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1. Introduction

The first proofs of quantifier elimination for real closed fields by Tarski, Seidenberg, Cohen or Hörmander 
[22,21,8,16] were all providing primitive recursive algorithms.

The situation changed with the Cylindrical Algebraic Decomposition method [10] and elementary recur-
sive algorithms where obtained (see also [17,19]). This method produces a set of sampling points meeting 
every connected component defined by a sign condition on a family of polynomials. Cylindrical Algebraic 
Decomposition, being based on repeated projections, is in fact doubly exponential in the number of variables 
(see for example [2, Chapter 11]).
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Single exponential degree bounds, using the critical point method to project in one step a block of 
variables, have been obtained for the existential theory over the reals. The critical point method also gives 
a quantifier elimination algorithm which is doubly exponential in the number of blocks [13–15,20,1,2].

For all these elementary recursive methods, the proofs of correctness of the algorithms are based on 
geometric properties of semialgebraic sets, such as the fact that they have a finite number of connected 
components. They are also valid for general real closed fields, where the notion of semialgebraic connected-
ness has to be used.

Our aim in this paper is to provide an elementary recursive algorithm for quantifier elimination over real 
closed fields (Theorem 1) with the particularity that its proof of correctness is entirely based on algebra 
and does not involve the notion of connected components of semialgebraic sets (see details in Remark 21, 
Remark 25 and Remark 28).

The development of such algebraic proofs is very important in the field of constructive algebra. For 
instance, the elimination of one variable step of the algorithm we present here is, in the special case of 
monic polynomials, a key step in the construction of algebraic identities with elementary recursive degree 
bounds for the Positivstellensatz and Hilbert 17th problem in [18].

Another motivation for the present work is to provide an elementary recursive algorithm for quantifier 
elimination over real closed fields, suitable for being formally checked by a proof assistant such as Coq [7]
using the algebraic nature of its correctness proof. Indeed, because of the algebraic nature of its correctness 
proof, the original proof of Tarski’s quantifier elimination [22], as presented in [2, Chapter 2] has already 
been checked using Coq in [9].

We start with some notation.
Let R be a real closed field. For α ∈ R, its sign is as usual defined as follows:

sign(α) =

⎧⎪⎨
⎪⎩

−1 if α < 0,
0 if α = 0,
1 if α > 0.

Given a family of polynomials F ⊂ R[x1, . . . , xk], a sign condition on F is an element τ of {−1, 0, 1}F . We 
use the notation

sign(F) = τ

to mean

∧
Q∈F

(sign(Q) = τ(Q)) .

The realization of a sign condition τ on F is defined as

Real(τ,R) = {υ ∈ Rk | sign(F(υ)) = τ}.

If Real(τ, R) �= ∅, we say that τ is realizable. Finally, we note by SIGN(F) the set of realizable sign conditions 
on F .

For p ∈ Z, p ≥ 0, we denote by bit(p) the number of binary digits needed to represent p. This is to say

bit(p) =
{

1 if p = 0,
k if p ≥ 1 and 2k−1 ≤ p < 2k with k ∈ Z.
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Let D ⊂ R be a subring. In this paper, given a finite family of polynomials F ⊂ D[x1, . . . , xk], we will 
construct for 1 ≤ i ≤ k − 1 a new explicit family of polynomials Elimi(F) ⊂ D[x1, . . . , xi] which is suitable 
for quantifier elimination on first order formulas with atoms defined by polynomials in F .

For organization matters, the definition of the family Elimi(F) is posponed to Definition 27 in Section 4, 
and we include below our main result, which is Theorem 1. This theorem also states complexity bounds for 
the quantifier elimination method we present. Roughly speaking, the complexity is the number of operations 
in D that the computation takes; this concept will be further explained in Section 2.

Theorem 1. Let F ⊂ D[x1, . . . , xk] be a finite family of polynomials. Given a first order formula of type

Qui+1xi+1 . . .Qukxk Φ(x1, . . . , xk)

with 1 ≤ i ≤ k − 1, Quh ∈ {∀, ∃} for i + 1 ≤ h ≤ k and Φ(x1, . . . , xk) a quantifier free formula with atoms 
defined by polynomials in F , there exists an equivalent quantifier free formula

Ψ(x1, . . . , xi)

with atoms in Elimi(F). More precisely, there exists TΦ ⊂ SIGN(Elimi(F)) so that

Ψ(x1, . . . , xi) =
∨

τ∈TΦ

(sign(Elimi(F)) = τ) .

If F ⊂ D[x1, . . . , xk] is formed by s polynomials of degree bounded by d, then

#Elimi(F) ≤ s2k−i

max{2, d}(16k−i−1)bit(d),

the degree of the polynomials in Elimi(F) is bounded by

4
4k−i−1

3 d4k−i

,

and the complexity of computing the quantifier free formula Ψ is

O
(
s2k

max{2, d}bit(d)(16k+(k−1)4k+1)
)

operations in D.

This paper is organized as follows. In Section 2 we state some preliminaries on complexity, Thom encod-
ings, Tarski queries and Sign determination. In Section 3, we develop the main step of our construction, 
which is the elimination of one variable. Finally, in Section 4, we prove Theorem 1.

2. Preliminaries

2.1. Complexity

The computations we consider in this paper perform arithmetic operations in a subring D of a real closed 
field R. The notion of complexity of a computation we consider is the number of arithmetic operations in D
done during the described procedure. We consider that sign evaluation in D is cost free. We also consider 
that accessing, reading and writing pre-computed objects is cost free. For instance, we can access at any 
moment for free to any specific coefficient of a multivariate polynomial or any specific entry of a matrix. 
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Also, we do not consider the cost of doing arithmetic operations between auxiliar numerical quantities (such 
as cardinalities of sets). In short, we focus on the operations in D, which is the natural ambient for our 
input.

For the complexity of basic algorithms for polynomial operations we refer to [2, Chapter 8]. Also, we use 
Berkowitz Algorithm [5] as a division free algorithm to compute the determinant of a p × p matrix with 
entries in a commutative ring A, within O(p4) operations in A.

2.2. Thom encodings

We recall now the Thom encoding of real algebraic numbers [11] and explain its main properties. We 
refer to [2, Section 2.1] for classical proofs and to [18, Section 6.1] for proofs based on algebraic identities 
coming from Mixed Taylor Formulas.

Definition 2. Let P (y) =
∑

0≤h≤p γhy
h ∈ R[y] with p ≥ 1 and γp �= 0. We denote Der(P ) the list formed by 

P and the first p − 1 derivatives of P .
Given a real root θ of P , the Thom encoding of θ with respect to P is the list of signs of Der(P ′) evaluated 

at θ.

Every real root of P is uniquely determined by its Thom encoding with respect to P ; in the sense that 
two different real roots can not have the same Thom encoding.

For convenience we identify sign conditions on Der(P ′) (resp. Der(P )), which are by definition elements 
in {1, 0, −1}Der(P ′) (resp. {1, 0, −1}Der(P )), with elements in {−1, 0, 1}{1,...,p−1} (resp. {−1, 0, 1}{0,...,p−1}). 
By convention, for any sign condition η on Der(P ′) or Der(P ) we extend its definition with η(p) = sign(γp).

It is clear that the multiplicity of a real root of P can be deduced from its Thom encoding. Also, Thom 
encodings can be used to order real numbers as follows.

Notation 3. Let P (y) =
∑

0≤h≤p γhy
h ∈ R[y] with p ≥ 1 and γp �= 0. For η1, η2 sign conditions on 

Der(P ), we use the notation η1 ≺P η2 to indicate that η1 �= η2 and, if q is the biggest value of k such that 
η1(k) �= η2(k), then

• η1(q) < η2(q) and η1(q + 1) = 1 or
• η1(q) > η2(q) and η1(q + 1) = −1.

We use the notation η1 �P η2 to indicate that either η1 = η2 or η1 ≺P η2.

It is easy to see that �P defines a partial order on {−1, 0, 1}Der(P ). In addition, �P defines a total order 
on SIGN(Der(P )). Indeed, let θ1, θ2 ∈ R, η1 = sign(Der(P )(θ1)) and η2 = sign(Der(P )(θ2)) with η1 �= η2, 
and let q be as in Notation 3. Note that since η1(p) = η2(p) = sign(γp), then q < p. It is not possible that 
there exists k such that q < k < p and η1(k) = η2(k) = 0; otherwise θ1 and θ2 would be roots of P (k) with 
the same Thom encoding with respect to this polynomial, and therefore θ1 = θ2, which is impossible since 
η1 �= η2. In particular, we have then that either η1(q + 1) = 1 or η1(q + 1) = −1 and therefore it is possible 
to order η1 and η2 according to �P .

Proposition 4. Let P (y) =
∑

0≤h≤p γhy
h ∈ R[y] with p ≥ 1 and γp �= 0 and θ1, θ2 ∈ R. If 

sign(Der(P )(θ1)) ≺P sign(Der(P )(θ2)) then θ1 < θ2.

2.3. Tarski queries

Let P, Q ∈ R[y] with P �≡ 0. The Tarski-query of Q for P is
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TaQu(Q;P ) =
∑

θ∈R | P (θ)=0

sign(Q(θ))

= # {θ ∈ R | P (θ) = 0, Q(θ) > 0} − # {θ ∈ R | P (θ) = 0, Q(θ) < 0} .

There are several methods to compute the Tarski-query of Q for P . Here, we describe one which is well 
adapted to the parametric case.

Definition 5 (Hermite’s matrix). Let P, Q ∈ R[y] with degP = p ≥ 1. The Hermite’s matrix Her(P ; Q) ∈
Rp×p is the matrix defined for 1 ≤ j1, j2 ≤ p by

Her(P ;Q)j1,j2 = Tra(Q(y)yj1+j2−2)

where Tra(A(y)) is the trace of the linear mapping of multiplication by A(y) ∈ R[y] in the R-vector space 
R[y]/P (y).

Remark 6. Let P (y) =
∑

0≤h≤p γhy
h, Q =

∑
0≤h≤q γ

′
hy

h ∈ R[y] with p ≥ 1 and γp �= 0.
For j ∈ N we denote by Ap,j ∈ Z[c0, . . . , cp−1] the unique polynomial such that

Ap,j(sp(y1, . . . , yp), . . . , s1(y1, . . . , yp)) =
∑

1≤k≤p

yjk ∈ Z[y1, . . . , yp],

where for 1 ≤ j ≤ p, sj(y1, . . . , yp) is the j-th elementary symmetric function evaluated in y1, . . . , yp. Note 
that deg Ap,j = j (see [12, Proof of Theorem 3, Chapter 7]).

Then we have that for 1 ≤ j1, j2 ≤ p,

Her(P ;Q)j1,j2 =
∑

0≤h≤q

γ′
hAp,h+j1+j2−2

(
(−1)p γ0

γp
, . . . ,−γp−1

γp

)

(see [2, Section 4.3]); therefore

γq+2p−2
p Her(P ;Q)j1,j2

is a polynomial in the coefficients of P and Q with degree q + 2p − 2 with respect to the coefficients of P
and degree 1 with respect to the coefficients of Q.

Theorem 7 (Hermite’s Theory (1)). Let P, Q ∈ R[y] with degP = p ≥ 1. Then

Si(Her(P ;Q)) = TaQu(Q;P )

where Si(Her(P ; Q)) is the signature of the symmetric matrix Her(P ; Q).

Proof. See [2, Theorem 4.58] or [18, Section 5.1] for a proof based on algebraic identities. �
A nice property of the Hermite’s matrix is that its signature can always be computed from the sign of its 

principal minors (property which is not extensive to general symmetric matrices, or even Hankel matrices, 

as shown for instance by the matrices 
(

0 0
0 0

)
and 

(
0 0
0 1

)
, having same principal minors and different 

signatures).
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Notation 8. Let P, Q ∈ R[y] with degP = p ≥ 1. For 0 ≤ j ≤ p − 1, we denote by hmij(P ; Q) the (p − j)-th 
principal minor of Her(P ; Q). We extend this definition with hmip(P ; Q) = 1. We denote by hmi(P ; Q) the 
list

[hmi0(P ;Q), . . . ,hmip−1(P ;Q), 1] ⊂ R.

We also consider the following notation.

Notation 9.

• For k ∈ N, εk = (−1)k(k−1)/2.
• Let h = h0, . . . , hp be a finite list in R such that hp �= 0. We denote by (d0, . . . , ds) the strictly decreasing 

sequence of natural numbers defined by {d0, . . . , ds} = {j | 0 ≤ j ≤ p, hj �= 0}. We define

PmV(h) =
∑

1≤i≤s,
di−1−di odd

εdi−1−di
sign(hdi−1)sign(hdi

).

Note that in Notation 9 it is always the case that d0 = p. Also, when all elements of h are non-zero, 
PmV(h) is the difference between the number of sign permanencies and the number of sign changes in 
hp, . . . , h0.

Theorem 10 (Hermite’s Theory (2)). Let P, Q ∈ R[y] with degP = p ≥ 1, Then

Si(Her(P ;Q)) = PmV(hmi(P ;Q)).

Proof. See [2, Theorem 4.33, Proposition 4.55 and Lemma 9.26] or [18, Section 5.2] for a proof based on 
algebraic identities. �
2.4. Sign determination

Consider now P ∈ R[y] and P = P1, . . . , Ps, a finite list of polynomials in R[y]. Let σ be a sign condition 
on P. The cardinality of

{θ ∈ R | P (θ) = 0, sign(P(θ)) = σ}

is denoted by c(σ, {θ ∈ R | P (θ) = 0}) or simply by c(σ) if the polynomial P is fixed and clear from the 
context. Note that if

{θ ∈ R | P (θ) = 0, sign(P(θ)) = σ} = ∅,

then c(σ) = 0.
The (univariate) Sign Determination problem is to determine c(σ) for every sign condition σ on P. It is a 

basic algorithmic problem for real numbers which has been studied extensively (see for example [22,4,6,2]).
There is a very close relation between the sign determination problem and Tarski queries.

Proposition 11. Let P ∈ R[y] with degP = p ≥ 1 and P = P1, . . . , Ps a finite list of polynomials in R[y]. 
The list of all Tarski-queries
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⎡
⎣TaQu(Q;P ), Q ∈

{ ∏
1≤h≤s

Pαh

h | (α1, . . . , αs) ∈ {0, 1, 2}{1,...,s}, #{h | αh �= 0} ≤ bit(p)
}⎤⎦

determines the cardinality c(σ) for every sign condition σ on P at the roots of P .

Proof. The sign determination procedure described in [2, Algorithm 10.11] proceeds in s steps as follows: 
for i = 1, . . . , s, at step i, the cardinality c(σ) for every sign condition σ on P1, . . . , Pi is computed. In order 
to do so, at each step, first several Tarski queries TaQu(Q; P ) are calculated, and then an invertible linear 
system with entries in Z is solved. By [2, Proposition 10.74], every polynomial Q such that TaQu(Q; P ) is 
calculated along the execution of the algorithm, is a product of at most bit(p) of the polynomials P1, . . . , Ps

each of them raised to the power 1 or 2. Therefore, once all Tarski-queries TaQu(Q; P ) with

Q ∈
{ ∏

1≤h≤s

Pαh

h |(α1, . . . , αs) ∈ {0, 1, 2}{1,...,s}, #{h | αh �= 0} ≤ bit(p)
}

are known, the output of the algorithm, which is the cardinality c(σ) for every sign condition σ on P1, . . . , Ps

at the zeroes of P , is determined. �
As it was said before, in this paper we do not consider the cost of doing arithmetic operations between 

auxiliar numerical quantities (such as cardinalities of sets). Nevertheless, we refer to [3, Section 10.3] for 
details on specific methods to solve the integer linear systems involved in the sign determination algorithm 
cited in the proof of Proposition 11, as well as bounds on its bit complexity.

Remark 12. Given P, Q ∈ R[y] with degP = p ≥ 1, solving the sign determination problem for the list 
Der(P ′) (see Definition 2) means to compute the Thom encodings of the real roots of P . Solving the sign 
determination problem for the list [Der(P ′), Q] (the list Der(P ′) extended with the polynomial Q) means 
to additionally compute the sign of Q at each of the real roots of P , encoded by their Thom encoding.

In view of Proposition 11 and Remark 12 we consider the following Notation and Definition.

Notation 13. Let A be a commutative ring, P, Q ∈ A[y] with degP = p ≥ 1 and j ∈ N. We define

PDerj(P ) =
{ ∏

1≤h≤p−1

(P (h))αh | α ∈ {0, 1, 2}{1,...,p−1}
, #{h | αh �= 0} ≤ j

}
⊂ A[y],

PDerj(P ;Q) = {AB | A ∈ PDerj(P ), B ∈ {Q,Q2}} ⊂ A[y].

Definition 14. Let P, Q ∈ R[y] with degP = p ≥ 1. We define

thelim(P ) =
⋃

A∈PDerbit(p)(P )

hmi(P ;A) ⊂ R,

thelim(P ;Q) =
⋃

A∈PDerbit(p)−1(P ;Q)

hmi(P ;A) ⊂ R.

Corollary 15. Let P, Q ∈ R[y] with degP = p ≥ 1. The list of signs of thelim(P ) and thelim(P ; Q) deter-
mines the Thom encoding of the real roots of P and the sign of Q at each of these roots.

Proof. Consider P = P1, . . . , Pp = [Der(P ′), Q]; we have that
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PDerbit(p)(P ) ∪ PDerbit(p)−1(P ;Q) =

=
{ ∏

1≤h≤p

Pαh

h | α ∈ {0, 1, 2}{1,...,s}, #{h | αh �= 0} ≤ bit(p)
}
.

The result follows then from Theorem 7, Theorem 10 and Proposition 11. �
Note that the results we present here are not optimal in the number of Tarski queries to be considered, 

but they are instead well adapted to the parametric case. For a more refined sign determination process see 
[2, Chapter 10].

3. Eliminating one variable

In this section, we consider a set of variables u = (u1, . . . , u�) which we take as parameters, and a single 
variable y which we take as the main variable. In order to study the elimination of the variable y, we first 
review sign determination in a parametric context.

Through this section, derivative, degree and leading coefficient are taken with respect to y. For P ∈ D[u, y]
we denote by degP and degu P its degree with respect to y and to u respectively. For a finite family 
F ⊂ D[u, y], we denote by degF and degu F the maximum of degP and degu P for P ∈ F respectively.

3.1. Parametric Thom encoding and sign determination

Given P, Q ∈ D[u, y], we want to describe polynomial conditions on the parameters fixing the Thom 
encoding of the real roots of P and the sign of Q at each of them. The first problem to consider in this 
parametric context is that some specializations of the parameters may cause a drop in the degree of P , 
which is particularly important since this degree fixes the size of the Hermite’s matrix of P and Q. Note 
that, on the other hand, specializations of the parameters causing a drop in the degree of Q do not cause 
any problem.

Definition 16. Let P (u, y) =
∑

0≤h≤p ch(u)yh ∈ D[u, y] with p ≥ 0 and cp(u) �≡ 0.
For −1 ≤ j ≤ p, the truncation of P at j is

Truj(P ) = cj(u)yj + . . . + c0(u) ∈ D[u, y].

The set of truncations of P is the finite subset of D[u, y] defined inductively on the degree of P by 
Tru(0) = ∅ and

Tru(P ) =
{
{P} if lc(P ) ∈ D
{P} ∪ Tru(Trup−1(P )) otherwise.

The set of relevant coefficients of P is the finite subset of D[u] defined inductively on the degree of P
by RC(0) = ∅ and

RC(P ) =
{
∅ if lc(P ) ∈ D,

{lc(P )} ∪ RC(Trup−1(P )) otherwise.

The idea behind Definition 16 is that the degree of P is fixed once the sign of the relevant coefficients of 
P is known.
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Another problem arising in the parametric context is that we want to eliminate the variable y keeping 
conditions on the parameters u defined by polynomials rather than rational functions. Therefore, we consider 
the following definition.

Notation 17. Let P (u, y) =
∑

0≤h≤p ch(u)yh, Q =
∑

0≤h≤q c
′
h(u)yh ∈ D[u, y] with p ≥ 1 and cp(u) �≡ 0. As 

in Definition 5 we consider the matrix Her(P ; Q) ∈ D(u)p×p. Taking into account Remark 6 and following 
Notation 8, for 0 ≤ j ≤ p − 1, we denote

HMij(P ;Q) = cp(u)(p−j)(q+2p−2)hmij(P ;Q) ∈ D[u].

We denote by HMi(P ; Q) the list

[HMi0(P ;Q), . . . ,HMip−1(P ;Q)] ⊂ D[u].

Lemma 18.

degu HMi(P ;Q) ≤ p
(
(q + 2p− 2) degu P + degu Q

)
.

Moreover, given the matrix cp(u)q+2p−2Her(P ; Q), the computation of HMi(P ; Q) can be done in O(p4)
operations in D[u], each of them between polynomials of degree bounded by p((q+ 2p − 2) degu P + degu Q).

Proof. The degree bound for HMi(P ; Q) follows from the fact that HMi(P ; Q) is the list of principal minors 
of the matrix cp(u)q+2p−2Her(P ; Q) ∈ D[u]p×p and the degree bound from Remark 6.

For the bound on the number of operations in D[u] and the degree bound in intermediate computations, 
we simply use Berkowitz Algorithm (see [5]), taking into account that along the execution of this division free 
algorithm for the computation of the determinant of a given matrix, all its principal minors are recursively 
computed. �

Now we consider the following definitions.

Definition 19. Let P, Q ∈ D[u, y] with degP = p. If p ≥ 1, following Notation 13, we define

ThElim(P ) =
⋃

A∈PDerbit(p)(P )

HMi(P ;A) ⊂ D[u],

ThElim(P ;Q) =
⋃

A∈PDerbit(p)−1(P ;Q)

HMi(P ;A) ⊂ D[u].

If p = 0 (i.e., P ∈ D[u]), we define ThElim(P ) and ThElim(P ; Q) as the empty lists.
Finally, we define

Elim(P ;Q) = RC(P ) ∪
⋃

T∈Tru(P )

(
ThElim(T ) ∪ ThElim(T ;Q)

)
.

We can prove now the following result.

Proposition 20. Let P, Q ∈ D[u, y] with P �≡ 0. For every υ ∈ R�, the realizable sign condition on the family

Elim(P ;Q) ⊂ D[u]

satisfied by υ determines the fact that P (υ, y) ≡ 0 or P (υ, y) �≡ 0, and, if P (υ, y) �≡ 0, it also determines 
the Thom encoding of the real roots of P (υ, y) and the sign of Q(υ, y) at each of these roots.
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Proof. Let p = degP . It is clear that the fact that P (υ, y) ≡ 0 or P (υ, y) �≡ 0 is determined by the sign 
condition on RC(P ) satisfied by υ. From now we suppose that P (υ, y) �≡ 0. Again, it is also clear that the 
degree of P (υ, y) ≤ p is also determined by the sign condition on RC(P ) satisfied by υ; we call p′ this degree. 
If p′ = 0 then P (υ, y) has no real root; so from now we suppose p′ ≥ 1 and we only keep the information 
given by the sign condition satisfied by υ on

ThElim(T ) ∪ ThElim(T ;Q)

for

T = Trup′(P ) ∈ Tru(P ).

Now, for 0 ≤ j ≤ p′ − 1 and A ∈ PDerbit(p′)(T ) or A ∈ PDerbit(p′)−1(T ; Q) we have that

HMij(T ;A) = cp′(u)(p
′−j)(q+2p′−2)hmij(T ;A).

It is the case that either cp′(u) ∈ D or cp′(u) ∈ RC(P ), but in any situation the sign of cp′(υ) is known, 
and then the sign of every element in hmij(T (υ, y); A(υ, y)) is also known.

Finally, by Corollary 15 this is enough to determine the Thom encoding of the real roots of T (υ, y) and 
the sign of Q(υ, y) at each of these roots. �
Remark 21. The proof of correctness of Proposition 20 is based on the determination of Thom encoding of 
real roots and the sign of another polynomial at these roots; thus, this proof is entirely based on algebra. 
For instance, there is no need of sample points meeting every connected component of the realization of 
sign conditions.

Remark 22. Let P, Q ∈ D[u, y] with degP = p ≥ 1 and degQ = q. Following Notation 13, there are

∑
0≤h≤j

(
p− 1
h

)
2h ≤ 2pj

elements in PDerj(P ). Therefore, there are at most 2pbit(p)+1 elements in ThElim(P ) and by Lemma 18
their degrees in u = (u1, . . . , u�) are bounded by

p
(
(2(p− 1)bit(p) + 2p− 2) degu P + 2bit(p) degu P

)
≤ 2p2(bit(p) + 1) degu P.

Similarly, there are at most 4pbit(p) elements in ThElim(P ; Q) and their degrees in u = (u1, . . . , u�) are 
bounded by

p
(
(2(p− 1)(bit(p) − 1) + 2q + 2p− 2) degu P + 2(bit(p) − 1) degu P + 2 degu Q

)
=

= p
(
(2pbit(p) + 2q − 2) degu P + 2 degu Q

)
.

3.2. Fixing the realizable sign conditions on a family

In order to fix the realizable sign conditions on a parametric family of univariate polynomials, we consider 
the following definition.
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Definition 23. Let F be a finite family of polynomials in D[u, y]. We denote

Der(F) =
⋃

P∈F\D[u]

Der(P ) ⊂ D[u, y].

We define

Elim(F) =
⋃

P∈F\{0}

⎛
⎝RC(P ) ∪

⋃
T∈Tru(P )

(
ThElim(T ) ∪

⋃
Q∈Der(F\{P})

ThElim(T ;Q)
)⎞⎠ ⊂ D[u].

We prove now the following result.

Proposition 24. Let F be a finite family of polynomials in D[u, y]. For every υ ∈ R�, the realizable sign 
condition on the family

Elim(F) ⊂ D[u]

satisfied by υ determines the list SIGN(F(υ, y)).

Proof. By Proposition 20, the sign condition on Elim(F) satisfied by υ determines for every P ∈ F \ {0}
the fact that P (υ, y) ≡ 0 or P (υ, y) �≡ 0, and, if P (υ, y) �≡ 0, it also determines the Thom encoding of the 
real roots of P (υ, y) and, for every Q ∈ Der(F \ {P}), the sign of Q(υ, y) at each of these real roots.

Now, for each P ∈ F with P (υ, y) �≡ 0, since the Thom encoding of the real roots of P (υ, y) is known and 
the sign of the leading coefficient of P (υ, y) is also known, we can deduce the multiplicity of each real root 
and, by Proposition 4, also the order between them. All this information is enough to determine the sign of 
P (υ, y) on every (bounded or unbounded) interval of the real line defined by the real roots of P (υ, y).

Finally, in order to determine the list SIGN(F(υ, y)) we only need to know how to order the real roots 
coming from different polynomials P1(υ, y) and P2(υ, y) in F(υ, y). Once again by Proposition 20, the 
signs of Der(P1(υ, y)) at all the real roots of P1(υ, y) and P2(υ, y) are known. The only detail to take 
into account is that if it happens that degP1(u, y) = degP1(υ, y) = p1 we also need to know the sign 
of P1(υ, y)(p1) at all the real roots of P1(υ, y) and P2(υ, y) to be able to order them (and by definition, 
P1(u, y)(p1) �∈ Der(P1(u, y))). Nevertheless, this is indeed the case since the leading coefficient cp1(u) of 
P1(u, y) is either in D or in RC(P1) and in any situation the sign of cp1(υ) is known. Finally we can order 
the real roots of P1(υ, y) and P2(υ, y) using once again Proposition 4. �
Remark 25. As in Proposition 20 (see Remark 21), the proof of correctness of Proposition 24 is entirely 
based on algebra. No geometric concept is needed.

Lemma 26. Let F be a family of s polynomials in D[u, y] with degF = p. If p = 0 (i.e., F ⊂ D[u]) then 
Elim(F) = F \ D. If p ≥ 1, there are at most

4s2pbit(p)+2

elements in Elim(F), their degree in u = (u1, . . . , u�) is bounded by

4p3 degu F

and the complexity of computing Elim(F) is

O(s2pbit(p)+5)

operations in D[u], each of them between polynomials of degree at most 4p3 degu F .
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Proof. If p = 0 there is nothing to prove, so we suppose p ≥ 1. By Remark 22, there are at most

s
(
p + 1 + p

(
2pbit(p)+1 + (s− 1)4pbit(p)+1

))
≤ 4s2pbit(p)+2

elements in Elim(F) and their degree in u = (u1, . . . , u�) is bounded by

2p2(bit(p) + 1) degu F ≤ 4p3 degu F .

The computation of RC(P ) for every P ∈ F\{0} is cost free. There are at most sp polynomials T ∈ Tru(P )
for some P ∈ F \ {0} to consider, and for each of these polynomials T we have to compute

ThElim(T ) ∪
⋃

Q∈Der(F\{P})
ThElim(T ;Q)

(this is so since if deg T = 0 then ThElim(T ) and ThElim(T ; Q) are the empty lists).
From now, we consider a fixed T (u, y) =

∑
0≤h≤p′ ch(u)yh ∈ D[u, y], with 1 ≤ p′ ≤ p and cp′(u) �≡ 0. We 

consider also the basis B = {1, y, . . . , yp′−1} of the R(u)-vector space V = R(u)[y]/T (u, y). For h ∈ N, we 
define Mh ∈ D[u]p′×p′ as the matrix in basis B of the linear mapping of multiplication by (cp′(u)y)h in V . 
It is clear that

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 −c0(u)

cp′(u)
. . .

... −c1(u)

0 cp′(u)
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 cp′(u) −cp′−1(u)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and also that degu Mh ≤ h degu P .
We need to compute HMi(T ; A) for a number of polynomials A ∈ D[u, y] with degA ≤ 2pbit(p). If 

A =
∑

0≤h≤a c
′
h(u)yh, then for 0 ≤ j ≤ p′ − 1, HMij(T ; A) is the (p′ − j)-th principal minor of the matrix

cp′(u)a+2p′−2Her(T ;A),

and for 1 ≤ j1, j2 ≤ p′ we have that

cp′(u)a+2p′−2Her(T ;A)j1,j2 =
∑

0≤h≤a

c′h(u)cp′(u)a+2p′−h−j1−j2Tra(Mh+j1+j2−2). (1)

We describe first the part of the computation which depends on T but not on A, then we describe 
the computation of all the polynomials A we need to consider, and finally we describe the part of the 
computation which depends on both T and A.

First step: Our aim is to compute Tra(Mh) for 0 ≤ h ≤ 2pbit(p) + 2p − 2.
The matrices M0 and M1 are already known and computing their traces is cost free. We compute then 

Tra(Mh) for 2 ≤ h ≤ p′ − 1 and then we proceed using a recursive formula to compute all the remaining 
required traces.

Successively computing

M2 = M1 ·M1, . . . ,Mh+1 = M1 ·Mh, . . . Mp′−1 = M1 ·Mp′−2,



1600 D. Perrucci, M.-F. Roy / Annals of Pure and Applied Logic 168 (2017) 1588–1604

 

and taking into account that M1 has at most 2 non-zero entries per row, we can compute Mh for 2 ≤ h ≤ p′−1
within O(p3) operations in D[u], and the traces of all these matrices within O(p2) operations in D[u].

For h ≥ p′ we have that

Tra(Mh) = −
∑

1≤i≤p′

cp′−i(u)cp′(u)i−1Tra(Mh−i).

We compute cp′(u)i−1 for 1 ≤ i ≤ p′ within O(p) operations in D[u], then we successively compute Tra(Mh)
for p′ ≤ h ≤ 2pbit(p) + 2p − 2 within O(p2bit(p)) operations in D[u].

Finally, the whole step can be done within O(p3) operations in D[u]. Since for h ∈ N we have that 
degu Mh ≤ h degu P , these operations are between polynomials of degree at most (2pbit(p) +2p −2) degu F ≤
4p3 degu F .

Second step: Now we proceed to the computation of all the polynomials A.
Following Remark 22 there are at most 2pbit(p) polynomials A ∈ PDerbit(p′)(T ). We compute all of them 

starting from the constant polynomial 1 and then multiplying each time a derivative of T , of degree at most 
p, and a previously computed polynomial in PDerbit(p′)(T ), of degree at most (2bit(p) − 1)p. In this way, 
we compute all the polynomials in PDerbit(p′)(T ) within O(pbit(p)+3) operations in D[u].

Similarly, for each polynomial Q ∈ Der(F \ {P}) there are at most 4pbit(p)−1 polynomials A ∈
PDerbit(p′)−1(T ; Q) and we compute all of them multiplying each time Q by a previously computed poly-
nomial in PDerbit(p′)−1(T ) ∪ PDerbit(p′)−1(T, Q), of degree at most (2bit(p) − 1)p. In this way, we compute 
all the polynomials in PDerbit(p′)−1(T ; Q) within O(pbit(p)+2) operations in D[u].

Finally, since there are at most (s −1)p polynomials Q ∈ Der(F \{P}), the whole step can be done within 
O(spbit(p)+3) operations in D[u]. It is clear that all these operations are between polynomials of degree at 
most 2pbit(p) degu F ≤ 4p3 degu F .

Third step: We have to compute HMi(T ; A) for every A ∈ PDerbit(p′)(T ) and also, for every Q ∈ Der(F\{P})
and every A ∈ PDerbit(p′)−1(T ; Q). By Remark 22, there are then O(spbit(p)) polynomials A to consider.

For a fixed A =
∑

0≤h≤a c
′
h(u)yh with a ≤ 2pbit(p), in order to compute the matrix cp′(u)a+2p′−2Her(T ; A),

we first compute cp′(u)i for 1 ≤ i ≤ a + 2p′ − 2 within O(pbit(p)) operations in D[u]. Then, using equa-
tion (1), we can compute each entry of this matrix within O(p) operations since all the required traces 
have already been computed. Note that since cp′(u)a+2p′−2Her(T ; A) is a Hankel matrix, we only need to 
compute 2p′ − 1 entries. Therefore, the computation of cp′(u)a+2p′−2Her(T ; A) can be done within O(p2)
operations in D[u], each of them between polynomials of degree at most (2pbit(p) + 2p − 1) degu F .

The last part of the step is to compute the principal minors of cp′(u)a+2p′−2Her(T ; A). By Lemma 18
this can be done within O(p4) operations in D[u], each of them between polynomials of degree at most 
p(2pbit(p) + 2p − 1) degu F .

Finally, the whole step can be done within O(spbit(p)+4) operations in D[u], each of them between 
polynomials of degree at most p(2pbit(p) + 2p − 1) degu F ≤ 4p3 degu F . �
4. Main result

Let F be a finite family in D[x1, . . . , xk]. In this section we define the families Elimi(F) for 0 ≤ i ≤ k−1
and we prove Theorem 1.

The main idea is to repeatedly use the construction of Elim as in Definition 23, where for each i =
k − 1, . . . , 0 (taken in this order), the vector u = (x1, . . . , xi) will play the role of the set of parameters and 
y = xi+1 will play the role of the main variable.

Definition 27. We define Elimk(F) as F . Then, for i = k − 1, . . . , 0, we define inductively

Elimi(F) = Elim(Elimi+1(F)) ⊂ D[x1, . . . , xi].
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Proof of Theorem 1. The proof is based on a cylindrical structure on the realizable sign conditions described 
by the families Elimi(F) for 1 ≤ i ≤ k.

First, we prove the existence of the quantifier free formula Ψ in a constructive way. To do so, we proceed 
in three steps.

The first step is to successively compute Elimk−1(F), . . . , Elim0(F).
The second step is to successively compute SIGN(Elim1(F)), . . . , SIGN(Elimk(F)) together with some 

additional information that will be needed in the third step. More precisely, starting from Elim0(F) ⊂ D, 
for i = 0, . . . , k− 1, we consider every τ ∈ SIGN(Elimi(F)). Following the procedure described in the proof 
of Proposition 24, for each such τ we compute

SIGN(Elimi+1(F)(υ, xi+1))

for any υ ∈ Ri such that

sign(Elimi(F)(υ)) = τ,

and we keep the record that SIGN(Elimi+1(F)(υ, xi+1)) ⊂ SIGN(Elimi+1(F)) is exactly the set of realizable 
sign conditions on the family Elimi+1(F) given the extra condition that sign(Elimi(F)) = τ .

Note that these first two steps only depend on F rather than depending on the given first order formula

Qui+1xi+1 . . .Qukxk Φ(x1, . . . , xk).

The last step is to compute Ψ, or what is equivalent, TΦ. To do so, we proceed by reverse induction on 
i = k − 1, . . . , 1.

For i = k − 1, we are given a first order formula of type

Qukxk Φ(x1, . . . , xk).

By Proposition 24, for every υ = (υ1, . . . , υk−1) ∈ Rk−1, the list SIGN(F(υ, xk)) is determined by the 
realizable sign condition on the family

Elimk−1(F) ⊂ D[x1, . . . , xk−1]

satisfied by υ. Since Φ(x1, . . . , xk) is a quantifier free formula with atoms defined by polynomials in F , from 
SIGN(F(υ, xk)) it is possible to decide the truth value of the formula

Qukxk Φ(υ, xk).

So, we define

TΦ = {τ ∈ SIGN(Elimk−1(F)) | ∀υ ∈ Real(τ,R),QukxkΦ(υ, xk) is true}

and

Ψ(x1, . . . , xk−1) =
∨

τ∈TΦ

(sign(Elimk−1(F)) = τ)

and we are done.
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Now, we take 1 ≤ i ≤ k − 2 and we are given a first order formula of type

Qui+1xi+1 Qui+2xi+2 . . .Qukxk Φ(x1, . . . , xk).

By the inductive hypothesis, there exists a quantifier free formula

Ψ′(x1, . . . , xi+1)

with atoms in Elimi+1(F) which is equivalent to

Qui+2xi+2 . . .Qukxk Φ(x1, . . . , xk).

By Proposition 24, for every υ = (υ1, . . . , υi) ∈ Ri, the list SIGN(Elimi+1(F)(υ, xi+1)) is determined by 
the sign condition on the family

Elimi(F) ⊂ D[x1, . . . , xi]

satisfied by υ. Since Ψ′(x1, . . . , xi+1) is a quantifier free formula with atoms defined by polynomials in 
Elimi+1(F), from SIGN(Elimi+1(F)(υ, xi+1)) it is possible to decide the truth value of the formula

Qui+1xi+1 Ψ′(υ, xi+1).

Finally, we define

TΦ = {τ ∈ SIGN(Elimi(F)) | ∀υ ∈ Real(τ,R),Qui+1xi+1Ψ′(υ, xi+1) is true}

and

Ψ(x1, . . . , xi) =
∨

τ∈TΦ

(sign(Elimi(F)) = τ)

and we are done.
We now consider the quantitative part of the theorem. First, using Lemma 26, it can be easily proved by 

reverse induction that for i = k, . . . , 1, for every P ∈ Elimi(F),

degP ≤ 4
4k−i−1

3 d4k−i

.

We prove then, again using Lemma 26 and by reverse induction, that for i = k, . . . , 1,

#Elimi(F) ≤ s2k−i

max{2, d}(16k−i−1)bit(d).

Indeed, #Elimk(F) = s and for i = k − 1, . . . , 1,

#Elimi(F) ≤ 4s2k−i

max{2, d}2(16k−i−1−1)bit(d)(4
4k−i−1−1

3 d4k−i−1
)(bit(4

4k−i−1−1
3 d4k−i−1

)+2) ≤

≤ s2k−i

max{2, d}2+2(16k−i−1−1)bit(d)+(2 4k−i−1−1
3 +4k−i−1)(2 4k−i−1−1

3 +4k−i−1bit(d)+2) ≤

≤ s2k−i

max{2, d}(16k−i−1)bit(d).

Finally, we analyze the complexity of computing the quantifier free formula Ψ following the procedure 
we explained before.
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Since the second and third step take only sign evaluation in D and operations in Q, we only need to 
bound the complexity of the first step.

One more time using Lemma 26, for 1 ≤ i ≤ k − 1, the computation of Elimi(F) from Elimi+1(F) can 
be done within

O

(
s2k−i

max{2, d}2(16k−i−1−1)bit(d)(4
4k−i−1−1

3 d4k−i−1
)(bit(4

4k−i−1−1
3 d4k−i−1

)+5)
)

operations in D[x1, . . . , xi] between polynomials of degree at most

4
4k−i−1

3 d4k−i

.

Taking into account that each of these operations can be done within

O

(
4i2

4k−i−1
3 di2·4

k−i

)

operations in D and

s2k−i

max{2, d}2(16k−i−1−1)bit(d)(4
4k−i−1−1

3 d4k−i−1
)(bit(4

4k−i−1−1
3 d4k−i−1

)+5)4i2
4k−i−1

3 di2·4
k−i ≤

≤ s2k−i

max{2, d}2(16k−i−1−1)bit(d)+(2 4k−i−1−1
3 +4k−i−1)(2 4k−i−1−1

3 +4k−i−1bit(d)+5)+i4 4k−i−1
3 +i2·4k−i ≤

≤ s2k−i

max{2, d}bit(d)(16k−i+i4k−i+1),

the computation of Elimi(F) from Elimi+1(F) can be done within

O
(
s2k−i

max{2, d}bit(d)(16k−i+i4k−i+1)
)

operations in D.
On the other hand, similarly, the computation of Elim0(F) from Elim1(F) can be done within

O

(
s2k

max{2, d}2(16k−1−1)bit(d)(4
4k−1−1

3 d4k−1
)(bit(4

4k−1−1
3 d4k−1

)+5)
)

≤ O
(
s2k

max{2, d}16k
)

operations in D.
Finally, since

k−1∑
i=1

s2k−i

max{2, d}bit(d)(16k−i+i4k−i+1) ≤ 2s2k

max{2, d}bit(d)(16k+(k−1)4k+1),

the complexity of the first step is

O
(
s2k

max{2, d}bit(d)(16k+(k−1)4k+1)
)

operations in D. �
Remark 28. Note that the proof of correctness of the quantifier elimination method described in Theorem 
is entirely based on Proposition 24 and is thus completely algebraic.
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Note also that when the number of variables k is fixed the complexity of our method is polynomial in 
the number s of the polynomials, but is not polynomial in the degree d of the polynomials. On the other 
hand, the complexity of the Cylindrical Algebraic Decomposition [10] is polynomial in s and d when k is 
fixed (see [2, Chapter 11]).
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