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Abstract

Linear motifs are short protein subsequences that mediate protein interactions. Hundreds of

motif classes including thousands of motif instances are known. Our theory estimates how

many motif classes remain undiscovered. As commonly done, we describe motif classes as

regular expressions specifying motif length and the allowed amino acids at each motif posi-

tion. We measure motif specificity for a pair of motif classes by quantifying how many motif-

discriminating positions prevent a protein subsequence from matching the two classes at

once. We derive theorems for the maximal number of motif classes that can simultaneously

maintain a certain number of motif-discriminating positions between all pairs of classes in

the motif universe, for a given amino acid alphabet. We also calculate the fraction of all pro-

tein subsequences that would belong to a motif class if all potential motif classes came into

existence. Naturally occurring pairs of motif classes present most often a single motif-dis-

criminating position. This mild specificity maximizes the potential number of coexisting motif

classes, the expansion of the motif universe due to amino acid modifications and the fraction

of amino acid sequences that code for a motif instance. As a result, thousands of linear

motif classes may remain undiscovered.

1 Introduction

Natural proteins are synthesized as linear polymers from an alphabet of twenty amino acids,

which may later be expanded through post-translational modifications. The proteome is the

entire set of proteins that is, or potentially could be, expressed by an organism. Proteins pres-

ent remarkable physicochemical properties that are strongly linked to the biological processes

they partake in and can, in some cases, be assigned to a defined region of its sequence, such as

for enzyme catalysis or folding into globular domains.
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Linear motifs, also called short linear motifs (SLiMs) or eukaryotic linear motifs (ELMs) are

contiguous protein subsequences that mediate a significant fraction of protein-protein interac-

tions in eukaryotic organisms [1]. These protein-protein interactions take place between the

linear motifs and specific protein globular domains [1]. Linear motifs are usually less than 15

residues long (Fig 1A, [2]) and reside within intrinsically disordered regions that do not pres-

ent a stably folded structure [2]. Linear motifs often signal post-translational modification sites

or depend on post-translational modification to be active [1–3]. Since linear motifs can appear

or disappear with a small number of mutations, they play an important role in the evolution of

protein-protein interaction networks [1, 2, 4], particularly in metazoa [5].

A linear motif instance is a subsequence in a particular protein that is reported to perform a

function by experimental and/or computational methods [3]. For example, the LYCYE subse-

quence in the human papillomavirus type 16 E7 protein is known to mediate binding to the

human retinoblastoma protein (Rb) [4]. After the discovery of multiple linear motif instances

mediating interactions with the same target protein, a linear motif class may be proposed. For

example, instances belonging to the Rb pocket B binding ligand linear motif class mediate bind-

ing to the human retinoblastoma protein [4].

The sequences of all instances within a class are usually combined with additional biochem-

ical, structural, mutagenesis and functional information to derive a regular expression that

describes which protein sequences may belong to the corresponding linear motif class [3]. For

example, the regular expression for the Rb pocket B binding ligand linear motif class can be

written as [LI].C.[DE] [4]. In other words, protein sequences starting with a leucine or an

isoleucine, followed by any amino acid, followed by a cysteine, followed by any amino acid, fol-

lowed by an aspartic or glutamic acid, are expected to mediate binding to the human retino-

blastoma protein when placed into a suitable context. Remarkably, to a first approximation

regular expressions are valid across a range of organisms [3]. In the regular expressions

reported to date, we can distinguish fixed versus wildcard positions [4]. We call fixed positions

those that allow for one or a few amino acids, while we call wildcard positions those that allow

for all twenty amino acids or only forbid a single amino acid (Fig 1B, [2]).

Fig 1. Characteristics of linear motif classes in the ELM database. (A) Histogram of observed linear motif class lengths. The total number of classes is 172. (B)

Histogram of allowed amino acids (ei) at each motif position. The total number of positions is 1028. (C) Histogram for the number of instances within a linear motif

class. Empty bars: known instances from the ELM database. Black bars: potential unique instances calculated from the corresponding regular expression. The total

number of classes is 172.

https://doi.org/10.1371/journal.pone.0248841.g001
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The first linear motif class was proposed nearly three decades ago [6]. Although experimen-

tal discovery of linear motif instances remains a time-consuming and error-prone process [7],

close to 300 linear motif classes including over 3500 instances have been described since [3].

The number of known instances per linear motif class is shown in Fig 1C, empty bars. The

class discovery rate has remained roughly unchanged for the last decade [3], suggesting that

the current discovery methods are far from reaching saturation and that the undiscovered lin-

ear motif classes outnumber the known ones [8]. This situation calls for a theoretical estima-

tion of the size and granularity of the linear motif universe. Previous work on this question has

used prediction methods independent from regular expressions to estimate the number of lin-

ear motif instances in the human proteome, with a resulting figure in the range of 105 to 106

[9]. Although this number is helpful, the number of linear motif classes in the human prote-

ome was not explicitly considered.

Multiple factors may impose limits on the number of linear motif classes. In this work, we

focused on the limits imposed by sequence specificity. The functionality of a linear motif can

be modulated in a physiological state-dependent manner to induce a gain, loss, or exchange of

binding partners, which will affect the function of the protein. As such, these conditional inter-

actions underlie molecular decision-making in cell signaling. This postulate implies that motifs

are forced to bind a limited number of domains to avoid noise in the signaling process [10].

On the other hand, most proteins that participate in cellular signalling networks contain mod-

ular protein-interaction domains. Multiple versions of such domains are present within a

given organism, the yeast proteome, for example, contains 27 different Src homology 3 (SH3)

domains [11]. This raises the potential problem of cross-reaction. We assume that cross-talk

between linear motif classes is generally avoided in natural systems [12]. That is, natural pro-

tein subsequences that are an instance of multiple linear motif classes are rare [13] and most of

them are an instance of a single linear motif class.

In this work, we use theoretical tools and an empirical analysis of regular expressions in the

Eukaryotic Linear Motif database [3] to investigate the specificity of natural linear motifs, how

many more linear motif classes remain to be discovered, the influence of post-translational

modifications, and the consequences for protein sequence space usage.

2 Methods

Fig 2 gives a general description of our workflow, starting from the raw data for motif classes

found in ELM db and ending in the calculation of the potential number of motif classes. The

details of the methods used are explained in the following sections.

Database of linear motif classes

We retrieved all available 210 linear motif classes and corresponding regular expressions from

the ELM database in May 2015 (Fig 2). Our code and primary data are available at https://

gitlab.kam.mff.cuni.cz/bulavkad/elm_processing.

The preprocessing step in Fig 2 involves simplifying the regular expressions by:

• Using the shortest version of motifs with variable length. For example:

[LIVMP].0, 2(T)P‥([ST]) to [LIVMP](T)P‥([ST])

• Not including in the regular expression N- or C-terminus. For example:

^M0,1([ED]) toM0, 1([ED]), and F‥F$ to F‥F

• Ignoring post-translational amino acid modifications. For example:

RV.PU to RV.PC
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• Removing flanking positions until the first and last positions allow less than eleven amino

acids. For example:

[KR]R. to [KR]R

Some linear motif classes in the ELM database correspond to minor variants of another

motif and have the same biological role. This leads to regular expressions that are very similar.

We inspected classes with the same name and zero discriminating positions (see below for a

definition of linear motif specificity in terms of discriminating positions). In such cases, we

chose to keep only the linear motif class with the highest number of instances. This led us to

discard some classes, a detail of the classes we discarded and the motif representative of the

group can be found in S1 Table in S1 Data.

The final number of linear motif classes and associated regular expressions in our database

is 172. The complete list can be found at S1 File in S1 Data.

Number of potential linear motif classes

We describe our calculation of the number of potential linear motif classes using regular

expressions. Given the set A ¼ fA;C;D;E; F;G;H; I;K; L;M;N; P;Q;R; S;T;V;W;Yg of

twenty amino acids that are used to build natural proteins and a natural number n, we define a

linear motif class (of length n) as a sequence (A1, . . ., An) where each Ai is a subset of A, and a

linear motif instance of this class is a sequence (a1, . . ., an) with ai 2 Ai for all i = 1, . . ., n. Given

a linear motif class A = (A1, . . ., An), by its structure we refer to the sequence (|A1|, . . ., |An|),
i.e. the number of residues at each position.

Fig 2. Workflow description. Process from the raw data for motif classes found in ELM db to the calculation of the potential number of motif classes.

https://doi.org/10.1371/journal.pone.0248841.g002
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For example, following this convention, the regular expression [LI].C.[DE] corresponds to

the linear motif class

ðfLIg;A; fCg;A; fD;EgÞ

of length 5 and structure (2, 20, 1, 20, 2) and (I, A, C, D,D) is a linear motif instance of this

class. Notice that several classes can have the same structure.

Here we fix n and a structure e = (e1, . . ., en). We denote the set of all possible linear motif

classes with this structure by Me.

Given two classes A ¼ ðA1; . . . ;AnÞ;B ¼ ðB1; . . . ;BnÞ 2Me, we say that they have (at
least) one motif-discriminating position if there is at least one coordinate ℓ, 1� ℓ� n, such that

Aℓ \ Bℓ = ;. This corresponds to the fact that these two classes are indeed biologically different

linear motif classes, since they cannot share any linear motif instance.

For example, for e = (7, 6) the two classes ({A, C, D, E, F, G,H}, {A, C,D, E, F, G}) and ({A,

C, D, E, F, G,H}, {H, I, K, L,M, N}) have one motif-discriminating position since looking at

their second coordinate we observe that {A, C, D, E, F, G}\{H, I, K, L,M, N} = ;.

Given a set of linear motif classes fAð1Þ; . . . ;AðmÞg �Me, we say that it is 1-discriminating

if any two different classes in it have at least one motif-discriminating position, that is for any

i 6¼ j, A(i) and A(j) have at least one coordinate ℓ such that AðiÞ‘ \ AðjÞ‘ ¼ ;. This corresponds to

the fact that all classes in this set are indeed biologically different linear motif classes. We are

interested in the maximal possible size (number of elements) of such a 1-discriminating set in

Me, since it provides us information on the maximal possible number of different biological

linear motif classes of given structure e. This is the first problem we pose.

Problem 1. Given the structure e = (e1, . . ., en), how big can a 1-discriminating set inMe be?

Remark. There exists a 1-discriminating set in Me of size�
Y

1�i�n

b
20

ei
c. (Here, for a positive

real number r, brc denotes its floor, the maximal integer number k with k� r).
Proof. For each i we build pi ≔ b20

ei
c pairwise disjoint subsets Að1Þi ; . . . ;AðpiÞi of our set

of amino acids A ¼ fa1; . . . ; a20g with ei elements each: for example, we can define

Að1Þi ≔ fa1; . . . ; aeig, A
ð2Þ

i ≔ faeiþ1; . . . ; a2ei
g; . . . ;AðpiÞi ¼ faðpi � 1Þeiþ1; . . . ; apieig, where we note

that pi ei� 20 because pi ¼ b20

ei
c � 20

ei
. Now we define the set consisting of all possible different

sequences (A1, . . ., An) where each of the Ai’s is chosen among Að1Þi ; . . . ;AðpiÞi , 1� i� n. Two

such sequences have at least one different coordinate, that by construction do not intersect, so

the set of all such possible sequences is 1-discriminating. We conclude by noting that there are

p1� � �pn such sequences.

We give an example to clarify how the proof works.

Example 1.1. For e = (7, 6), we can take Að1Þ1 ¼ fA;C;D;E; F;G;Hg,
Að2Þ1 ¼ fI;K; L;M;N; P;Qg, A

ð1Þ

2 ¼ fA;C;D;E; F;Gg, A
ð2Þ

2 ¼ fH; I;K; L;M;Ng,
Að3Þ2 ¼ fP;Q;R; S;T;Vg, and we obtain the following set of linear motif discriminating classes
inMð7;6Þ that has 6 elements:

fðAð1Þ1 ;A
ð1Þ

2 Þ; ðA
ð1Þ

1 ;A
ð2Þ

2 Þ; ðA
ð1Þ

1 ;A
ð3Þ

2 Þ; ðA
ð2Þ

1 ;A
ð1Þ

2 Þ; ðA
ð2Þ

1 ;A
ð2Þ

2 Þ; ðA
ð2Þ

1 ;A
ð3Þ

2 Þg:

This is a 1-discriminating set inMð7;6Þ.

Next result shows that the size of all 1-discriminating sets in Me is bounded by a quantity

which is roughly similar to the bound of Remark 1.

Proposition 1. All 1-discriminating sets inMe have size�
Y

1�i<n

20

ei
.
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In order to prove this proposition we need the following lemma.

Lemma 1.2. Let e be a natural number and A1; . . . ;Am � A with |Ai| = e, i = 1, . . .,m. Set
k≔ dme

20
e (here, for a positive real number r, dre denotes its ceiling, the minimal integer number k

with k� r). Then there exists an amino acid a 2 A such that a belongs to at least k of the sets A1,

. . ., Am, that is, there exists {i1, . . ., ik}� {1, . . .,m} such that a 2 Aij for 1� j� k.

Proof. This is a consequence of the famous pigeonhole principle which says that if in a

pigeon loft there are more pigeons than holes, then there are at least to pigeons in the same

hole. Note that if r is an integer number, then brc = r = dre while if r is a non-integer positive

real number, then brc< r< dre and dre = brc + 1.

Let us denote A ¼ fa1; . . . ; a20g. The disjoint union of the Ai (counting each element one

time as if they were all different) hasme elements. We start with the simpler case when me
20

is an

integer number, i.e. k ¼ me
20

: If for 1� i� 20, each ai 2 A belongs to ki< k of the sets A1, . . .,

Am, then one would haveme = k1 + � � � + k20 < 20 � k =me, a contradiction. Now let us con-

sider the case when me
20

is not an integer number: Again, if for 1� i� 20, each ai 2 A belongs

to ki < k ¼ dme
20
e, that is to ki � bme20

c, of the sets A1, . . ., Am, then one would have

me ¼ k1 þ � � � þ k20 � 20 � b
me
20
c < 20 �

me
20
¼ me;

again a contradiction. Thus, in both cases there exists at least one a 2 A which belongs to at

least k of the sets A1, . . ., Am.

Proof of Proposition 1. Let ({A(1), . . ., A(m)} be such a 1-discriminating set, with AðiÞ ¼
ðAðiÞ1 ; . . . ;AðiÞn Þ for i = 1, . . .,m. Since Að1Þ1 ; . . . ;AðmÞ1 � A with jAðiÞ1 j ¼ e1 for i = 1, . . .,m, by

Lemma 1.2, there exists a1 2 A which belongs to at least d
me1
20
e sets AðiÞ1 . Now consider all these i

such that a1 2 A
ðiÞ
1 , repeating the reasoning for AðiÞ2 , by Lemma 1.2, there exists a2 2 A which

belongs to at least d
d
me1
20
ee2

20
e of these AðiÞ2 . Iterating, it follows that there is an element an� 1 2 A

that belongs to

k≔
d� � � d

me1
20
e � � �een� 1

20

� �

of the AðiÞn� 1. This implies that all AðiÞj intersect for fixed j, 1� j� n − 1. Since these A(i) form a

1-discriminating set, it must happen that for any two indexes i1 and i2, Aði1Þn \ A
ði2Þ
n ¼ ;. This

implies ken� 20. Since it can be shown recursively that

m
Y

1�i�n� 1

ei
20
� d
d� � � d

me1
20
e � � �een� 1

20
e ¼ k;

one also has

men
Y

1�i�n� 1

ei
20
¼ ken � 20;

and we conclude thatm �
Q

1�i�n
20

ei
.

Example 1.3. For e = (7, 6), the previous result shows that any 1-discriminating set has at
most 20

7
� 20

6
¼ 11; 11:::, that is at most 11 linear motif classes in it, and we already know there

exists at least one 1-discriminating set with 6 classes in it. Notice that in this case the proof itself
yields the more precise bound 7, instead of 11. As another example, for e = (4, 5), Remark 1
shows that there exists a 1-discriminating set of size� b20

4
c � b20

5
c ¼ 20 while by Proposition 1, all
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1-discriminating sets have size� 20

4
� 20

5
¼ 20 as well, so the lower and upper bounds match in

this case.
One can wonder why it seems experimentally that nature selects linear motif classes to be

distinct when they have at least one discriminating position when considered two by two. This

is somehow justified by the numbers we analyze in the sequel, that show that 1-discriminating

sets give many more possibilities than any other selection nature could have made. For this

purpose we introduce the next definitions which generalize the definition of 1-discriminating

set.

Given two classes A ¼ ðA1; . . . ;AnÞ;B ¼ ðB1; . . . ;BnÞ 2Me and k� 1, we say that they
have at least k motif-discriminating positions if there are at least k coordinates j, 1� j� n such

that Aj \ Bj = ;. And given a set of linear motif classes fAð1Þ; . . . ;AðmÞg �Me, we say that it is

k-discriminating if any two different classes in it have at least kmotif-discriminating positions.

This leads us to our second problem.

Problem 2. Given the structure e = (e1, . . ., en), how big can a k-discriminating set inMe be?
Our answer, which is proven as Proposition 1, is as follows.

Proposition 2. Let k� 1. All k-discriminating sets in Me have size�
Y

1�i�n� ðk� 1Þ

20

ei
.

Note that when applying this proposition, we can choose to order the eis from larger to

smaller, so that the obtained upper bound is sharper.

We finally define and study the concept of 0-discriminating set. Given two classes

A ¼ ðA1; . . . ;AnÞ;B ¼ ðB1; . . . ;BnÞ 2Me, we say that they present 0 motif-discriminating
positions when Ai \ Bi 6¼ ; for all 1� i� n. Accordingly, given a set of linear motif classes

fAð1Þ; . . . ;AðmÞg �Me, we say that it is 0-discriminating if any two different classes in it pres-

ent 0-discriminating positions. This problem is

Problem 3. Given the structure e = (e1, . . ., en), how big can a 0-discriminating set inMe be?
The problem is of major interest when ei� 10, 1� i� n, since if not all subsets in each

coordinate where ei> 10 intersect 2 by 2.

Proposition 3. Let e = (e1, . . ., en) with ei� 10 for 1� i� n. Then all 0-discriminating sets

inMe have size�
Y

1�i�n

19

ei � 1

� �

.

Proof of Proposition 3. The famous Erdös-Ko-Rado theorem in Combinatorics gives us

exactly the answer for n = 1: It says that if one hasm subsets of A of size e1, with 20� 2e1, such

that each pair of subsets has a non-empty intersection, thenm � 19

e1 � 1

� �
. For the general case

n� 2, this is the cardinal of a Cartesian product: In the first coordinate, we can choose at most

k1 ¼
19

e1 � 1

� �
sets, in the second coordinate, we can choose at most k2 ¼

19

e2 � 1

� �
sets and in the

n-th coordinate, we can choose at most kn ¼ 19

en � 1

� �
. The conclusion follows.

Sequence specificity of linear motif classes

In practice we want to ensure that only fixed positions of the regular expression are taken into

account, this motivates the following definition of specificity; given two linear motif classes

with the same length n, but possibly different structure, A = (A1, . . ., An) and B = (B1, . . ., Bn),
bymotif-discriminating positions we refer to the number of fixed positions with at most 10
allowed residues where no amino acid can match both regular expressions, i.e.

mdpAB ¼ jfi 2 f1; � � � ; ng : Ai \ Bi ¼ ; with jAij � 10 and jBij � 10gj: ð1Þ
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For example, for the regular expressions [LI].C and [FI].W represented by the linear motif

clas-ses A ¼ ðfLIg;A; fCgÞ and B ¼ ðfFIg;A; fWgÞ, one hasmdp AB = 1 corresponding to

the fact that A3 \ B3 = ; with |A3|� 10 and |B3|� 10.

Given the same linear motifs A and B, we indicate that we only care about what happens at

matching positions with at most 10 residues by introducing the following notation.

alignvalAB ¼

(
1 if there exists i; 1 � i � n; such that jAij � 10 and jBij � 10;

0 otherwise:

For the previous example we note that alignval AB = 1.

The rest of this subsection is concerned with extending the definition of motif-discriminat-

ing positions to compare classes of different lengths. Given two linear motifs of different

lengths A = (A1, . . ., An) and B = (B1, . . ., Bm), with n�m, we can define a set of alignments
between them as

alignsetAB ¼ fððA1; � � � ;AmÞ;BÞ; ððA2; � � � ;Amþ1Þ;BÞ; � � � ; ððAn� mþ1; � � � ;AnÞ;BÞg: ð2Þ

For example, for the linear motif classes A ¼ ðfLIg;A; fCg;A; fDEgÞ and

B ¼ ðfFIg;A; fWgÞ the set of alignments has 3 elements, namely

alignsetAB ¼ fððfLIg;A; fCgÞ; ðfFIg;A; fWgÞÞ;

ððA; fCg;AÞ; ðfFIg;A; fWgÞÞ; ððfCg;A; fDEgÞ; ðfFIg;A; fWgÞÞg:
ð3Þ

A graphical representation of this procedure can be found in Fig 3.

In this example, alignset AB contains the 3 elements (A1, B), (A2, B) and (A3, B), where

A1 ¼ ðfLIg;A; fCgÞ; A2 ¼ ððA; fCg;AÞ; A3 ¼ ðfCg;A; fDEgÞ

have the same length than B. We note on one hand that alignval A1 B = alignvalA3 B = 1

while alignvalA2 B = 0 and on another hand thatmdp A1 B = 1 andmdpA3 B = 2. This

induces the definition of motif-discriminating positions for classes of possibly different

lengths. Given two linear motifs A and B of lengths n�m, and the corresponding set of align-

ments

alignsetAB ¼ fðA1;BÞ; � � � ; ðAn� mþ1;BÞg

Fig 3. Measurement of the distance in sequence space between a pair of linear motif classes. We illustrate the calculation for the regular expressions [LI].C.[DE]

and [FI].W. Due to the different lengths of the two regular expressions there are three possible alignments, all of them hanging ends that belong to the longer regular

expression. The second alignment does not match a pair of fixed positions and does not help us test the distance in sequence space between the two motifs. The first

and third alignments match two pairs of fixed positions each. For each of them, we count the number of motif-discriminating positions where no amino acid can

match both regular expressions. The result is one for the first alignment and two for the third alignment. We take the minimum of these two figures. Thus, the

distance in sequence between these two linear motif classes is of at least one motif-discriminating position.

https://doi.org/10.1371/journal.pone.0248841.g003
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theirmotif-discriminating positions number is defined as

mdpAB ¼ minfmdpAkB with alignvalAkB ¼ 1g: ð4Þ

In the example we are considering, we have

mdpAB ¼ minfmdpA1BÞ;mdpA1Bg ¼ minf1; 2g ¼ 1:

Effective number of post-translational modifications

We identified 522 unique post-translational modifications in the Uniprot [14] ontology as of

August, 2018. This number includes four Uniprot categories of modification, we present the

number of occurrences of each category in S2 Table in S1 Data.

Shannon’s information theory provides a quantitative way of choosing the number of rep-

resentative entities from a mixture of unevenly used symbols [15]. This method is often used,

for example to determine the effective number of species in an ecosystem [16]. We first calcu-

late the entropyH of the mixture as:

H ¼
Xn

i¼1

� pi log2
ðpiÞ; ð5Þ

where pi is the relative frequency of symbol i. According to the theory, the number of represen-

tative entities is 2H.

In the case of the mixture of 522 post-translational modifications in Swissprot the effective

number of entities is 12.33, which we round to twelve. The frequency and type of these twelve

post-translational modifications accounting for 87% of the Uniprot database modifications is

presented on S2 Table in S1 Data.

3 Results

Sequence specificity of known linear motif classes

We defined a quantitative measure of the distance in sequence space between a pair of linear

motif classes (see Methods subsection 2 for details and Fig 3 for an example).

First, we consider those alignments between the two corresponding regular expressions

that do not leave a hanging end for the shorter regular expression. This may underestimate the

contribution of some motif flanking positions to specificity. If an alignment does not match a

pair of fixed positions, we discard it because it does not help us test the distance in sequence

space between the two motifs. For each of the remaining alignments, we count the number of

fixed positions where no amino acid can match both regular expressions. Finally, we take the

minimal number of fixed positions across all alignments. Thus, our number of motif-discrimi-

nating positions is a lower limit for the distance in sequence space between the two linear

motif classes (i.e. other positions might not fully overlap). This is because two motif-determin-

ing positions that allow for multiple amino acids and only share some of them are not counted

as motif-discriminating when aligned.

Example: [LI].C.[DE] and [FI].W. This step corresponds to the step “pairs comparison”

of the workflow we present in Fig 2 and that we described on methods 1. As we show in Fig 3

there are three possible alignments between the two regular expressions [LI].C.[DE] and [FI].

W. Only two of them are relevant to specificity, the one which aligns the first position of both

motifs and the one which aligns the last position of both motifs. The alignment matching the

second position of the [LI].C.[DE] motif and the first position of the [FI].W motif is trivial in

the sense that any instance of the two motifs could match both regular expressions. The first
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relevant alignment has only one motif discriminating position, while the second relevant align-

ment has two motif-discriminating positions. Therefore, the minimal number of motif dis-

criminating positions is one for this pair of regular expressions.

Global results. We considered linear motif classes reported in the ELM database (Fig 2)

(see section 2 for details). We avoided redundancy by excluding linear motif classes that corre-

spond to minor variants of another motif and have the same biological role, for a detail of the

excluded motifs see S1 Table in S1 Data. This left us with 172 linear motif classes (see S1 File in

S1 Data for a full list of the motifs). Our simplified approach does not take into account several

features of the corresponding regular expression, such as protein termini, variable length and

post-translational modifications.

We calculated the number of motif-discriminating positions for all possible 14706 pairs of

linear motif classes in our database (Fig 4A). In about 80% of the comparisons the two regular

expressions are separated in sequence space by at least one and at most eight motif-discrimi-

nating positions. The most common separation (approximately 50% of the cases) is a single

motif-discriminating position, while it is rare to find regular expressions with a separation of

more than three motif-discriminating positions. Out of the 20% of comparisons where the two

regular expressions are not separated in sequence space by at least one motif-discriminating

position, only in 3.6% of cases there is a full coincidence between the two regular expressions.

We conclude that over 96% of regular expression pairs show some separation in sequence

space, in agreement with our assumption that there is little crosstalk between natural linear

motif classes [12] when all pairwise comparisons are taken into account. The most common

value of sequence separation is a single motif-discriminating position. This is in agreement

with the use of regular expressions, where a mismatch at a single position is enough to rule out

that a sequence belongs to a given linear motif class.

Number of potential linear motif classes

We used the pigeonhole principle to develop a mathematical theory that allows us to calculate

the number of potential linear motif classes. This theory considers all amino acids in an alpha-

bet as equal. However, evolutionary constraints on protein expression and the biophysics of

Fig 4. Number of potential linear motif classes as deduced from the ELM database. (Left) Number of motif-

discriminating positions for all possible linear motif pairs in the database. The total number of pairs is 14706. (Right)

Number of potential linear motif classes for different numbers of motif-discriminating positions.

https://doi.org/10.1371/journal.pone.0248841.g004
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protein interactions mediated by linear motifs may restrict the use of some amino acids and

combinations thereof. In this case, the actual number of potential linear motif classes would

be lower than in our model. We give the main results in this section, while the details are

described in methods section 2. We consider a linear motif structure e = (e1, . . ., en), where ei
is the number of allowed amino acids at position i of the regular expression. For a given struc-

ture e and a number k of motif discriminating positions, jMðkÞj denotes the maximal number

of linear motif classes in Me satisfying the property that every pair of classes in it have at least

kmotif-discriminating positions. We got the following results.

jMð0Þj �
Y

1�i�n

19

ei � 1

� �

; ð6Þ

Y

1�i�n

b20=eic � jMð1Þj �
Y

1�i�n

20=ei; ð7Þ

jMðkÞj �
Y

1�i�n� ðk� 1Þ

20=ei for k < n; ð8Þ

jMðnÞj ¼ min
1�i�n
b20=eic: ð9Þ

Example: [LI].C.[DE]. Let us perform the calculation for the regular expression [LI].C.

[DE] of the Rb pocket B binding ligand, LIG_Rb_LxCxE_1 in ELM DB. Its structure is

(2,20,1,20,2). If we impose that all pairs of classes present at least one motif-discriminating

position, k = 1, the number of potential linear motif classes that can exist is (20/2) � (20/20) �

(20/1) � (20/20) � (20/2) = 2000 (Table 1).

We note that these figures are independent of the order of the ei, so that calculations for reg-

ular expressions with the structures (2,20,1,20,2) and (20,20,2,2,1) yield the same results.

Global results. The above equations take as input both a motif structure and a minimum

number of motif-discriminating positions. We used the motif structures reported in the ELM

database (Fig 1) and the numbers of motif-discriminating positions measured here (Fig 4A) to

estimate the number of ELM-like linear motif classes that can potentially exist in nature. We

first converted the regular expressions in our database to motif structures Fig 2. For each struc-

ture, we calculated the number of potential linear motif classes of that structure (Fig 2) for val-

ues of k between 0 and 8, which is the observed range of motif discriminating positions in

ELM. As expected from the heterogeneity in motif lengths and structures (Fig 1), the calculated

values span several orders of magnitude. In order to achieve a global view of the results, we put

together the values for all regular expressions to calculate the cumulated probability that the

number of potential linear motif classes is higher than a given number (S1 Fig in S1 Data).

Within our highly simplified view, we decided to report the median of the distribution, i.e., the

number of potential linear motif classes that has a cumulated probability of 0.5. Fig 4B shows

that for k = 1, there is a 50% chance that the number of potential linear motif classes is at least

8000. The number of potential linear motif classes is lower at other values of k, taking a value

Table 1. The number of potential linear motif classes of the structure (2,20,1,20,2) that exist depends on the num-

ber of motif discriminating positions k required to differentiate two classes.

k 0 1 2 3 4 5

Potential classes 361 2000 100 10 1 1

https://doi.org/10.1371/journal.pone.0248841.t001
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of 3876 at k = 0 and dropping abruptly at k = 2 and higher. The lower value at k = 2 and higher

is due to higher non-overlap requirements, while the lower value at k = 0 arises because the

overlap imposed by this condition is more restrictive than the non-overlap imposed by k = 1.

It is interesting to compare panels A and B of Fig 4. On one hand, natural linear motif pairs

are most often separated in sequence space by a single motif-discriminating position. On the

other hand, this relatively low level of sequence specificity maximizes the number of potential

linear motif classes that can coexist while fulfilling the specificity requirement.

Role of amino acid post-translational modifications

Amino acid alphabet size for protein linear motifs. The number of potential linear

motif classes depends strongly on alphabet size (Eqs (6)–(9)). Traditionally, the protein alpha-

bet is described as consisting of the 20 amino acids that are encoded by the translation machin-

ery in all organisms. This is the number we have chosen as a basis for our calculations.

However, eukaryotic organisms, where most linear motif classes have been identified, also

encode for selenocysteine. Moreover, it is also well known that natural polypeptides may con-

tain over 500 additional amino acids due to post-translational modification [17]. Thus, the

number of amino acids that accurately represents the actual chemical diversity found post-

translationally in proteins is higher than 21.

How many post-translational modifications should be included in an expanded, representa-

tive amino acid alphabet? Since not all 522 known post-translational modifications are present

in all organisms [17] or partaking in linear motif function, we have taken two approaches to

estimate the effective alphabet size in protein linear motifs. We inspected the ELM database

descriptions of linear motif classes to check whether post-translational modifications are

directly relevant to linear motifs in proteins. We found that multiple known motifs are depen-

dent on the presence of at least eight modified amino acids, a summary of such motifs and res-

idues can be found on S3 Table in S1 Data. This effectively brings the protein alphabet size up

to 29. Since linear motif classes keep being discovered [3] and some of them depend on the

presence of post-translational modifications, we regard 29 as a lower limit.

As a second, more general, approach we have determined an effective number of post-

translational modifications in the Swissprot database using information theory (see Methods

section 2 for details). In brief, we retrieved 499905 instances for all 522 post-translational mod-

ifications in Swissprot. Their relative abundances span five orders of magnitude: there are

120084 disulfide bonds in the database, while some modifications have been reported only

once. Shannon’s information theory allows us to calculate the effective number of post-transla-

tional modifications in this uneven mixture as 2H, withH being Shannon’s entropy (See

Methods section 2 for details). The result of the calculation is that the effective number of post-

translational modifications is 12. This number covers over 87% of the total instances in Swis-

sprot and includes disulfide bonds, phosphoserine, N-linked glycosylation (GlcNAc. . .) of

asparagine, phosphothreonine, N6-acetyllysine, Glycyl lysine isopeptides, phosphotyrosine,

N6-succinyllysine, N6-(pyridoxal phosphate)lysine, N-acetylalanine, S-palmytoil cysteine, and

N-acetylmethionine. Taking into account selenocysteine, this generic calculation yields an

effective alphabet size of 33 amino acids.

Example: [LI].C.[DE]. Next, we examined the effect of increasing alphabet size on the num-

ber of potential linear motif classes. As an example, we can first consider the Rb pocket B binding
ligand linear motif class, described by the regular expression [LI].C.[DE] and the structure

(2,20,1,20,2). In the case of a single motif-discriminating position, the number of potential linear

motif classes is given by Eq (7) in section (1). For an alphabet size of 20, the number of potential

linear motif classes of this structure is (20/2) � (20/20) � (20/1) � (20/20) � (20/10) = 2000. This
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number goes up to at least b(29/2) � (29/29) � (29/1) � (29/29) � (29/2)c = 5864 for an alphabet

size of 29 and to at least b(33/2) � (33/33) � (33/1) � (33/33) � (33/2)c = 8448 for an alphabet size

of 33.

Global results. Fig 5A shows the median number of potential linear motif classes as a

function of alphabet size for values of k between 0 and 4 motif-discriminating positions.

Increasing the alphabet size from 20 to 40 increases the number of potential linear motif clas-

ses in all cases. S2 Fig in S1 Data shows that this increase is highest for 0 motif-discriminating

positions, decreases for values of k between 1 and 4 and becomes negligible for 5 or more

motif-discriminating positions. When we consider an effective alphabet size of 33 amino acids

(Fig 5B), the increase in the number of potential linear motif classes is more than 8-fold for 0

motif-discriminating positions, more than 4-fold for 1 motif-discriminating position and

3-fold or less for 2 or more motif-discriminating positions. In sum, increasing alphabet size on

the range suggested by our knowledge of protein post-translational modifications in linear

motifs increases the number of potential linear motif classes when the number of motif-dis-

criminating positions ranges from 0 to 4. The effect of increasing alphabet size is largest when

the specificity level required is zero or one motif-discriminating positions. This is notable

since as we showed, a single motif-discriminating position is the norm in naturally occurring

motifs.

Sequence space occupancy

In this section, we consider the number of potential linear motif classes in the context of

sequence space occupancy. A linear motif class of length n is a subset of a sequence space com-

prised of all possible 20n protein subsequences. The number of potential unique instances per

linear motif class is shown in Fig 1C, black bars. Half of linear motif classes contain at least 600

potential unique instances.

In the case of zero motif discriminating positions, each linear motif instance may belong

to multiple classes and we were not able to find a formula for the potential occupancy of

Fig 5. Number of potential linear motif classes as a function of protein alphabet size. (Left) Number of potential

linear motif classes for different numbers of motif-discriminating positions, as a function of alphabet size. Black: 0

positions. White: 1 position. Red: 2 positions. Blue: 3 positions. Green: 4 positions. The dashed vertical line highlights

the results for an alphabet size of 33 amino acids. (Right) Quotient of the number of potential linear motif classes for

alphabet sizes of 33 and 20, as a function of the number of motif-discriminating positions.

https://doi.org/10.1371/journal.pone.0248841.g005
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sequence space. For values of k of one or more motif-discriminating positions, linear motif

instances belong to a single linear motif class and the potential occupancy of sequence space is

simply:

PotentialOccupancyðe; kÞ≔
Y

1�i�n

ðei=20Þ � jMðkÞj for k > 0; ð10Þ

where the first term defines the fraction of the sequence space occupied by a linear motif class

of structure e: = (e1, . . ., en) 2 {1, . . ., 20}n.

Example: [LI].C.[DE]. Let us first calculate the occupancy of sequence space for the Rb
pocket B binding ligand linear motif class, described by the regular expression [LI].C.[DE].

This is a class of length 5, the first position admits 2 amino acids, the second any of the possible

20, the third only 1, the fourth again allows for any of the possible 20 and the fifth only allows

for 2. The corresponding structure for this class is (2,20,1,20,2). The product of the permitted

amino acids per position shows how many instances could belong to any single class of this

structure, that is 2 � 20 � 1 � 20 � 2 = 1600. On the other hand, for a length of 5 all possible pro-

tein subsequences are 205 = 3200000. The occupancy for this motif class then is the ratio

between both, 1600/3200000 = 0.0005.

Next, we can apply Eq (10) to calculate the total occupancy of sequence space for all possible

classes with structure (2,20,1,20,2). That is, what fraction of the sequence space would all the

instances of all the possible classes occupy, for a given structure e and k. For this motif struc-

ture, the total number of possible classes is given by the second term in Eq (10). In the case of

one motif discriminating position, we can substitute it by Eq (7). For the structure

(2,20,1,20,2), the total number of classes is 2000 and the total occupancy of sequence space is

2000 � 0.0005 = 1. Note that we can perform the calculation in this relatively intuitive way only

for k = 1 or higher.

Global results. We used the motif structures reported in the ELM database (Fig 1) and

the corresponding maximum numbers of linear motif classes calculated here (Fig 4A) to

estimate the potential occupancy of sequence space for values of k between 1 and 8. As

expected from the heterogeneity in motif lengths and structures (Fig 1), the calculated val-

ues span several orders of magnitude. As done above for the number of potential motif

classes, we report the median of the distribution, i.e., the median potential occupancy of

sequence spaces.

The results are shown in S3 Fig in S1 Data and Fig 6. Curves in S3A Fig in S1 Data corre-

spond to values of k from 1 to 8. As shown in 6, for k = 1, the potential occupancy of sequence

space is 100% in all cases. For k = 2, the potential occupancy of sequence space is 0.05. The

potential occupancy of sequence space drops steeply for values of k of 2 and higher. Compari-

son of S3A Fig in S1 Data and Fig 6 shows that the most common numbers of motif-discrimi-

nating positions maximizes the potential occupancy of sequence space by the resulting linear

motif classes. For a single motif-discriminating position, all possible protein subsequences

belong to a potential linear motif class.

S3B Fig in S1 Data shows the effect of increasing alphabet size on the potential occupancy

of sequence space, for values of k from 1 to 4. For k = 1, the potential occupancy of sequence

space is 100% regardless of alphabet size. For k = 2 and higher, the potential occupancy of

sequence space decreases as alphabet size increases. The size of the effect is 1.7-fold for k = 2,

2.7-fold for k = 3 and 4.5-fold for k = 4. Upon increasing alphabet size for k� 2, we observe

a trade-off between an increasing number of potential linear motif classes (Fig 5A) and a

decreasing potential occupancy of sequence space (Fig 6).
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4 Discussion

Are our results affected by biases in the ELM database and the use of regular expressions?Our

results may be affected by several caveats. The first two are database incompleteness and biased

motif specificity. The ELM database is an incomplete sample of the existing motif classes.

Moreover, it is mainly a compilation of results from low-throughput experiments driven by

the biological role of specific proteins, which may bias the database towards a certain range of

motif class specificities. A third caveat is related to the use of regular expressions to describe

the specificity of a motif class. It is known that some motif classes present some degree of mis-

match tolerance in certain positions, i.e., some motif instances that do not completely match

the regular expression are functional in the cell [1]. We have used the available information to

study these three issues (S4 Fig in S1 Data). We first assessed the effect of database incomplete-

ness in our results by building ten subsampled databases sampling 25% of the motif classes in

our database and recalculating the number of potential linear motif classes for 0 to 8 motif dis-

criminating positions (S4 Fig in S1 Data, panel A). The subsampled databases overestimate the

number of potential linear motif classes compared to the complete database up to two-fold.

Second, we considered the effect of biased motif specificity. We sorted the motifs by the num-

ber of potential instances. This is a way of measuring motif class specificity, with more specific

motif classes having a lower number of potential instances. We then split our database in two

by separating the upper and lower halves of our sorted list. We recalculated the number of

potential linear motif classes for each subsampled database for 0 to 8 motif discriminating

Fig 6. Maximal occupancy of the protein sequence space by linear motif classes as a function of the number of

motif-discriminating positions and protein alphabet size. Maximal occupancy of the protein sequence space for

different numbers of motif-discriminating positions.

https://doi.org/10.1371/journal.pone.0248841.g006
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positions (S4 Fig in S1 Data, panel B). On one hand, the number of potential motif classes cal-

culated from those that are more specific than the average is within the same order of magni-

tude as the calculation using the full database, except for 0 discriminating positions where it is

an order of magnitude lower. On the other hand, the number of potential motif classes calcu-

lated from those that are less specific than the average is within the same order of magnitude

as the calculation using the full database, except for 0 discriminating positions where it is an

order of magnitude higher. Last, we simulated the effect of mismatch tolerance by building

two additional databases that allow all 20 amino acids at a randomly chosen position of 50%

and 100% of motifs in our database. We recalculated the number of potential linear motif clas-

ses for each new database for 0 to 8 motif discriminating positions (S4 Fig in S1 Data, panel

C). Tolerating a mismatch in 50% and 100% of linear motif classes in our database decreases

the number of potential linear motif classes compared to the complete database around two-

and four-fold respectively. From these three experiments, we interpret that database incom-

pleteness, biased specificity and mismatch tolerance do not impact our order-of-magnitude

conclusions that (1) the mild specificity of known linear motif classes maximizes the potential

number of coexisting motif classes and (2) thousands of linear motif classes may remain

undiscovered.

Are regular expressions a good representation of linear motifs? The aim of this work was to

characterize how linear motif classes make use of the sequence space. We choose to describe

linear motif classes in terms of regular expressions. This implies that protein subsequences not

belonging to a linear motif class present at least one mismatch with the corresponding regular

expression (motif versus non-motif discrimination). Our measurements of the distance in

sequence space between pairs of known linear motifs (Fig 3) indicate that, in most cases, linear

motif instances of a given class present at least one mismatch with the regular expression of

any other class (cross-motif discrimination) (Fig 4A). We conclude that our model for the

specificity of linear motif classes is in agreement with current practices in the field. The use of

regular expressions allowed us to find analytical formulas for the number of potential motif

classes and for sequence space occupancy, given a motif regular expression and alphabet size.

These formulas may also be useful to analyze motifs in nucleic acid sequences [18].

The specificity of linear motif classes is low, which maximizes potential motif diversity. Our

results give a general view of how biological specificity requirements shape usage of sequence

space by linear motif classes. 96% of linear motif class pairs are separated in sequence space to

some degree and 80% are separated by at least a single motif-discriminating position (Fig 4A).

This suggests that, as some authors propose, while protein localization in time and space is rel-

evant to determine protein-protein interactions mediated by linear motifs [7], sequence speci-

ficity can also play a significant role. The consequences of this relatively low, yet significant

level of linear motif sequence specificity are remarkable: First, the observed level of specificity

maximizes the number of potential linear motif classes that can coexist in a given proteome

(Fig 4, panels B and C). Since the mild specificity of linear motif classes increases mutational

robustness by allowing some variants to be nearly neutral in fitness terms, this in turn may

play a role in organism evolvability [19]. The evolvability can be better understood by consid-

ering that nearly neutral variants might eventually lead to exaptation and the origin of new

protein functionality [20].

Second, low specificity maximizes the potential occupancy of sequence space, to the point

that if all potential linear motif classes are realized, all possible protein subsequences are linear

motif instances (Fig 6). Since disordered protein regions have biological roles beyond harbor-

ing linear motifs, this extreme scenario seems unlikely. Refined models for coding of linear

motifs may include restrictions in sequence space given by proteome size and composition in

addition to linear motif specificity. The third consequence of the low specificity of linear motif
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classes pertains to the role of protein post-translational modifications in linear motif diversity.

Our two empirical estimations based on the number of post translational modifications lead to

an alphabet size close to 30 residues, significantly larger than the 20 amino acids that are usu-

ally considered. Increasing protein alphabet size in this range leads to a significant expansion

in the number of potential linear motif classes (Fig 5). However, this leads in most cases to a

reduction in sequence space occupancy (S3 Fig in S1 Data). The expansion of the potential lin-

ear motif repertoire is maximal and comes at a minimal cost in terms of sequence space occu-

pancy when the specificity level at which the system operates is a single motif-discriminating

position per motif pair. Altogether, we propose that the relatively low level of specificity at

which known linear motif repertoires operate maximizes potential motif diversity, sequence

space occupancy and the expanding effect of amino acid post-translational modifications.

Linear motif regular expressions allow either a few or most amino acids at a given sequence
position, which increases potential motif diversity. For an alphabet size of 20 and a single motif-

discriminating position, we calculate that there is a 50% chance that the number of potential

linear motif classes is at least 8000 (Fig 4). We may ask how much this number depends on the

highly asymmetric distribution of allowed amino acids at a motif position. For example, the

most common motif structure in the database is [1, 1, 2, 20], which corresponds to 4000 poten-

tial linear motif classes separated by a single motif-discriminating position. If we assign the

average number of allowed amino acids (Fig 1) at all motif positions, we obtain the structure

[8, 8, 8, 8]. This structure corresponds to at most 39 potential linear motif classes separated by

a single motif-discriminating position, two orders of magnitude smaller than for naturally

observed linear motif structures. One classical explanation of why some positions of a motif

are more constrained than others suggests that residues in the functional interface are more

conserved than those that are not in the interface. For example, in the case of linear motifs

binding SH3 domains [11], in the bound state some residues face the SH3 domain and are

constrained to be proline, while others face the solvent and thus can be any residue. In conclu-

sion, the structures of complexes between linear motifs and globular domains impose crucial

limits to motif diversification. Since motif structure is a reduced representation of the sequence

instances that allow formation of the complex between a globular protein domain and a linear

motif [11], this underlines the crucial role of molecular biophysics in framing what may or

may not take place at a cellular and organism scale.

How many existing linear motif classes await discovery?We would like to compare our cal-

culation for the maximal number of possible motif classes with the available evidence on natu-

ral linear motifs. For the sake of simplicity, we focus on the specificity level of a single motif-

discriminating position, which is fulfilled by 80% of known motif pairs (Fig 4A). In this case,

we calculate 8000 potential linear motif classes for an alphabet of 20 amino acids and 36000

potential linear motif classes for an alphabet of 33 amino acids that takes into account protein

post-translational modifications (Table 2). In contrast, the ELM database contains close to 300

well-characterized linear motif classes and over 3500 instances [3] (Table 2). These two figures

should be regarded as lower limits because ELM is not an exhaustive database [3]. The average

number of linear motif instances per linear motif class in the ELM database is 12 (Table 2, Fig

1C). In all, we predict that the potential linear motif classes outnumber the known ones by one

to two orders of magnitude.

Another interesting question is how many of the potential linear motifs predicted by our

model are present in a given organism. Although a quantitative answer is out of the scope of

this work, we can use previous results to do a preliminary order-of-magnitude calculation for

Homo sapiens as follows. Performing sequence searches using regular expressions and apply-

ing empirical filters to the results gives an empirical estimate of 225 linear motif instances per

known linear motif class in the human proteome ([21], Table 2). Sequence-insensitive motif
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detection predicts that nearly two million amino acids in the human proteome belong to linear

motif instances [9]. Assuming a typical motif length of 5 residues (Fig 1A) and non-overlap-

ping motifs, we estimate 396000 linear motif instances in the human proteome. Taking 225

linear motif instances per known linear motif class in the human proteome, we calculate that

there are around 396000/225 = 1760 linear motif classes in the human proteome (Table 2).

Thus, the number of functional linear motif classes actually present in the human proteome

might be one order of magnitude lower than the number of the possible linear motif classes. In

any case, the absence of potential linear motifs in a proteome may be due to biophysical con-

straints not accounted for in our model and/or a fitness landscape that led to an incomplete

exploration of the linear motif space, which is a relatively recent evolutionary innovation [5].

Altogether, the figures shown on Table 2 suggest that not all possible linear motif classes

and instances are realized in all organisms and that we are only beginning to describe those

that exist in nature.

Which linear motif classes are likely to be discovered in the future?Hundreds of linear motif

classes may be present in the human proteome, awaiting discovery. It is interesting to consider

this dark matter of linear motif diversity [22] from the viewpoint of hidden heterogeneity in

the the globular domains that form complexes with linear motifs. For example, over a hundred

of related, yet different SH3 domains are present in the human proteome. The first of these

domains to be characterized were reported to bind linear motifs described by the RxxPxxP (+)

and PxxPxxR (-) regular expressions [11]. However, it was later reported that SH3 domains

are functionally diverse in that some of them do not interact with the linear motifs described

above [11]. This suggests that some of the globular domain families currently associated with a

single linear motif class may be associated in the future with multiple linear motif classes [23].

Another likely source of hidden linear motif diversity are domains of unknown function: Sev-

eral thousands of globular domains lack a known molecular activity and may function through

their interaction with currently uncharacterized linear motif classes [24].

The discovery of linear motifs resembles the species discovery curve in ecology, i.e., the

cumulative number of species recorded in a site as a function of the surveyed area [8]. The

shape of a discovery curve depends critically on both the relative abundances of species and

the sampling methods used [8]. A comprehensive characterization of the linear motifs in a nat-

ural proteome may require a quantitative study of the commonness and rarity of individual

motifs and a combination of high- and low-throughput sampling methods able to detect

motifs of low abundance.

Supporting information

S1 Data.

(PDF)

Table 2. Number of motif and instances from different sources. (a) Manually curated linear motif classes in the ELM database [3]. (b) Calculated from (f) and (h). (c)

This work, Fig 4. (d) This work, Fig 5. (e) Manually curated linear motif instances in the ELM database [3]. (g) Calculated from (a) and (e). (f) Estimated using the

ANCHOR algorithm for sequence-insensitive motif detection [9]. (h) Estimated by performing sequence searches using regular expressions and applying empirical filters

to the results [21].

Linear motif classes Linear motif instances Average instances per linear motif

class

Known Predicted, H. sapiens Potential, organism-independent (this

work)

Known Predicted, H. sapiens Known Predicted, H. sapiens

ELM ANCHOR & ELM regular expressions Alphabet size 20 (c) Alphabet size 33 ELM ANCHOR ELM ELM regular expressions

289(a) 1760(b) 8000(c) 36000(d) 3523(e) 396000(f) 12(g) 225(h)

https://doi.org/10.1371/journal.pone.0248841.t002
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