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Vinasse: from a residue to a high added 
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Abstract 

This work aimed to study the feasibility of using vinasse for polyhydroxybutyrate (PHB) production by Bacillus mega-
terium. To optimize the culture medium, a Box–Behnken design was employed considering carbon (C), nitrogen (N), 
and phosphorus (Ph) concentrations as independent variables and PHB productivity as the response variable. The 
productivity decreased when C or N were increased, probably due to the presence of phenolic compounds and the 
limitation of N for the production of PHB by Bacillus sp. bacteria. An additional experimental design to optimize the 
C/N ratio and growing conditions (fermentation time and temperature) was carried out. Fermentation time had a 
statistically significant effect on PHB productivity reaching 10.6 mg/L h. On the other hand, the variability in physico-
chemical properties of vinasse samples led to significant differences in PHB productivity. Lower productivity values 
were obtained when vinasse had higher values of DBO. Therefore, biopolymers production from vinasse is a feasible 
alternative to valorize this bioethanol by-product.
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Introduction
Plastics obtained from non-renewable sources are one 
of the most used materials in the world, they are broadly 
integrated into today’s lifestyle and contribute to almost 
all product areas. However, when plastics are discarded 
into the environment, they can persist for very long 
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periods of time (Andrady 2015). For this reason, in the 
last years, alternatives have been explored to replace 
petroleum derived plastics by materials obtained from 
natural sources. Hence, several materials have been 
investigated such as biobased poly(ethylene terephtha-
late) (bio-PET), biobased poly(ethylene) (bio-PE), bio-
poly(carbonate) (bio-PC), bio-poly(amide) (bio-PA), 
poly(hydroxyalcanoate)s (PHAs), and poly(lactic acid) 
(PLA), among others. PHAs are polyesters of hydroxy-
acids naturally synthesized by bacteria as carbon reserve. 
These biopolymers are accumulated as cytoplasmic 
inclusions in certain bacteria during unbalanced growth 
conditions, usually characterized by an excess of the car-
bon source and the lack of at least one of the essential 
nutrients (Kovalcik et al. 2019). Poly(3-hydroxybutyrate) 
(PHB) is the most common and the best known PHA and 
it is a great alternative to develop biomaterials since this 
biopolymer has similar properties to conventional poly-
mers such as PE and poly(propylene) (PP) (Vandi et  al. 
2018). Also, PHB decomposes to water and carbon diox-
ide under aerobic conditions and to methane and carbon 
dioxide under anaerobic conditions by microorganisms 
in soil, sea, lake water, and sewage (Anjum et al. 2016). Its 
applications include packaging materials, bags, contain-
ers, sutures, cardiovascular stents, targeted tissue repair/
regeneration devices, polymer-based depots for con-
trolled drug release or implants, and disposable items like 
single-use cups and diapers (Koller 2018).

Despite these advantages, the high production cost 
of PHB is the main obstacle for its commercialization. 
PHB cost is at least three times higher than conven-
tional plastics such as PP and PE, attributed mainly to 
the expensive substrates and processing (Kourmentza 
et  al. 2017), and similar to biobased polymers such as 
PLA (Kaur et  al. 2017). Thus, using cheaper feedstocks 
is one of the keys to reduce PHB production costs. Food 
wastes (Nielsen et al. 2017), residues from beer brewer-
ies (Amini et  al. 2020), cheese whey (Pais et  al. 2016), 
olive mill wastewater (Alsafadi and Al-Mashaqbeh 2017), 
and hydrolyzed corn starch (Fabra et al. 2016) are some 
resources that have been investigated for sustainable 
PHB production. On the other hand, vinasse, a residue of 
the sugar cane alcohol industry, could be used as an eco-
nomic substrate to produce PHB at lower costs. In this 
sense, some authors have reported the use of vinasse as 
carbon source for PHB production. Bhattacharyya et al. 
(2012) used vinasse with Haloferax mediterranei to pro-
duce PHAs and they reported that concentrations higher 
than 10% of raw vinasse inhibited the microbial growth. 
On the other hand, Zanfonato et al. (2018) did fermenta-
tions with Cupriavidus necator using vinasse as carbon 
source and no inhibitory effect was observed. Pramanik 
et  al. (2012) employed raw vinasse as carbon source to 

produce PHB with Haloarcula marismortui and achieved 
an accumulation of 23% PHA (of cell dry weight). These 
authors also stressed that after a pretreatment process 
through adsorption on activated carbon, vinasse could 
be used leading to 30% accumulation. In other cases, 
a combination of vinasse and sugarcane molasses was 
used by Cupriavidus necator as microorganism (Dalsasso 
et  al. 2019; Acosta-Cárdenas et  al. 2018). They showed 
that vinasse can be an appropriate diluent to molasses to 
use as non-conventional culture medium in the produc-
tion of PHAs. Nowadays, vinasse disposal represents an 
environmental problem since it affects water and edaphic 
resources, as well as the life of animal and plant spe-
cies. The high solids concentration and hard constitu-
ents, such as phenols and polyphenols, contaminate the 
surface and underground water. Also, vinasse presence 
increases eutrophication due to its high content of nitro-
gen and phosphorus (Parsaee et al. 2019). Colored com-
pounds of vinasse reduce the permeability of sunlight 
in rivers and lakes, thereby reducing the photosynthetic 
activity and the concentration of dissolved oxygen in 
water generating disturbances of plants and aquatic ani-
mal life (Syaichurrozi 2016). Vinasse is also toxic because 
of its low pH, it has an unpleasant smell for humans and 
its influence on drinking water leads to an outbreak of 
malaria, amoebiasis, and schistosomiasis. It is a medium 
for worm eggs of Meloidogyne javanica, M. incognita, 
and Drosophila melanogaster to grow. The pollution of 
each liter of vinasse is equal to the amount of contamina-
tion produced by 1.43 humans (Parsaee et al. 2019).

Optimization of the fermentation process is another 
way to reduce the costs of PHB. The optimization by sta-
tistical methods, compared to the common “one factor at 
a time” method, proved to be a powerful and useful tool 
to predict the maximum yield for bioproducts synthesis. 
Statistical methods such as response surface method-
ology enable to design the experiments and to evaluate 
the interactions among factors and responses through-
out the study (Nor et  al. 2017). According to Nygaard 
et al. (2019), in the case of microbiological fermentation 
processes to produce PHAs, response surface method-
ology can be used to determine the composition of the 
culture medium that provides an optimal productivity 
of PHAs. Before using the response surface methodol-
ogy approach, the correct experimental design must be 
selected to designate which treatments should be done 
in the experimental region being studied. For this pur-
pose, experimental designs for quadratic response sur-
faces, such as three-level factorial, central composite, 
and Box–Behnken, should be applied (Yolmeh and Jafari 
2017). A comparison between the Box–Behnken design 
and other response surface designs (central composite 
and three-level full factorial design) had demonstrate 
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that Box–Behnken design is slightly more efficient than 
central composite design, but much more efficient than 
the three-level full factorial designs (Ferreira et al. 2007). 
For these reasons, Box–Behnken design was selected for 
this work.

In the present work, PHAs were obtained by Bacillus 
megaterium employing vinasse as carbon source. A sta-
tistical experimental design was applied to optimize the 
medium composition and fermentation conditions at 
laboratory scale. Synthesized biopolymers were extracted 
from the cells and characterized to evaluate their compo-
sition and thermal properties.

Materials and methods
Bacterial strain
Fermentations for PHAs production were carried out 
with Bacillus megaterium (GenBank Database Accession 
Number: HM119600.1), named as BBST4. This strain, 
isolated from sediments of the Bahía Blanca Estuary, 
was identified and characterized by López et  al. (2012). 
Bacillus megaterium was adapted to metabolize vinasse 
by several fermentations increasing gradually the vinasse 
concentration. Adapted bacteria were conserved at 
− 70 °C in vials containing 1 mL growth medium and 20% 
glycerol. The growth medium was composed of 10  g/L 
vinasse, 10 g/L yeast extract, and 5 g/L peptone. Bacteria 
cells were reactivated at 30  °C for 24 h in the described 
growth medium. They were stored at 4 °C in slopes con-
taining the growth medium and 20  g/L  agar. Fermenta-
tion inocula were prepared by transferring bacteria cells 

using a wire loop into a shake flask containing 50 mL of 
the growth medium that were cultivated at 30 °C for 24 h.

Carbon source
Vinasse, provided by a sugar-alcohol company located 
at Famaillá (Tucumán, Argentina), was used as carbon 
source. In Fig. 1 it is shown the flowchart of the bioeth-
anol process from sugar cane. As it can be observed, 
vinasse is one of the byproducts resulting from this pro-
cess. In this work, two vinasse samples called V2017 and 
V2018 were used.

Vinasse samples were physicochemically characterized 
by chemical oxygen demand (COD), biological oxygen 
demand (BOD), total organic carbon (TOC), total nitro-
gen (TN) and pH. Many of these studies were carried out 
at the Environmental Chemistry Laboratory, Universidad 
Nacional del Sur (Bahía Blanca, Argentina) by different 
standard methods: TOC was determined using a TOC 
analyzer (Exeter analytical CE440); TN by the Kjeldahl 
method (Bradstreet 1954); TSS by the Standard Method 
2540  D (Total Suspended Solids Dried at 103–105  °C); 
TFS and TVS by the Standard Method 2540 E (fixed 
and volatile solids ignited at 550 °C), using the protocols 
described by Standard Methods for the examination of 
Water and Wastewater 20th Edition (Eaton et  al. 1998); 
COD by the Standard Method Potassium Dichromate 
(Burke and Mavrodineanu 1977); and BOD using the 
Winkler method (Prambudy et  al. 2019). The pH was 
measured using a Sensorex pH meter.

Fig. 1  Flowchart of bioethanol production process
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Culture media
The composition of the culture media was: 2.5  g/L 
MgSO4·7H2O, 2.5  g/L NaCl, 0.5  g/L  FeSO4·7H2O, 
0.05 g/L MnSO4·4H2O, vinasse, NH4NO3, and K2HPO4. 
Concentration of carbon, nitrogen, and phosphorous 
was achieved varying the quantities of vinasse, NH4NO3, 
and K2HPO4 added to the culture medium. The pH of 
the media was adjusted to 7.0 by adding dilute sodium 
hydroxide solution.

Optimization of culture media composition 
and fermentation conditions
For the optimization of culture media composition and 
fermentation conditions, a Box–Behnken experimental 
design and response surface methodology was employed.

To optimize the composition of the culture media, 
three independent variables were chosen: carbon (C), 
nitrogen (N), and phosphorus (Ph) concentrations, which 
were prescribed into 3 levels code: −  1, 0, 1 (Table  1). 
The ranges of the concentrations of C, N, and Ph were 
selected based on previous works (Acosta-Cárdenas 
et  al. 2018; Wang et  al. 2013; Berekaa and Al Thawadi 
2012). The design matrix for 15 experiments is presented 
in Table  2. The response variable was PHB productiv-
ity (expressed in mg/L  h). In the experimental assays, 
cultures were incubated in 250-mL Erlenmeyer flasks, 
containing 100 mL of each culture medium given by the 
experimental design, at 30 °C for 24 h and 150 rpm in an 
orbital shaker.

To complement the optimization of PHA production 
by B. megaterium and vinasse as carbon source, a sec-
ond experimental design was carried out. As independ-
ent variables were chosen carbon/nitrogen ratio (C/N), 
temperature (T), and time (t) and they were prescribed 
into 3 levels code: − 1, 0, 1 (Table 1). The ranges of C/N 
ratios, T, and t were selected based on previous works 

(Pal et al. 2009; Grothe et al. 1999). The design matrix 
for 15 experiments is presented in Table  3. As in the 
case of optimization of culture media, the response 
variable was PHB productivity. Cultures were incu-
bated in 250-mL Erlenmeyers, containing 100  mL of 
culture medium with different C/N ratios at different 
temperatures and times, following the experimental 
design.

After all fermentation assays, culture medium was cen-
trifuged for 10 min at 4000 rpm. Cell pellets were washed 
with distilled water 3 times and dried to constant weight 
at 60 °C in an oven with forced air circulation.

Table 1  Independent variables with their respective coded values and levels used in the Box–Behnken design

C carbon; N nitrogen; Ph phosphorous; C/N carbon/nitrogen ratio; T fermentation temperature; t fermentation time

Culture media composition

Level C (g/L) N (g/L) Ph (g/L)

High (+ 1) 8 0.4 1.2

Central (0) 6 0.25 1.05

Low (− 1) 4 0.1 0.9

Fermentations conditions

Level C/N T (°C) t (h)

High (+ 1) 40 37 72

Central (0) 30 33.5 48

Low (− 1) 20 30 24

Table 2  Factor values for independent variables and response 
variable (experimental and predicted) of screening experiments 
to optimize culture media composition

C carbon; N nitrogen; Ph phosphorous; P PHB productivity

Run C (g/L) N (g/L) Ph (g/L) P—experimental 
(mg/L h)

P—predicted 
(mg/L h)

1 − 1 − 1 0 1.75 1.80

2 1 − 1 0 0.54 0.69

3 − 1 1 0 0.59 0.60

4 1 1 0 0.24 0.44

5 − 1 0 − 1 0.25 0.64

6 1 0 − 1 0.46 0.67

7 − 1 0 1 1.29 1.24

8 1 0 1 0.26 0.03

9 0 − 1 − 1 1.55 1.33

10 0 1 − 1 1.38 1.11

11 0 − 1 1 1.52 1.77

12 0 1 1 0.43 0.64

13 0 0 0 0.27 0.29

14 0 0 0 0.27 0.29

15 0 0 0 0.32 0.29
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Quantification of accumulated PHA
Gas chromatography (GC) was used to quantify accu-
mulated PHA. This technique specifically deter-
mines PHB. Samples for GC analysis were prepared 
as described by Riis and Mai (1988). Two  mL of 1,2 
dichloroethane, 2  mL propanol containing hydrochlo-
ric acid (1 volume concentrated hydrochloric acid  + 4 
volume propanol) and 200 μL of internal standard solu-
tion (2 g benzoic acid in 50 mL propanol) were added 
to 40  mg of dry bacterial mass. Then, the sample was 
kept for 2 h in an incubator at 100 °C. After cooling to 
room temperature, 4 mL of water were added, and the 
mixture was shaken for 20–30 s. The heavier phase was 
injected into a gas chromatograph Hewlett Packard 
5890 (Series II).

To quantify PHB, a calibration curve was previously 
performed by using a commercial PHB (Biomer, Ger-
many). Productivity (P) of PHB was calculated using 
Eq. 1:

where PHB is the quantity of the biopolymer in milli-
grams, t is the fermentation time in hours, and V is the 
culture media volume in liters.

PHA extraction
Centrifuged cells were lyophilized in a Rificor, 
L-A-B3-C lyophilizer and PHA was extracted with 

(1)P =
PHB

tV
,

chloroform in a Soxhlet apparatus during 48  h. After 
extraction, solvent was removed by evaporation and 
PHA yield was calculated by Eq. 2:

where PHAextracted corresponds to the PHA obtained 
after solvent extraction and dry cell weight is the amount 
of lyophilized cell used, both expressed in g/L.

Characterization of extracted PHA
Fourier‑transform infrared (FTIR)
FTIR analysis was performed using a spectrophotom-
eter Nicolet Nexus. Samples were well-mixed with 
KBr (Sigma-Aldrich, 99% purity) at 1%  w/w and press 
in order to obtain transparent discs. Spectra were 
obtained from 100 accumulated scans at 4 cm−1 resolu-
tion in the range 4000–400 cm−1.

Scanning electron microscopy (SEM)
Scanning electron microscopy (SEM) was conducted 
on a JEOL JSM-35CF electron microscope at an accel-
erating voltage of 10 kV. Samples were dispersed over 
3M aluminum conductive tape stuck onto stubs by 
using an air flow and coated with gold in a sputter 
coater SPI.

Differential scanning calorimetry (DSC)
Thermal properties were evaluated by differential scan-
ning calorimetry (DSC) using a Perkin-Elmer DSC 
calorimeter under nitrogen atmosphere. Analysis was 
carried out on  ~ 8  mg of sample heating from 25 to 
190 °C, followed by a subsequent cooling down to 25 °C, 
and finally a second heating to 190  °C. All thermal 
ramps were performed at a rate of 10  °C/min. Melting 
point (Tm) and melting enthalpy (∆Hm) were obtained 
from thermograms at the second heating stage.

Thermogravimetric analysis (TGA)
Thermal degradation was performed using a thermo-
gravimetric balance Discovery TA Instruments. Sam-
ples (~ 8  mg) were heated from 25 to 700  °C, under 
nitrogen atmosphere, at 10  °C/min. Mass–tempera-
ture curves were obtained and the first derivative was 
calculated. The peak of the first derivative indicates 
the maximum thermal degradation temperature (Td), 
point of maximum rate of change on the mass curve.

(2)PHAyield =
PHAextracted

Dry cell weight
× 100,

Table 3  Factor values for independent variables and response 
variable (experimental and predicted) of screening experiments 
to optimize fermentation conditions

C/N carbon/nitrogen ratio; T fermentation temperature; t fermentation time; P 
PHB productivity

Run C/N T (°C) t (h) P—experimental 
(mg/L h)

P—predicted 
(mg/L h)

1 − 1 − 1 0 5.1 5.3

2 1 − 1 0 5.5 4.6

3 − 1 1 0 4.4 5.3

4 1 1 0 4.0 3.9

5 − 1 0 − 1 9.7 9.9

6 1 0 − 1 4.0 5.3

7 − 1 0 1 3.0 1.8

8 1 0 1 4.5 4.4

9 0 − 1 − 1 10.3 10.0

10 0 1 − 1 9.5 8.5

11 0 − 1 1 3.2 4.3

12 0 1 1 4.8 5.2

13 0 0 0 6.9 6.6

14 0 0 0 6.3 6.6

15 0 0 0 6.5 6.6
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Results and discussion
Carbon source
Vinasse samples were physicochemically characterized 
and results are shown in Table 4. As it can be observed, 
physicochemical parameters of both samples (V2017 
and V2018) were significantly different between them. 
This variability depends on the sugar cane variety and 
maturation, the substrate used in fermentation, distil-
lation, and sulfitation process that enriches the down-
stream products with sulfur compounds especially 
sulfate species (Godoi et  al. 2019). This wide range of 
physicochemical properties represents a challenge to 
use vinasse as carbon source on PHA production. Even 
though both studied vinasse samples contained raised 
BOD and COD levels and high suspended solids, V2017 
presented significantly higher values than V2018. These 
parameters are responsible for the difficult disposal and 
are according to the average values found in the litera-
ture (Acosta-Cárdenas et al. 2018; Carrilho et al. 2016; 
Nakashima and Oliveira 2020). TN content of V2017 
was 4.3 times higher than the corresponding to V2018. 
In the bibliography it was found TN values goes from 
60 mg/L (Zanfonato et al. 2018) to 587 mg/L (Popolizio 
2017), demonstrating once again the variability of this 
by-product and the challenge when using it as carbon 
source to produce biopolymers via microbial fermen-
tation. Regarding TOC content, the value correspond-
ing to V2018 was about half of the content obtained for 
the V2017 sample. Parsaee et al. (2019) reported a TOC 
value of 20.16  g/L, similar to the value obtained for 
V2018. On the other hand, Fagier et al. (2018) obtained 
a TOC value of 48  g/L, similar to the value obtained 
for V2017. pH values of vinasse samples are in the range 
reported on the bibliography (Fukushima et  al. 2019). 
These low values hinder the disposal of this by-product.

Optimization of culture media composition 
and fermentation conditions
In this study, Bacillus megaterium was employed to syn-
thesize biopolymers via microbial fermentation. Accord-
ing to López et  al. (2012) and Porras et  al. (2017), this 

strain is capable of producing PHB and PHA copolymers, 
respectively. To optimize culture media composition 15 
experiments, given by the Box–Behnken experimental 
design, were carried out and obtained PHB productiv-
ity (P) values and predicted responses are included in 
Table  2. The vinasse sample employed in these assays 
as carbon source was V2017. The influence of the differ-
ent tested independent variables (carbon, nitrogen, and 
phosphorus concentration) on the biopolymer productiv-
ity are given by the p value: those that presented p  < 0.05 
significantly affected the response parameter, meanwhile 
variables that showed p  > 0.05 were considered not statis-
tically significant.

p values for the three independent variables and their 
interactions are given in Table 5. It is important to note 
that not all variables affected the productivity in the same 
way. It can be seen that C and N statistically influenced 
PHB productivity, considering a significance level of 0.05 
(p  = 0.0441 and 0.0280, respectively). On the other hand, 
phosphorus concentration was not statistically significant 
(p  = 0.8941). Interactions between studied variables were 
not remarkable on PHB productivity, except the quad-
ratic term N2 (p  = 0.0167).

For predicting the optimal culture media composition, 
a polynomial function was fitted to the experimental data 
(Eq. 3):

where P is PHB productivity (mg/L h), meanwhile C, N, 
Ph represents the carbon, nitrogen, and phosphorus con-
centration (mg/L) in the culture media.

This polynomial function represents a good fit of 
experimental data since the determination coefficient 

(3)

P = 0.286− 0.296C− 0.338N− 0.010Ph

− 0.080C
2
+ 0.213CN− 0.310CPh

+ 0.570N
2
− 0.228NPh+ 0.357Ph

2
,

Table 4  Physicochemical properties of vinasse samples

BOD biological oxygen demand; COD chemical oxygen demand; TN total 
nitrogen; TOC total organic carbon

Physicochemical property Vinasse sample

V2017 V2018

BOD (mg/L) 96,500 ± 500 36,170 ± 1808

COD (mg/L) 1,01,600 ± 500 40,880 ± 822

TN (mg/L) 1100 ± 20 255 ± 10

TOC (g/L) 40.5 ± 0.5 16.3 ± 0.5

pH 4.8 4.6

Table 5  Coefficient and p values for independent variables and 
their interactions, obtained from optimization of culture media 
composition

C carbon; N nitrogen; Ph phosphorous

Variable Coefficient p value

C − 0.2956 0.044

N − 0.3384 0.028

Ph − 0.0155 0.894

C2 − 0.0783 0.651

C–N 0.2130 0.231

C–Ph − 0.3106 0.104

N2 0.5745 0.017

N–Ph − 0.2287 0.203

Ph2 0.3570 0.080
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(R2) was 0.8924. According to Nygaard et al. (2019), the 
model has a high correlation because R2 is in the range 
of 0.7–0.9. C and N variables have similar negative stand-
ardized coefficients (− 0.296 and − 0.338, respectively). 
The fact that these coefficients were negative means that 
PHB productivity decreased when C or N concentration 
were increased. Even though the coefficient of Ph was 
also negative, it was very low (−  0.010), indicating that 
the effect of this variable on PHB productivity was not 
significant. Quadratic terms are model fit coefficients 
which demonstrate that there is a curvature and a local 
optimum point could be found. Thus, the optimum level 
for each studied variable, estimated from the maximum 
point of the polynomial PHB model, was estimated using 
the solver function of Statgraphics Centurion XV.II X64 
tools. Optimum level of C, N, and Ph were − 1, − 1 and 
0.935, respectively. Comparison with data found in the 
bibliography is difficult because several factors should 
be taken into account to analyze the effect of these vari-
ables on PHB productivity. For example, Bora (2013) 
studied the PHA synthesis by Bacillus megaterium, using 
fructose as carbon source, and K2HPO4 and Na2HPO4 as 
phosphorus sources. This author reported that fructose 
and its interaction with Na2HPO4 significantly affected 
PHB productivity. On the other hand, Nygaard et  al. 
(2019) carried out fermentations for PHA production 
using Cupriavidus necator, and evaluated the effect of 
carbon, nitrogen and phosphorus concentration, as well 
as medium pH on the biopolymer productivity. Obtained 
results showed that productivity was statistically affected 
by N, pH, and C2. These examples from the literature 
demonstrate that the effect of fermentation variables 
on PHA productivity depends on many factors such as 
strain, nutrient sources, and fermentation conditions, 
among others. Therefore, the comparison with results 
obtained in this work is not suitable.

As it was aforementioned, phosphorus concentra-
tion did not have a significant effect on PHB productiv-
ity, so the response surface was built taking into account 
only carbon and nitrogen concentrations as independ-
ent parameters and the productivity as response vari-
able (Fig.  2). These response surface plots reinforced 
the discussed results about the effect of C and N con-
centrations on PHB productivity. As can be seen, pro-
ductivity increased when the carbon and nitrogen 
concentration decreased. This could be attributed to the 
fact that vinasse contains phenolic compounds, difficult 
to be biologically degraded by bacteria, that have antimi-
crobial and phytotoxic properties (Parsaee et  al. 2019). 
Besides, the decrease in PHB productivity by increas-
ing nitrogen concentration may be due to that Bacillus 
sp. bacteria require the limitation of this nutrient for the 
production of PHB as metabolite (Kanekar et al. 2015).

From the optimum levels, PHB maximum productivity 
was calculated obtaining a value of 2.43 mg/L h. This is 
a low productivity compared to values found in the lit-
erature. For example, Bhattacharyya et al.(2012) reported 
a PHB productivity of 0.21  g/L  h employing vinasse as 
carbon source and Haloferax mediterranei as strain. 
Therefore, to improve PHB productivity by B. megate-
rium employing vinasse as carbon source, an additional 
experimental design was carried out to optimize the C/N 
ratio and growing conditions (fermentation time and 
temperature). Therefore, 15 experiments given by the 
Box–Behnken experimental design were done and PHB 
productivity (P) values and predicted responses obtained 
are included in Table  3. The vinasse sample employed 
in these assays as carbon source was V2018. The p value 
for the three variables and their interactions are given in 
Table  6. Taking into account the different independent 
variables, fermentation time had a statistically signifi-
cant effect on PHB productivity (p  = 0.0034). Meanwhile, 

Fig. 2  Response surface representing the effect of carbon and 
nitrogen concentration in culture medium on PHB productivity

Table 6  Coefficient and p values for independent variables and 
their interactions, obtained from optimization of fermentation 
conditions

C/N carbon/nitrogen ratio; T fermentation temperature; t fermentation time

Variable Coefficient p value

C/N − 0.5340 0.278

T − 0.1878 0.702

t − 2.2338 0.003

C/N-T − 0.1580 0.756

C/N-t 1.8160 0.032

T–t 0.6016 0.370

(C/N)2 − 1.7675 0.495

T2 − 0.0898 0.901

t2 0.4981 0.495
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fermentation temperature and C/N ratio did not sig-
nificantly affect PHB productivity by B. megaterium (p  
= 0.7016 and 0.2777, respectively). Regarding the interac-
tion between the variables, the only one that had a nota-
ble influence on PHB productivity was the one between 
C/N and time (0.0318), probably due to the significant 
effect of fermentation time. None of the quadratic terms 
were statistically significant. Equation  4 described the 
polynomial model which was a good fit to the experimen-
tal data with a determination coefficient (R2) of 0.9093:

where P is the PHB productivity (mg/L  h), t is the fer-
mentation time (h), and T is the fermentation tempera-
ture (°C).

The time variable had the largest negative standardized 
coefficient (− 2.25), indicating that an increase in the fer-
mentation time led to a decrease in PHB productivity. 
The longer the fermentation time the lower the produc-
tivity. This tendency is in good agreement with the low 
PHB production rate, not accumulating more PHB until 
the end of the cultivation. Similar behavior was reported 
by Dalsasso et  al. (2019) studying PHB production by 
Cupriavidus necator using a blend of vinasse and sug-
arcane molasses as substrate. On the other hand, coeffi-
cients of C/N and T variables presented very low values, 
demonstrating that they had no significant effect on the 
response variable. The quadratic coefficients and those 
of the interactions between variables resulted negligible, 
except the one corresponding to C/N and t interaction, 
mainly attributed to the effect of the fermentation time. 
Figure  3 shows the three response surface plots repre-
senting the productivity as response variable and C/N 
ratio and fermentation time (Fig.  3a), temperature and 
fermentation time (Fig.  3b), and C/N and temperature 
(Fig.  3c) as independent variables. The only significant 
interaction was between C/N and t; when t value was 
minimal and the ratio C/N increased, the production 
of PHB increased. Besides, when t reached its highest 
value, the slope of PHB production as a function of C/N 
became negative (Fig. 3a). The factor associated with the 
quadratic contribution of C/N presented its maximum 
value in the vicinity of the central point. Thus, the maxi-
mum PHB production occurred when C/N had a value 
of 23.95 (Fig.  3a, c). As it can be seen, the temperature 
range assayed in these experiences did not significantly 

(4)

P = 6.57− 0.524C/N − 0.175T − 2.25t

− 1.7C/N 2
− 0.2C/N .T + 1.8C/N .t

− 0.08T
2
+ 0.6T .t + 0.5t

2
,

affect the PHB productivity (Fig. 3b, c), despite these val-
ues being within the optimal growing temperature range 
for this strain (Porras et al. 2017).

The optimal value of C/N ratio, fermentation time 
and temperature to produce PHB by B. megaterium and 
vinasse as carbon source were 24.01, 30.25  °C and 24 h. 
The optimal productivity value in this case, predicted by 
the model, was 10.6 mg/L h. In order to verify the good 
correlation of the model, fermentations was carried out 
under these optimal conditions that theoretically maxi-
mize the PHB productivity and the experimental value 
resulted being 9.7 mg/L h. Thus, the effectiveness of the 
model was demonstrated since both values are similar 
with the same magnitude order. Pramanik et  al. (2012) 
reported a similar PHB productivity (0.015 g/L h) using 
a culture medium with 10% raw vinasse as carbon source 
and Haloarcula marismortui as strain. Otherwise, 
reported values of PHB production by Bacillus megate-
rium by other authors are very variable according to the 
carbon source used. Jimenez (2011) informed a PHB pro-
ductivity of 0.082  g/L  h from glucose as carbon source, 
Obruca et  al. (2011) reported a value of 0.056  g/L  h 
employing cheese whey, and Porras (2012) obtained a 
PHB productivity of 0.0125 g/L h using starch.

As it was aforementioned, vinasse sample employed 
in the optimization of the media composition was V2017; 
meanwhile for the optimization of growing conditions, 
V2018 was employed. The variability in physicochemical 
properties of both vinasse samples led to significant dif-
ferences in PHB productivity. As it can be seen, the best 
values were obtained using V2018 in the second experi-
mental design. When V2018 was employed, it reached a 
productivity 4.4 times higher than value obtained with 
V2017, estimated for the optimal conditions. This differ-
ence could be associated with the higher BOD and COD 
values of V2017 than those of V2018. Particularly, BOD high 
values indicate that microorganisms need more oxygen 
to degrade it (Porras 2012) and this issue could affect the 
PHB production by B. megaterium from V2017.

PHA extraction and characterization
Fermentations were carried out using the optimal com-
position. PHB was extracted and a characterization was 
done. Considering the mass of dry cells and extracted 
PHA, a polymer yield of 37% was obtaining. Valap-
pil et  al. (2007) reported a similar value for PHA yield 
(31%), using glucose as substrate and Bacillus cereus as 
microorganism. On the other hand, using vinasse as car-
bon source, Pramanik et al.(2012) obtained a PHA yield 

Fig. 3  Response surface representing the effect of a C/N ratio and time, b temperature and time, and c C/N ratio and temperature on PHB 
productivity

(See figure on next page.)
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Fig. 3  (See legend on previous page.)



Page 10 of 12Trapé et al. Bioresources and Bioprocessing           (2021) 8:130 

of 23% employing Haloarcula marismortui as strain and 
Zanfonato et  al.(2018) reported a maximum PHA yield 
of 26% with Cupriavidus necator. In addition, Bacillus 
sp. accumulated 75.5% (Das et al. 2018), 54.6% (Mohan-
rasu et  al. 2020) and 59% (Jimenez 2011) PHA using 
cheese whey in the first case and glucose in the others, 
respectively.

FTIR spectra of synthesized PHA are shown in Fig.  4 
and it is in consonance with the PHB structure reported 
in the bibliography. A high intense band at 1726  cm−1 
was observed which corresponds to the C=O stretch of 
the ester group (Lathwal et  al. 2018). Absorption band 
at 1455  cm−1 is attributed to the asymmetric deforma-
tion of C–H bonds in –CH2 groups, while the band at 
1380  cm−1 is assigned to the symmetric vibration of –
CH3 groups. The band at 1230  cm−1 is assigned to CH2 
vibrations (Jimenez 2011).

Figure  4 also includes a SEM micrograph of the 
extracted biopolymer, showing the morphology of PHA 
granules. The microstructure gives a fairly porous mate-
rial with fine grains interconnected and a strong tendency 
to form multigrain agglomerates. The morphology shows 
grains that are pseudo-spherical in shape with fairly uni-
form distribution. Similar observations were reported by 
Nwinyi and Owolabi (2019). They used microbial species 
obtained from an abattoir employing different carbon 
sources (acetate and molasses) in the mineral medium.

The melting temperature of obtained PHB was taken 
at the maximum of the endothermic peak in the DSC 
second heating thermogram. A value of 177.7  °C was 
obtained which is in good agreement with values 
reported by Pradhan et al. (2018). These authors reported 
values of 175 °C and 176 °C for PHA obtained by Bacillus 

megaterium and Cupriavidus necator, respectively. The 
melting enthalpy determined of the PHA obtained in this 
study was 79.6  J/g. Pradhan et  al.(2018) using B. mega-
terium and fructose as carbon source reported a melting 
enthalpy of 33 J/g and Ansari and Fatma (2016) obtained 
83.2 J/g by Nostoc muscorum NCCU-442 and glucose as 
carbon source.

TGA was performed to detect the thermal stability of 
PHA. The maximum degradation temperature for the 
PHA synthesized was determined using the first deriva-
tive of thermogravimetric curve. PHA degradation 
occurred in two stages: in the first step, the degradation 
started at 225 °C and extended until 300 °C with a max-
imum degradation occurring at 255 °C and the second 
step began after 310 °C and the maximum degradation 
took place at 325 °C. The degradation in more than one 
stage was reported by various authors (Pradhan et  al. 
2018; Hassan et  al. 2016; Liu et  al. 2014). Particularly, 
Hassan et al. (2016) showed that PHB from Bacillus sp. 
was decomposed in 3 stages and resisted until 320 °C.

Conclusions
A medium was optimized to maximize PHA produc-
tion with vinasse as carbon source. It was possible to 
determine the optimal culture medium composition 
and operating conditions. Vinasse composition had an 
important effect on productivity. FTIR spectrum, SEM 
micrography and melting temperature of extracted 
biopolymer are in good agreement with values reported 
in the literature.

This study demonstrated the successful utilization of 
vinasse for PHB production by Bacillus megaterium 
at the shake-flask level. Although promising at the 

Fig. 4  SEM micrograph and FTIR spectrum of PHA synthesized by B. megaterium using vinasse as carbon source
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laboratory level, scaled-up fermentation studies with 
better controlled conditions (mainly pH and dissolved 
oxygen) can provide further insight into the functional 
feasibility of PHA production from vinasse.
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