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Adequate fertilization strategies are of 
economical and environmental concerns. The balance sheet 

method may be use for determining N fertilization requirements 
in cases where yield response functions are not available (Vanotti 
and Bundy, 1994). For applying this methodology, N mineraliza-
tion during residue decomposition and from soil organic matter 
degradation must be known, which, combined with measured 
soil mineral N, allows estimation of total N supply capacity of 
the soil. This estimation is contrasted with crop N demand to 
calculate fertilizer rate for non-N-fixing crops (Brye et al., 2003):

Nfertilizer = (Ncrop + Nresidual) – (Nmineral + 
	 Nmineralization – Nlosses)	  [1]

where Nfertilizer represents the rate of fertilizer nitrogen, Ncrop is 
the amount of nitrogen absorbed to attain a yield goal, Nresidual 
is remaining mineral nitrogen in the soil at harvest, Nmineral is 
mineral nitrogen content of the soil at sowing, Nmineralization 
is the net nitrogen mineralization and represents the difference 
between gross nitrogen mineralization and immobilization, and 
Nlosses integrates the possible losses of nitrogen from the agro-
ecosystem, mainly by volatilization, denitrification, and leaching.

The balance equation may be rearranged to estimate net N 
mineralization when the other terms are known:

Nmineralization = (Ncrop + Nresidual + Nlosses) – 
	 (Nmineral + Nfertilizer)	 [2]

As direct determination of all N losses is rather difficult and 
subjected to uncertainties (Brye et al., 2003), many times the 
balance sheet methodology is used for N mineralization esti-
mation by the equation:

Nmineralization – Nlosses = (Ncrop + Nresidual) – 
	 (Nmineral + Nfertilizer) 	 [3]

where the term Nmineralization – Nlosses is the so-called apparent 
N mineralization (Engels and Kuhlmann, 1993), and repre-
sents the difference between net N mineralization and N losses 
from the agroecosystem.

Apparent N mineralization may be not correlated to net 
mineralization, but makes a better picture of the real availabil-
ity of N for the crop (Blankenau et al., 2000). It is an impor-
tant source of N for grain crops and may contribute with much 
of the N requirements of graminaceus crops (Delphin, 2000, 
Campbell et al., 2008). In-season prediction of apparent N 
mineralization under field conditions is usually very difficult, 
but some empirical models had been developed using linear 
regression methods (Rohde, 1996, Egelkraut et al., 2003).
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Artificial neural networks (ANNs) are empirical modeling 
techniques simpler than process-based models, with great predic-
tive quality, and becoming popular in biological sciences during 
recent years (Joergensen and Bendoricchio, 2001, Özesmi et al., 
2006). Their architecture and functioning has been described 
elsewhere (Fausett, 2008, Gupta et al., 2003). They are adaptive 
analytical methodologies with a structure and processing similar 
to the neural architecture and functioning of the brain, capable 
of extracting hidden information from data (Joergensen and 
Bendoricchio, 2001). Over other empirical modeling techniques, 
ANNs have the advantage that they do not assume an a priori 
structure for the data and are well suited for fitting nonlinear rela-
tionships and complex interactions (Batchelor et al., 1997) but, 
as with all modeling techniques, they cannot extrapolate outside 
the range of data inputs. The most common ANN structure is 
the multilayer perceptron structured in three neuronal layers: 
the input layer with a number of neurons corresponding to the 
number of input variables, the hidden layer with a complexity 
determined empirically during ANN fitting, and the output layer 
with a neuron for each output variable (Fig. 1). Information flows 
from the input layer through the hidden layer to the output layer 
and the learning process consists of adjusting the weights associ-
ated to the transfer functions between neurons comparing ANN 
outputs with observed data by an iterative procedure (Joergensen 
and Bendoricchio, 2001). Back propagation is the most common 
algorithm used to perform the learning process during which the 
weights from the output layer through the input layer are adjusted 
(Kaul et al., 2005). This type of ANN is known as feed forward 
neural network. Transfer functions connect neurons passing 
information from one layer to the next. Usually, the linear func-
tion is used between the input layer and the hidden layer, and the 
sigmoid function between the hidden layer and the output layer 
(Kaul et al., 2005). Good results have been obtained using an 
ANN as modeling technique in areas as diverse as environmen-
tal correlation (Park and Vlek 2002), soil organic C prediction 
(Somaratne et al., 2005), fertilizer recommendation (Broner and 
Comstock, 1997), soil hydraulic properties estimation (Nemes et 
al., 2003), crop development assessment (Elizondo et al., 1994), 
epidemic severity evaluation (Batchelor et al., 1997), and yield 
forecasting (Kaul et al., 2005, Alvarez, 2009).

The Pampas is a vast plain of around 50 Mha, which runs 
from 28 to 40° S latitude in Argentina, and is considered one of 
the World’s best regions for grain crop production (Satorre and 
Slafer, 1999). Climate is humid temperate, the relief flat or slightly 
rolling with Mollisols as predominant soils (Alvarez and Lavado, 

1998), and its natural vegetation consists of grasslands in which 
graminaceous species dominate (Hall et al., 1992). Agriculture is 
performed on well drained soils and areas with hydromorphic soils 
are devoted to pastures (Hall et al., 1992). The Rolling Pampa, 
in the central portion of the region, is the main agricultural area 
of the country (Hall et al., 1992), with wheat, corn, and soybean 
[Glycine max (L.) Merr.] as main crops, with 70 to 80% of seeded 
surface conducted under no-till (MinAgri, 2010).

Adequate N management is essential for obtaining high wheat 
and corn yields in pampean agroecosystems (Alvarez, 2007). 
Mineralization of N from soil organic pools during the growing 
seasons meets 30% of wheat (González Montaner et al., 1997) 
and 60% of corn (Steinbach et al., 2004) demands for N of 
medium to high yielding crops. In average, 50 and 150 kg N ha−1 
are mineralized, respectively. Difference in N mineralization 
between the growing cycles of wheat and corn may be attributed 
to temperature conditions but this has not been deeply studied.

In pampean soils, N mineralization is extremely variable from 
one site to another, depending on soil conditions (González 
Montaner et al., 1997) and management (Alvarez et al., 2004). 
Estimation under field scenarios is necessary as the balance sheet 
method has become widespread for N fertilizer recommenda-
tion (Alvarez, 2007). Our objectives were (i) to develop models 
suitable for predicting N mineralization rate which may be used 
as helping tools when applying the balance sheet methodology 
in soils of the Rolling Pampa, and (ii) to determine the main 
climate, soil, and management factors controlling mineraliza-
tion during wheat and corn growing seasons.

MATERIALS AND METHODS
Study Area

The Rolling Pampa (32–35° S to 58–61° W) is a vast plain of 
around 10 Mha (Hall et al., 1992) with slightly rolling relief and 
long slopes varying from 0.5 to 1%. Mean annual rainfall ranged 
from 900 to 1000 mm (1900–2010 period), depending on the 
site, with 35% received during wheat growing season of June to 
November and 60% falling during corn growing season of Sep-
tember to March. Mean annual temperature is 16 to 17°C, with 
an average monthly maximum of 24°C in January and a mini-
mum of 10°C in July. Typic Argiudolls, developed over aeolian 
sediments, are predominant soils, with illite as the most common 
clay mineral and usually of a silty clay loam texture. Typic Hap-
ludolls of coarser textures are also present (Hall et al., 1992).

Experimental Design and Sampling

Fifty-eight field experiments were performed with wheat 
between 1997 and 1999 and 35 with corn between 2000 and 
2002, under a broad range of variation of climate, soil, and 
management conditions, representing some common scenarios 
founded in the region (Table 1). Experiments were installed 
within production fields and managed as commercial crops. 
Wheat experiments have been described previously (Alvarez 
et al., 2004). Briefly, 26 of these experiments were managed 
with tillage and 32 were no-tilled. Previous crop was soybean 
at 26 sites and corn at 32 sites. Nitrogen fertilization, usually at 
sowing or immediately after, ranged from 25 to 97 kg N ha−1. 
All sites received phosphorus fertilization with rates ranging 15 
to 20 kg P ha−1. Each experiment consisted of one single plot 
of 20 by 20 m in which, at the growth stage of two expanded 

Fig. 1. Representation of an artificial neural network showing 
layers and connections.
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leaves, soil samples were collected by compositing at least six 
cores (8 cm diameter, 0- to 30-cm depth) taken on the row and 
at different distances on the furrow, for soil fertility evaluation, 
root biomass production and buried residue quantification. 
Soil was dispersed in water and buried residues + roots washed 
on 500 microns mesh size and dried. Residues were separated 
from roots by hand and both weighed. Surface residue was col-
lected from six microplots of 25 by 25 cm each, and were also 
washed and weighed. At physiological maturity, aboveground 
biomass was harvested in at least six microplots of 17 × 100 cm 
by plot, dried (70°C), grain separated from straw, and soil and 
surface residue sampling was repeated. Corn experiments were 
performed 18 under tillage, and 17 under no-till, with soybean 
as previous crop in all cases. Each experiment had a control 
(zero N) plot and N fertilized plot, with rates varying form 32 
to 106 kg N ha−1, applied at the two-four expanded leaf growth 
stage. This design allowed generating a wide range of soil + 
fertilizer N availability. Phosphorus fertilizer was received in all 
cases at rates ranging 15 to 20 kg P ha−1. Plots had 400 m2 each. 
At the stage of four expanded leaf, soil cores and surface residue 
were collected as indicated for wheat. When the crop reached 
physiological maturity, 10 microplots of 22 by 70 cm each were 
harvested by treatment plot for aboveground biomass and yield 
evaluation. Soil and surface residue was sampled again at this 
time. Rainfall was recorded during the crops growing cycles at 
all sites. Air temperature records were obtained from observato-
ries under 50 km from the experiments.

Analytical Methods and Estimations

Soil ammonium and nitrate were determined on fresh samples 
from the 0- to 30-cm depth by steam distillation (Mulvaney, 
1996). On dried 500-µm-mesh sieved soil, organic N was deter-
mined by wet digestion (Bremner, 1996), extractable P by the Bray 
method (Kuo, 1996), pH in a soil/water ratio 1:2.5, and texture 
by the hydrometer method (Gee and Bauder, 1986). The mass of 
soil in the extracted cores was weighed for bulk density assessment 
to calculate results on areal bases. Mineral N in the 0- to 60-cm 
soil layer was estimated using data from the 0- to 30-cm layer by 
a regression model locally developed (Alvarez et al., 2001). Soil N 
mineralization potential was estimated using samples of 100-g dry 
soil incubated in 400-mL flasks at 30°C and 50% soil water hold-
ing capacity for 17 d. Ammonium plus nitrate were determined 
by steam distillation at the end of the incubations. Carbon in the 
soil light fraction was determined by centrifuging (1000 × g) 5 g 
soil in 30 mL of a bromoform-ethanol mixture having a density of 
2 g mL−1 (Alvarez and Alvarez, 2000). Nitrogen content of crop 
grain, straw and roots and decomposing residues was analyzed by 
the Kjeldahl digestion (Jackson, 1960, p. 183–204).

Crop N uptake was calculated as the sum of N in aboveg-
round biomass, roots, and rhizodeposition. Total root biomass 
to the 100-cm depth was estimated taking into account that 
roots in the 0- to 30-cm layer represented 70% of that biomass 
(Jackson et al., 1996). We assumed that rhizodeposition was 
equivalent to 6% of the aboveground + root N at harvest 
(Merbach et al., 1999). Nitrogen released from decomposing 
residues, available for crop utilization, was estimated as the dif-
ference in the N content of residues on an areal basis between 
the two- to four-leaf growth stage and maturity. This N 
content was estimated by taking into account measured residue T
ab

le
 1

. M
ai

n 
ch

ar
ac

te
ri

st
ic

s 
of

 t
he

 e
xp

er
im

en
ts

 in
 w

hi
ch

 a
pp

ar
en

t 
ni

tr
og

en
 m

in
er

al
iz

at
io

n 
fr

om
 r

es
id

ue
s 

(A
N

M
R

) 
an

d 
hu

m
ic

 s
ub

st
an

ce
s 

(A
N

M
H

) 
w

as
 e

st
im

at
ed

.

C
ro

p
C

la
y 

+ 
si

lt
†

pH
†

M
in

er
al

 N
‡

O
rg

an
ic

 N
†O

rg
an

ic
 C

† 
Li

gh
t 

fr
ac

ti
on

 C
†

N
 m

in
er

al
iz

ed
§ 

 R
es

id
ue

s¶
  

R
es

id
ue

 N
 T

ot
al

 N
 in

 r
es

id
ue

 
R

ai
nf

al
l#

  
Te

m
p.

#
Y

ie
ld

A
N

M
R

A
N

M
H

g 
kg

–1
kg

 h
a–

1
M

g 
ha

–1
kg

 h
a–

1
M

g 
D

M
 h

a–
1

g 
kg

–1
 D

M
kg

 h
a–

1
m

m
°C

M
g 

D
M

 h
a–

1
kg

 h
a–

1

W
he

at
   

M
ea

n
62

0
6.

1
15

3
6.

1
65

.1
6.

8
16

7
9.

5
10

.5
96

26
0

16
.0

3.
8

16
34

   
M

ax
.

79
0

6.
5

26
0

9.
0

87
.2

12
.6

32
6

20
.0

16
.4

20
0

45
0

16
.4

6.
3

64
22

0
   

M
in

.
47

0
5.

9
68

4.
7

49
.6

3.
4

51
3.

4
4.

6
37

19
4

15
.5

2.
1

–4
2

–8
0

C
or

n
   

M
ea

n
67

0
6.

0
91

7.
1

75
.2

10
.6

12
3

5.
3

14
.6

74
49

2
21

.4
9.

4
15

12
7

   
M

ax
.

88
0

6.
4

18
8

10
.4

10
9

16
.1

30
3

13
.0

18
.3

17
8

74
0

22
.4

14
.5

49
32

8
   

M
in

.
43

0
5.

7
20

5.
0

48
.4

5.
5

16
2.

1
10

.7
33

30
6

20
.5

4.
6

–3
.9

2.
0

† 
In

 t
he

 0
- 

to
 3

0-
cm

 s
oi

l l
ay

er
.

‡ 
N

it
ra

te
 +

 a
m

m
on

iu
m

 N
 in

 t
he

 0
–6

0 
cm

 s
oi

l l
ay

er
 a

t 
tw

o 
le

af
 g

ro
w

th
 s

ta
ge

 o
f c

ro
ps

.
§ 

N
 m

in
er

al
iz

ed
 in

 v
it

ro
 fr

om
 s

am
pl

es
 t

ak
en

 fr
om

 t
he

 0
–3

0 
cm

 s
oi

l l
ay

er
.

¶ 
D

ry
 m

as
s 

of
 p

re
vi

ou
s 

cr
op

 r
es

id
ue

s 
pr

es
en

t 
on

 s
oi

l s
ur

fa
ce

 s
um

m
ed

 t
o 

bu
ri

ed
 r

es
id

ue
s 

in
 t

he
 0

–3
0 

cm
 la

ye
r 

at
 t

he
 t

w
o 

le
af

 g
ro

w
th

 s
ta

ge
 o

f c
ro

ps
.

# 
To

ta
l r

ai
nf

al
l a

nd
 m

ea
n 

ai
r 

te
m

pe
ra

tu
re

 d
ur

in
g 

cr
op

s 
gr

ow
in

g 
se

as
on

s.



1162	 Agronomy Journa l   •   Volume 103, Issue 4  •   2011

mass and its N concentration. It was assumed that 30% of the 
N mineralized from surface residue and 70% from buried resi-
due became microbial biomass (Parton et al., 1993). The total 
remaining amount of N released to the soil solution by surface 
and buried residue was considered the ANMR. Apparent N 
mineralization was calculated with Eq. [3], using measured 
values for soil, plant, and fertilizer inputs. The ANMH was the 
difference between apparent N mineralization and ANMR. 
Means and ranges of climate, soil, and crop variables, with their 
corresponding units, are presented on Table 1.

Modeling Techniques

Polynomial regression and ANNs were compared as model-
ing techniques. The regression model used incorporated linear, 
quadratic, and interaction terms of independent variables on 
the dependent variable (Colwell, 1994):

y = a0 + a1v1 – a2v1
2 + a3v2 – a4v2

2 + a5v1v2 + 
	 ... + an–2vx–an–1vx

2 + anvxvx–1	 [4]

where y = ANMR or ANMH, a0 to an = regression coeffi-
cients, and v1 to vx =  independent variables.

The data set was randomly partitioned into 70% for training 
and 30% for validation. Models were fit using the training set 
and their ability to generalize was evaluated with the validation 
set. The forward stepwise method was used for variable selection. 
Only terms significant at P = 0.05 by the F test were maintained 
in the models. Categorical variables, tillage system and previous 
crop, were included as dummy variables in models. The soil and 
climate variables presented in Table 1 (clay + silt, pH, mineral N, 
organic N, organic C, light fraction C, mineralized N in vitro, 
residue dry matter, residue N concentration, residue N mass, 
rainfall, and temperature) were also considered as independent 
variables for ANMR and ANMH estimation. Linear and inter-
action terms were only included for assessing categorical variable 
effects. Additional, independent variables were created by calcu-
lating ratios or products of the original random variables in Table 
1 (organic C/organic N, organic C/clay+silt, organic N/clay+silt, 
rainfall × temperature). Combined variables which produced 
better predictions than the original variables were incorporated 
in the final model. Multicollinearity was checked by the variance 
inflator factor (Neter et al., 1990).

The ANN models were estimated using the back propaga-
tion algorithm for weights fitting by a supervised learning 
procedure (Rogers and Dowla, 1994). Linear transfer func-
tions connected the input layer with the hidden layer and the 
output layer with the network output; meanwhile, the sigmoid 
function, described by Lee et al. (2003), connected the hidden 
layer with the output layer. To make data suitable for better 
network performance, continuous input variables were scaled 
(Somaratne et al., 2005, Specht, 1991). The minimax procedure 
was applied. Network outputs were de-scaled to original units. 
Categorical variables, previous crop or tillage system, were 
taken as nominal variables and encoded for neural networks 
fitting (Brouwer, 2004). All the same independent variables 
tested for regression analysis were initially used as inputs in 
ANN development. The hierarchical approach of Schaap et 
al. (1998) was implemented during variable selection, testing 
variables or combination of variables as inputs. In a first step, 

sensitivity analysis was performed to weigh the effect of differ-
ent inputs on ANMR and ANMH by calculating a sensitivity 
ratio (SR) (Miao et al., 2006). The higher this ratio, the greater 
the impact of the input on the output. Only variables with 
SR > 1 were preselected because a lower value indicates no 
impact of the variable on the ANN output (Miao et al., 2006). 
Selected variables were then tested as inputs by a stepwise pro-
cedure (Gevrey et al., 2003). Maximum simplification of ANN 
architecture was achieved by reducing input variables as much 
as possible without reducing R2 and taking into account that 
the SR of all variables in the final models were >1. The learning 
rate, which controls the magnitude of weights changes during 
each iteration made by the back propagation algorithm (Kaul 
et al., 2005), was set at a low value of 0.1, as large learning rates 
may lead to faster convergence but also to local minimum (Lee 
et al., 2003). The epoch size represents the number of itera-
tions during which the back propagation algorithm runs. On 
each epoch, the training data set is fed through the network 
and weights adjusted (Somaratne et al., 2005). Usually, 50 
epochs are enough for convergence (Schaap et al., 1998), so 
an epoch size of 100 was used. Increasing ANN complexity, 
using a higher number of neurons in the hidden layer, leads to 
better fits to the training data but it also increases the problem 
of overlearning, decreasing the ANN ability to generalize 
(Özesmi et al., 2006). Methods describe by Somaratne et al. 
(2005) were used for setting initially the number of neurons 
in the hidden layer, being deleted one at a time, till model 
simplification reduced their prediction ability as judged by R2. 
The number of data in the training set was at least five times 
the number of connections in the ANN to prevent overlearn-
ing (Gupta et al., 2003). Cross-validation was also implemented 
to avoid overlearning (Özesmi et al., 2006), fitting models 
using the training set and testing them against the validation 
set, stopping weights adjustment on the training set when R2 
from the validation set becomes lower than from the training 
set (Park and Vlek, 2002). The same training and validation 
sets as those used for regression fitting were used. Alternative, 
data were partitioned into 50% for training, 25% for valida-
tion and 25% for testing, and results compared with the 70:30 
partition method when developing ANN models. Models were 
fit using the training and validation sets as described above and 
tested against the test sets. The ANN models were fit using 
Statistica (StatSoft, Inc., Tulsa, OK). The RMSE of models 
were calculated (Kobayashi and Salam, 2000). The determi-
nation coefficients of training, validation, and test sets were 
contrasted (Kleinbaum and Kupper, 1979). Modeling methods 
were compared testing the coefficients of determination on the 
same validation data set. Intercepts and slopes of regressions 
of observed vs. estimated data were compared by the t using 
IRENE (Fila et al., 2003). In all cases, P = 0.05.RESULTS

The ANMR ranged from −42 to 64 kg N ha−1, with similar 
averages for wheat and corn, which ranged 15 to 16 kg N ha−1 
(Table 1). As a mean, 15% of total N in residues was released 
during the crops’ growing seasons. Residues were, in most of the 
cases, sources of N for crops. Only in four cases, during wheat 
growing season, they immobilized a quantity of N of agronomic 
significance (>10 kg N ha−1). This immobilization was observed 
in sites when great amounts of corn residues were present in the 
soil. Average ANMR was similar during the growing season of 
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wheat independently of corn or soybean as the previous crop. 
The higher residue mass of corn as previous crop in comparison 
to soybean (11.2 vs. 7.5 Mg DM ha−1) compensated its lower N 
concentration (0.90 vs. 1.22%) leading to similar ANMR aver-
ages. ANMR was higher in sites under no-till than under tillage 
(23.6 kg N ha−1 vs. 8.4 kg N ha−1, respectively). This result was 
attributed to the greater amount of remaining residues from 
previous crops under no-till at the initial stages of the grow-
ing season of wheat (12.6 vs. 7.0 Mg DM ha−1) and corn (7.0 
vs. 3.5 Mg DM ha−1), which may compensate for the lower 
mineralization rate of surface residue. As a mean, under no-till, 
38% of residue mass was buried at the initial phases of crops 
growing seasons; meanwhile, under tillage, 90% of residue mass 
was founded belowground. On the soil surface, residue mass 
decreased on average by 17% during the wheat growing season 
and 29% during the corn growing season. Meanwhile, buried 
residue lost 49 and 48% of their mass, respectively.

The ANMR could be modeled using both linear regression 
an ANN (Fig. 2, 3). The two modeling techniques fit data with 
similar performance, despite the R2 was slightly greater and the 
RMSE lower for the ANN model. No significant differences 
were detected between the R2 of the training and validation 
sets in any case. Also, the R2 of both modeling techniques did 
not differ significantly when compared on the same valida-
tion data set. Both models had an ordinate not different from 
0 and slope equal to 1. When the data was partitioned into 
training (R2 = 0.68), validation (R2 = 0.71), and testing (R2 = 
0.68) sets, the performance of the ANN was not significantly 

affected, indicating that the ANN model developed using early 
stopping of weight fitting did not led to overlearning.

The best ANN fit had six neurons in the hidden layer and 
showed that ANMR was controlled by three factors, the crop 
during which the processes occurs (wheat or corn, SR = 1.25), 
the initial mass of remaining decomposing residues (SR = 
2.29) and its N concentration (SR = 2.22) (Fig. 4). Crop effect 
was small (~10%) on ANMR, and its tendency depended on 
the range of data taken into account. Generally, it was higher 
during corn than during wheat growing season. The ANMR 
increased as residue mass increased, with an average mineraliza-
tion of 4.3 kg N Mg DM−1 residues. Below a N concentration 
of approximately 0.9%, the ANN model predicted immo-
bilization; meanwhile above this threshold, mineralization 
prevailed. A strong interaction between these two variables 
was described by the ANN model, which allowed the estima-
tion of ANMR under contrasting scenarios. The ANN models 
with similar performance to those described here were fit using 
as inputs crop type and total initial N in residues (residue 
mass × N concentration). As these simplified models would 
not allow assessment of the effects of residue mass and its N 
concentration separately, the more complex ANN was selected 
for understanding the effects of control factors on ANMR. 
Other variables had no impact on ANMR and were dropped 
from models. The best regression model was fit using crop type 
and total initial N in residues as independent variables. The 
ANMR predicted by the regression model was higher for corn 
than wheat and increased as the amount of N in residues at the 
beginning of crops growing seasons was greater.

Fig. 2. Observed vs. estimated apparent nitrogen mineralization from residues (ANMR) estimated by a polynomial regression 
method. Full circles: during wheat growing season, empty circles: during corn growing season.

Fig. 3. Observed vs. estimated apparent nitrogen mineralization from residues (ANMR) estimated by an artificial neural network. 
Full circles: during wheat growing season, empty circles: during corn growing season.
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The ANMH showed a broad range from –83 to 328 kg N ha−1 
(Table 1), averaging 34 kg N ha−1 during wheat growing cycle 
and 127 kg N ha−1 during corn growing cycle. In ~20% of sites, 
ANMH had negative values in wheat; meanwhile, no negative 
values were estimated in corn. The ANMH was an important N 
source for wheat, doubling the average flux of N generated from 
residues, and it was the main source of the nutrient for corn, being 
~10 times the magnitude of ANMR.

Modeling of ANMH using regression or ANN could be 
performed with good results (Fig. 5, 6). Intercepts and slopes 
of observed vs. estimated data were not different from 0 and 
1, respectively, both for training and validation data sets, and 
there were no detectable differences in R2 of training and 
validation. The ANN model had six neurons in the hidden 
layer and a little better performance than regression, but not 
significant. Partitioning data into training (R2 = 0.77), valida-
tion (R2 = 0.77), and test (R2 = 0.74) indicated that the model 
fit using only two data sets did not lead to overlearning. The 
ANMH was controlled by soil mineral N level (soil + fertil-
izer N) (SR = 1.17), the amount of initial remaining residues 
from previous crop (SR = 1.23), the N mineralization poten-
tial of soil determined in an incubation test (SR = 1.16), the 
ratio of organic N to clay + silt soil content (SR = 1.01), and 
the interaction of rainfall × temperature (SR = 1.51) (Fig. 7). 
The ANMH decreased in soils with higher initial mineral 
N level, residue mass present and fine particles content, and 
increased as soil organic N, mineralization capacity, rainfall, 
and temperature during the crop growing season were greater. 
Many strong interactions existed between all these variables, so 
the ANN model must be used for ANMH estimation under 
specific site conditions. The selected regression model included 

the same independent variables as those used by the ANN as 
inputs, with similar effects. When mineral N content of the 
soil was dropped from the ANN model a small reduction of 
the determination coefficient was observed (R2 changed from 
0.78 to 0.73). Consequently, a simplified ANN model could be 
fitted that allowed ANMH prediction without using soil N + 
fertilizer N rate as input. This simplified model was suitable for 
ANMH estimation when applying the balance sheet method-
ology for calculating a fertilizer N rate under some common 
scenarios founded in the Pampas (Fig. 8).

DISCUSSION
In the pampean agroecosystems of our study, residues acted 

as sources of N for crops in most of the cases. Despite in some 
sites where ANMR was >30 kg N ha−1 (12% of sites), the aver-
age N mineralization was 15 kg N ha−1, which may be consid-
ered a small nutrient source. Wheat and corn N demands for 
high yields in the region are much higher, ranging 200 and 
300 kg N ha−1, respectively (Alvarez, 2007).

Our methodology for ANMR estimation assumed that the 
change in N content of decomposing residues between harvest 
and initial growth stages of crops, was the amount of N min-
eralized; based on surface or buried fraction, this amount of N 
was allocated to the soil solution or microbial biomass pools. 
In cases when net immobilization occurred (N in residues at 
harvest was greater than initial content), a partitioning coef-
ficient was not applied for ANMR calculation, and results are 
not considered biased by it. If different partition coefficients 
were used, for example, 50% of N released both for buried or 
surface material, estimations of ANMR would suffer only 
a small change, averaging 16.5 kg N ha−1 during the crops’ 

Fig. 4. Average impact of residue mass and composition on apparent nitrogen mineralization from residues (ANMR) as estimated 
by an artificial neural network.

Fig. 5. Observed vs. estimated apparent nitrogen mineralization from humic substances (ANMH) estimated by a polynomial 
regression method. Full circles: during wheat growing season, empty circles: during corn growing season.
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growing cycles. Extreme possible partition coefficients (0.3 
vs. 0.7 for the whole residue material) would lead to changes 
in mean ANMR estimation of only ±8 kg N ha−1, and would 
have a minor impact on the estimation ANMH calculated by 
difference between apparent N mineralization and ANMR.

The ANMR did not differ between the growing seasons of 
wheat and corn. Temperature and water are important environ-
mental control factors that regulate decomposition rate (Zhou 
et al., 2008) and N release (Quemada and Cabrera, 1997). In 
the Pampas, soil temperature is lower but water content higher 
during the wheat growing cycle than during the corn cycle 
(Alvarez, 2006), so compensation effects of these two factors 
on decomposition could exist.

Under no-till management, ANMR was three-fold greater than 
under tillage. Usually, buried residue decomposes faster than on 
the soil surface, releasing its N (Lachnicht et al., 2004, Lupwayi et 

al., 2006). As a consequence of this phenomenon, in the pam-
pean experiments, remaining residues were greater in no-till sites 
than in tilled ones during the initial phases of the crops’ growing 
seasons. Additionally, as decomposition proceeds, labile compo-
nents are degraded and the remaining residue mass is enriched in 
recalcitrant ones which may release N slowly (Leblanc et al., 2006, 
Nakhone and Tabatabai, 2008). As the sum of these two pro-
cesses, the mineralization of labile components from the abundant 
and less-degraded residue initially present when the experiments 
started likely contributed to the observation of greater ANMR 
under no-till than that observed under tillage management.

The ANN model fit allowed the estimation of the residue 
mass effect on ANMR with a minimum estimation of zero and 
a maximum possible release of around 80 kg N ha−1. The mass 
effect on N release from residues under field conditions has 
been scarcely studied. Most works focus mainly on residue type 

Fig. 6. Observed vs. estimated apparent nitrogen mineralization from humic substances (ANMH) estimated by an artificial neural 
network. Full circles: during wheat growing season, empty circles: during corn growing season.

Fig. 7. Impact of soil properties and climate on apparent nitrogen mineralization from humic substances (ANMH) as estimated by 
an artificial neural network.
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impacts on mineralization. Results from different experiments 
showed that N mineralization from decomposing residues is 
extremely variable, ranging from 2 to 5 kg N ha−1 during the fol-
lowing crop growing cycle in the case of poor N residues of some 
graminaceus crops (Bremer and van Kessel, 1992, Beare et al., 
2002) to >100 kg N ha−1 when legume residues had an initially 
high N concentration (Gentry et al., 2001, Sarrantonio, 2003). 
Our results showed that the residue mass initially present in soil 
is a variable useful for predicting N mineralization.

Above a N concentration of 0.9%, the ANN model predicted 
mineralization; meanwhile, below this threshold, immobiliza-
tion on residues occurred. This N concentration is equivalent to a 
C/N of approximately 44. Results from the review of numerous 
experiments had shown that a C/N from 20 to 30 is a common 
threshold for immobilization to mineralization (Seneviratne, 
2000, Jensen et al., 2005), but this threshold is regulated by the 
polyphenol and lignin content of the material (Janssen, 1996), 
reaching values as high as 40 (Janssen, 1996, Kumar and Goh, 
2003). Our field results fall near this upper limit. Nitrogen 
mineralization from corn and soybean residues during the wheat 
growing season averaged similar values, which can be attributed 
to the compensation of greater corn residue mass with a higher 
N concentration in soybean material. The ANN model could 
estimate ANMR from different combinations of residue mass 
and N richness under field conditions and be used as a helping 
tool when using the balance sheet method.

The ANMH was more important as a N source for crops than 
ANMR, especially for corn, representing on average around half 
of the N requirements of this later crop. The ANMH decreased as 
soil mineral N content increased. Taken into account that ANMH 
represented the difference between gross mineralization, immo-
bilization, and losses, different causes could produce this result. 
A possible inhibition of gross mineralization due to a feedback 
process caused by high mineral N had been described for some 
soils (Sierra, 1992, Carpenter-Boggs et al., 2000). An increase of 

the immobilization process in organic pools had also been detected 
under high mineral N content scenarios (Engels and Kuhlmann, 
1993, Blankenau et al., 2000). Finally, N losses from the agroeco-
system are expected to be greater under highly fertilized condi-
tions (Ma et al., 1999, Blankenau et al., 2000). Previous studies 
reported that, usually, apparent N mineralization is inhibited as 
soil mineral N or fertilizer rate increased (González Montaner et 
al., 1997, Blankenau et al., 2000), with even negative values when 
total mineral N content of the soil (soil + fertilizer N) is very high 
(Engels and Kuhlmann, 1993, Delphin, 2000). Conversely, in some 
cases, N mineralization evaluated using 15N methods (Blankenau 
et al., 2000) or determined by field incubation techniques (Ma et 
al., 1999) increased with soil mineral content. These results can be 
attributed to an activation of gross mineralization by mineral N. If 
this process occurred in our experiments, instead of inhibition of 
mineralization, it was overwhelmed by immobilization or losses, 
leading to a decrease of ANMH when N level became greater.

As in other studies (Delphin, 2000, Curtin and McCallum, 
2004), we observed the estimation of soil N mineralization 
potential using an incubation test was related to apparent N 
mineralization assessed by the balance sheet method. Regression 
techniques (Egelkraut et al., 2003) and heuristic methods (Rohde, 
1996) allowed development of models for apparent N mineraliza-
tion estimation. These models included as explaining variables, soil 
water and temperature and the results of incubation tests, but they 
had only a moderate capacity (R2 approximately 0.40) of explain-
ing apparent mineralization variability. Our regression or ANN 
models, using the results of an incubation test, joined to soil and 
climate data, allowed a good prediction of ANMH.

As remaining residue mass increased in soil, ANMH 
decreased. Despite in some sites net N immobilization was 
detected on residues, generally they released N. Nevertheless, 
even in sites where residues released N, immobilization may 
have occurred in other organic pools. Some experiments showed 
that incorporation of residues led to an increase of soil micro-
bial biomass N by immobilization of mineral N (Ibewiro et al., 
2000, Korsaeth et al., 2001). Additionally, the soil light fraction 
(Whalen et al., 2000), or the soil fraction > 200 microns (Recous 
et al., 1998) may be acting as a N sink. Immobilization was a 
potential cause of the decrease in ANMH observed as residue 
mass increased. We calculated an immobilization rate of 5.3 kg N 
Mg−1, using the ANN model, which falls between other reported 
immobilization rates. The rate of N immobilization caused by 
residue addition to the soil is very variable, ranging from 1.4 kg 
N Mg−1 DM residues (Trinsoutrot et al., 2000) to 16 kg N Mg−1 
DM (Recous et al., 1995). Another possible reason for ANMH 
decrease as residue mass increased in some sites is that, under no-
till management, residues can reduce soil temperature, which may 
impact N mineralization (Andraski and Bundy, 2008).

The organic N pool size regulates N mineralization rate in 
many soils (Wang et al., 2001, O’Connell et al., 2003, Li et 
al., 2008) despite that some studies reported that the C/N 
ratio (Springob and Kirchmann, 2003), or the amount of 
labile soil components may be better predictors (Mishra et 
al., 2005). Apparent mineralization assessed by the balance 
approach had been observed to be curvilinearly-correlated to 
soil organic C with a net release of 4.8 kg N Mg−1 organic C in 
some subtropical Indian soils (Benbi and Chand, 2007). The 
ANN model developed for pampean agroecosystems predicted 

Fig. 8. Apparent nitrogen mineralization from humic 
substances (ANMH) as estimated by an artificial neural 
network model for some common scenarios founded in the 
Pampas. Estimations were performed for (i) average climatic 
conditions during wheat and corn growing cycles, (ii) average 
remaining residues biomass from previous crops under no-till 
management, and (iii) average mineralization potential of 
soils as determined by an incubation test.
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a mean ANMH of approximately 8 kg N Mg−1 organic N, a 
much lower mineralization rate, for these soils with a mean 
C/N of approximately 10 for soil organic matter (Table 1).

Textural effects on N mineralization are well known. Incuba-
tion experiments, in which the mineralization rate of different 
soils with varying textural composition were contrasted, showed 
that as the clay + silt content increased it also increased the total 
amount of organic N of the soil and the rate of N mineralization, 
but a strong decrease of the N mineralization by unit of organic N 
mass was produced (Hassink, 1994, Bechtold and Naiman, 2006). 
This effect of fine particles, protecting organic matter from micro-
bial attack, had been described previously in soils of the Southern 
Pampa, a portion of the Pampas southwest from the region where 
we performed our experiments, with coarser soils of higher organic 
matter content (González Montaner et al., 1997). In this study, 
regression methods were tested for developing models suitable 
for apparent N mineralization estimation. The best model fit 
explained 50% of the variation of the mineralization during the 
wheat growing season using as independent variables soil mineral 
N level and the ratio of organic matter/clay. As in our regression 
and ANN models for ANMH prediction, in that regression 
model soil fine particles controlled mineralization of organic pools 
by reducing the rate of the process as clay rose. Our ANN model 
estimated that if the clay + silt soil content doubled, for a certain 
organic N level, ANMH decreased on average by 40%.

The interaction of rainfall and temperature described by 
the ANN model was the main reason which determined that 
mineralization during the corn growing cycle was around four 
times that produced during wheat cycle. Soil temperature, water 
content and their interaction controls net N mineralization in 
soils as determined in laboratory tests (O’Connell and Rance, 
1999, Wang et al., 2004). Apparent N mineralization assessed 
by the balance method is also controlled by soil temperature and 
water content (Campbell et al., 2008) and had been modeled by 
regression methods using temperature, water content and other 
soil variables with moderate success, as stated above (Egelkraut et 
al., 2003). We had no available records of soil water content dur-
ing crop growing seasons in the pampean experiments, so rainfall 
was taken into account to subrogate that variable. Under similar 
temperature scenarios it may be expected that more rainfall led 
to higher soil water content. The regression and ANN models 
may be used for modeling ANMH under production conditions, 
using past records for defining some expected climatic conditions 
and determining the soil variables used as inputs experimentally.

Both modeling techniques tested, linear regression and 
ANNs, gave good results when developing tools for N mineral-
ization estimation under field conditions. As ANN models had 
a slightly better performance, they are recommended for min-
eralization prediction when the balance sheet method is used. 
Monograms or tables can be generated with the ANN models, 
and by using site values of the ANN inputs as initial informa-
tion, future users may estimate apparent N mineralization 
under average climatic scenarios. The methodology developed 
may be applied in different areas and for other crops.
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