 16.56

Table 5
Simulation scenario 2: maximumMPEs for n = 100.
p ρ L2 MM PLS

CCV = 0 1 2 0 1 2 C-PLS R-PLS
ε

25 0.5 0 0.22 0.16 0.26 0.16 0.21 0.30 0.33 0.36
0.1 3.80 2.85 2.22 0.30 0.24 0.32 3.94 0.54

0.7 0 0.38 0.27 0.31 0.25 0.29 0.45 0.45 0.42
0.1 6.24 4.80 3.73 0.49 0.37 0.48 6.12 0.61

0.9 0 0.85 0.52 0.54 0.51 0.58 1.03 0.61 0.44
0.1 13.57 10.68 8.62 1.03 0.89 0.98 12.21 0.83

50 0.5 0 0.92 0.49 0.52 0.52 0.53 0.76 1.20 1.25
0.1 8.47 7.76 7.20 0.93 0.68 0.87 8.86 1.84

0.7 0 1.64 0.77 0.81 0.82 0.89 0.89 1.63 1.57
0.1 14.25 12.97 12.18 1.40 1.12 1.13 14.05 2.06

0.9 0 4.32 1.79 1.53 1.91 1.92 1.87 2.10 1.78
0.1 36.15 32.59 30.51 3.64 2.54 2.40 32.45 2.48

150 0.5 0 4.04 2.85 2.81 2.71 3.08 3.77 8.97 9.07
0.1 28.55 28.69 28.18 4.74 4.69 5.31 31.99 15.72

0.7 0 7.43 5.02 4.81 4.66 5.33 6.52 12.65 11.08
0.1 51.66 51.68 50.51 7.79 7.50 8.54 55.78 16.05

0.9 0 21.72 13.94 12.15 11.78 13.87 16.19 17.46 14.05
0.1 142.21 141.93 138.92 19.61 17.67 19.90 146.90 19.71

For ε = 0, MM(0) and MM(1) have similar best performances. In most cases, MM(2) has an acceptable efficiency1

compared to them. All MMs generally outperform RPLS. For ε = 0.1, in the great majority of cases, MM(2) is the best2

MM; otherwise it is close to the best; and MM(0) the worst. MM(1) and MM(2) outperform RPLS except when p = 25 and3

n = 50.4

4.3.2. Scenario 25

L2(0) exhibits the same puzzling poor behavior as in Scenario 1. For ε = 0, MM(0) is generally the best MM, with MM(1)6

not far behind. Comparing each MM(C) with the corresponding L2(C), MM(1) appears as reasonably efficient, and MM(2)7

less so. All MMs outperform RPLS for ρ = 0.5 and 0.7, and for ρ = 0.9 they are only slightly worse except for p = 25. For8

ε = 0.1, MM(1) is generally best among MMs, with MM(2) not far behind. All MMs outperform RPLS, except in some cases9

when ρ = 0.9. Recall that PLS takes advantage of high correlations among the predictors, while the spline approach does10

not, and this may explain the comparatively better behavior of RPLS for ρ = 0.9.11

5. Computing times12

Table 6 gives the mean computing times in seconds for 10 random samples generated as in Scenario 1, for the three13

estimators, run in Matlab on a PC with a 3.0 GH Intel Core Duo processor. It can be seen that the MM approach is feasible for14
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Table 6
Computing times in seconds.

p n L2 MM R-PLS

25 50 0.028 4.44 0.25
100 0.030 4.75 0.29
200 0.042 5.51 0.30

50 50 0.046 8.39 1.48
100 0.045 10.06 1.51
200 0.060 11.87 1.61

100 50 0.089 8.49 1.69
100 0.114 29.13 15.25
200 0.138 36.66 15.30

150 50 0.209 8.40 1.91
100 0.244 28.86 15.72
200 0.306 85.46 103.00

200 50 0.358 8.64 1.73
100 0.485 30.25 16.05
200 0.530 161.02 268.18

large data sets. R-PLS is much faster than MM for small and moderate data sets, but MM is faster for n = 200 and p = 150 1

and 200. 2

6. Conclusions 3

In the vessel data example, the MM approach showed a better predictive performance than L2 and both versions of PLS. 4

In the simulations, MM showed a reasonable efficiency (compared to L2 and PLS) for normal data, and was in general more 5

robust than R-PLS for contaminated data. In the trade-off between efficiency and robustness, it seems that MM(2) is the 6

estimator of choice. 7
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