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Abstract 

Background: Proteins are the workforce of the cell and their phosphorylation status tailors specific responses 
efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that 
specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribu-
tion of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set 
(GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distri-
bution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested 
due to the lack of a comprehensive phosphoproteome database.

Results: In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thali-
ana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) 
and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show 
default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphopro-
teomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms 
that are specifically enriched in a particular condition. To overcome this limitation, we present an additional compari-
son of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome 
experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are impor-
tant processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings.

Conclusions: This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabi-
dopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation 
pathways that take place during dark-grown Arabidopsis development.
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Background
While genes are the most fundamental heritable bio-
logical units, proteins are the functional actors of most 
biological processes. At that level, changes in post-trans-
lational modifications (PTM) enable the fast modulation 
of protein function in response to endogenous or envi-
ronmental cues, a requirement to the crucial changes in 
gene expression that ensures cell adaptation. For example, 
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some typical targets of PTM are transcription factors 
that may become activated or inactivated by phosphoryl-
ation, and their regulation modifies the genetic program 
of the plant cell [1–4]. Also, many kinases are subjected 
to phosphorylation, transitioning from inactive to active 
phosphotransferases, implying a self-propagating phos-
phorylation cascade [5]. Protein stability and subcellular 
localization, such as nuclear translocation can also be 
regulated by phosphorylation [6, 7]. In Arabidopsis, the 
role of protein phosphorylation in regulating cellular 
processes is supported by the identification of numer-
ous protein kinases and phosphatases in the genome [8]. 
Because of the stimuli-dependent nature of protein phos-
phorylation, a comprehensive mapping of the Arabidop-
sis phosphoproteome has been technically challenging.

Today, we count with an expression atlas combining 
RNA-sequencing of transcriptome and mass spectrom-
etry of proteome and phosphoproteome from 30 tissues 
of Arabidopsis [9]. Biological complexity and diversity 
involve that one genome gives rise to multiple transcrip-
tomes, multiple proteomes and multiple phosphopro-
teomes in a context-dependent manner. A careful and 
exhaustive analysis by Mergner and collaborators showed 
that among the 30 tissues analyzed in the Arabidopsis 
atlas, 25,158 transcripts out of the 27,655 protein-coding 
genes (90%) were identified; 18,210 (66%) were expressed 
as proteins, and 8577 (47%) of them were phosphorylated 
in at least one instance [9]. Every tissue in Arabidopsis 
atlas exhibits on average ~ 17,600 transcripts, ~ 14,430 
proteins and ~ 14,689 phosphorylation sites [9]. Interest-
ingly, approximately half of every proteome in that study 
is composed of the same core proteins, and the other half 
includes tissue-specific or enriched proteins [9]. So, the 
relationship between genome-transcriptome-proteome-
phosphoproteomes is complex, challenging our ability to 
perform meta-analysis to compare and determine overall 
or specific trends.

One of the most frequent biological data-mining prac-
tices is the GO (Gene Ontology) enrichment analysis on 
gene sets [10]. GO term analysis is used to identify bio-
logical processes (BP), molecular functions (MF) or cellu-
lar components (CC) that are particularly over or under 
represented in a list of genes or proteins, given a certain 
condition. This analysis compares the distribution of GO 
terms in a sample set of interest versus that observed in 
the reference set (genome). So, if a GO term is more or 
less frequent in the sample set than in the reference set, 
this indicates functional specificity. Integrative analysis of 
phosphoproteomes is difficult because of its incomplete 
coverage and technical-specific bias generated in experi-
mental workflows [11]. For example, the most used buffer 
during phosphoprotein sample preparation unexpectedly 
activates signalling events [12]. Also, if we are studying 

phosphoproteome and signal transduction, it is expected 
to find an enrichment of kinases and phosphatases [13]. 
Furthermore, some proteins will never be phosphoryl-
ated. So, the direct comparison of a phosphoproteome 
sample set with the genome reference sets, that implicitly 
assumes equal GO term distributions between the whole 
phosphoproteome and the genome, might not be correct. 
This also suggests that we are missing fundamental data 
for this comparison: a comprehensive phosphoproteome. 
This can be achieved with empirical data, but it’s a long 
and expensive work in process, bound to be biased by 
the unbalanced experimental conditions tested and tech-
niques employed. Alternatively to empirical data, phos-
phorylation prediction can be used to construct high 
confidence, predicted phosphoproteomes, but bearing 
in mind that a complete predicted phosphoproteome has 
the risk of having some bias based on the algorithms used 
and the selection of prediction parameters.

To test the hypothesis that the GO term distribution in 
the phosphoproteome is similar to that in the genome, 
we built three phosphoproteomics databases of refer-
ence from Arabidopsis thaliana to compare against the 
genome. Our results show that GO term distributions 
for the phosphoproteomes of reference are different from 
the genome in the three ontologies (BP, MF and CC), 
revealing that enriched GO terms in a phosphoproteome 
sample would be systemically enriched in phospho-
rylation experiments independently of the phosphopro-
teome sample background, overshading those GO terms 
specific to a sample of interest. We also show a strategy 
to uncover GO terms specifically enriched in a particu-
lar phosphoproteomic experiment from those core GO 
terms enriched in any phosphoproteome. Moreover, 
we tested our strategy by performing GO enrichment 
analysis comparing in-house unpublished dark-grown 
(etiolated) Arabidopsis seedlings phosphoproteome to 
identify GO terms enriched as a direct consequence of 
skotomorphogenesis.

Results
Construction of reference databases of phosphoproteomic 
data
We constructed three phosphoproteome datasets based 
on data and algorithms available in the public domain. 
An experimental reference set (ExpRS) was built with 
phosphoproteins identified and published in 55 available 
Arabidopsis phosphoproteome experiments (see Meth-
ods). A predicted reference set (PredRS) was built with 
Arabidopsis proteins predicted to be phosphorylated in 
serine, threonine and tyrosine. To do this, we used two 
representative computational tools, MusiteDeep and 
PhosPhAt, that have been shown to have a good per-
formance with high specificity and sensitivity [14] (see 
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Methods). Figure 1 shows the relation between the refer-
ence sets. The last reference database was derived from 
Araport11, the complete re-annotation of the Arabidop-
sis thaliana GenRS, and contains 27,655 protein-coding 
genes [15]. In summary, ExpRS includes 13,137 genes 
(47.5% of GenRS) while PredRS includes 17,156 genes 
(62.0% of GenRS). ExpRS and PredRS share 12,024 genes 
(Fig. 1). A total of 5132 genes in the PredRS were not pre-
sent in the ExpRS indicating that the proteins that encode 
those genes might have not yet been identified experi-
mentally. Interestingly, we found 1113 phosphoproteins 
in ExpRS that could not be predicted unless the param-
eters for each predictor were relaxed to the default values 
(notice that when default values were applied almost the 
total genome is predicted to undergo phosphorylation, 
see Methods). This suggests that although these proteins 
are phosphorylated, they do not fulfill the strict param-
eters that we used to build the PredRS. So, the use of high 
stringency for phosphorylation prediction represents a 
low cost in terms of experimental phosphoproteins that 
could not be predicted (8.5% 1113 out of 13,137). These 
proteins represent the false negatives lost when param-
eters are set to prevent false positives. So, as a complete 
intersection of ExpRS and PredRS is not achieved (see 
Methods) we constructed a third dataset, union reference 
set (UnRS), that corresponds to the fusion of ExpRS and 
PredRS. The UnRS contains 18,269 genes (66.1% of the 

GenRS) and includes all the phosphoproteins present in 
the ExpRS plus those present in PredRS (Fig. 1). The IDs 
of all of these genes are available in Table S1.

UnRS as a phosphoproteome reference set
In order to 1) evaluate if the frequency distribution 
of the GO terms in a phosphoproteome is equal to the 
frequency distribution in the genome and 2) evaluate 
the best phosphoproteome reference set, we performed 
GO annotation enrichment analysis using TopGO com-
paring the three reference phosphoproteomic datasets 
(ExpRS, PredRS and UnRS) against GenRS for the three 
ontologies. The results were plotted as binary heatmaps 
in which gray cells represent significant (Parent-Child 
Fisher_FDR < 0.01), and white cells non-significant GO 
terms for each comparison (PredRS vs. GenRS; ExpRS 
vs. GenRS and UnRS vs. GenRS) (Fig.  2). We focused 
our analyses in overrepresented GO terms. The terms 
assigned to the same heatmap’s pattern were categorized 
in groups (G1-G7) (Fig.  2). Groups were sorted accord-
ing to the number of GO terms in each group for BP. G1 
corresponded to the GO terms that were statistically dif-
ferent in all three comparisons, while the other groups 
could be arranged by complementary pairs (G2 and G3; 
G4 and G5; G6 and G7) (Fig. 2). In total, we found 160, 74 
and 71 GO terms for BP, MF and CC, respectively, which 
behave significantly differently for one, two or the three 
comparisons (Fig. 2).

The GO enrichment analysis showed that most of the 
terms changed significantly in the three reference sets 
against GenRS (G1: 66, 34 and 34 terms for BP, MF and 
CC respectively) (Fig. 2), suggesting that these terms are 
enriched in the phosphoproteome datasets by default, 
independently of the condition or background. As it was 
expected, we found enrichment for the terms: “phospho-
rylation” (GO: 0016310) and “protein phosphorylation” 
(GO: 0006468) for BP and “protein kinase activity” (GO: 
0004672), “transferase activity, transferring phosphates” 
(GO: 0016772), “phosphotransferase activity, alcohol 
group as acceptor” (GO: 0016773), “kinase activity” 
(GO: 0016301), and “purine ribonucleoside triphosphate 
binding” (GO:0035639) for MF (Table S2). Interestingly, 
we also found several terms enriched, but not direct 
descendant (child term) from a parent term involved 
in phosphorylation activities such as “reproduction” 
(GO:0000003), “reproductive process” (GO:0022414), 
“nitrogen compound metabolic process” (GO:0006807) 
and “organelle organization” (GO:0006996) for BP and 
“carbohydrate derivative binding” (GO: 0097367) and 
“ion channel activity” (GO:0005216) for MF (Table S2).

The second and third groups with the highest num-
ber of terms significantly enriched corresponded to G2 
and G3 (Fig.  2 and Table  S2). These groups form a pair 

Fig. 1 Scheme representing the relations among the three 
phosphoproteome reference sets ExpRS, PredRS, UnRS and 
the GenRS. The number of genes for each dataset is indicated 
below the name. The number of genes shared between pairs 
of phosphoproteome datasets is indicated beside each arrow. 
Percentages among relations are indicated
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of complementary groups in which the terms in Pre-
dRS vs. GenRS and UnRS vs. GenRS behave similarly to 
each other but differently from ExpRS vs. GenRS (Fig. 2). 
These differences could be accounted for by the 5132 
phosphoproteins present in PredRS and UnRS but absent 
in the ExpRS. On the other hand, G4 and G5 form a pair 
of complementary groups in which the terms in ExpRS 
vs. GenRS and UnRS vs. GenRS behave similarly to each 
other but differently from PredRS vs. GenRS (Fig. 2 and 
Table S2). The terms in these groups could be accounted 
for by the 1113 phosphoproteins present in ExpRS and 
UnRS but absent in PredRS.

Interestingly, also only a few terms were found in G6 
and G7 (10 terms out of 160 for BP, none of 74 for MF 
and 4 terms out of 71 for CC), that represent the groups 
in which the terms behave similar in ExpRS and PredRS 
datasets but different from UnRS (Fig.  2 and Table  S2). 
In other words, when the terms in ExpRS and PredRS 
show the same behavior (both significantly different or 
not from the GenRS), only a few categories showed the 
inverse behavior in the UnRS. Thus, neither ExpRS nor 
PredRS contain the universe of phosphoproteins, and 
apart from having clear strengths previously mentioned, 
these datasets also display some disadvantages. On the 
one hand, in ExpRS the assembly of interpreted PTM 
using mass spectrometry in each study has many warn-
ings that can lead to the incorrect data interpretation 
and wrong conclusions [16] and becomes relevant as the 
number of analyses in an assembled dataset increases 
[17]. On the other hand, as algorithms are trained for 
prediction with the experimental data available, PredRS 
may not be totally independent from ExpRS. Thus, nei-
ther is better than the other to be used as a reference set. 

In this regard, among the three, UnRS is the best refer-
ence set as it covers the largest amount of phosphopro-
teins and represents a low cost of GO terms that behave 
differently when ExpRS and PredRS are consistent in this 
regard. All these results suggest that UnRS is a plausible 
phosphoproteome reference set to be used to perform 
GO analysis.

In summary, GO term analysis of ExpRS, PredRS or 
UnRS revealed that several GO terms were enriched by 
default for BP, MF and CC with respect to the GenRS. 
So, when performing GO term enrichment analysis of a 
phosphoproteomic sample set compared only to GenRS, 
we obtain information about all the terms that changed 
in the sample but it is not possible to discern which of 
those terms changed specifically due to the treatment 
or background from those enriched by default. In this 
regard, we propose that additional comparison of the 
sample set with the UnRS (the best phosphoproteomic 
reference set) will uncover those terms that are specific to 
the experiment.

Case study to uncover specific GO terms: 
phosphoproteome of etiolated Arabidopsis seedlings
Seedlings germinating in complete darkness follow 
a skotomorphogenic developmental program called 
etiolation. Etiolation is a critical phase during the life 
cycle characterized by an elongated hypocotyl and the 
formation of an apical hook that protects unopened 
cotyledons (without plastid differentiation) and shoot 
apical meristem when seedlings push through the soil 
on their way to the surface. To identify specific pro-
cesses regulated by phosphorylation during etiolation, 
we performed a large-scale phosphoproteomic analysis 

Fig. 2 Heatmap representing significantly overrepresented GO terms in the phosphoproteome reference sets compared to the GenRS. 
Heatmaps represent the number of GO terms that change significantly in one, two or the three comparisons among the ExpRS, PredRS and UnRS 
phosphoproteome reference sets against the GenRS. Results are categorized in 7 groups (G1-G7). Gray: significant Parent-Child Fisher_FDR < 0.01; 
white: not significant. BP: Biological Process, MF: Molecular Function, CC: Cellular Component
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of Arabidopsis etiolated seedlings (Et). We identi-
fied 933 unique phosphoproteins in phosphopeptide 
enriched samples from 5-days-old dark-grown seed-
lings that contain 2884 phosphosites (Table S3). These 
results are similar in number of phosphoproteins and 
phosphopeptides to other phosphoproteomic experi-
ments [18, 19].

In order to evaluate the GO terms specifically enriched 
during skotomorphogenic development we performed 
GO enrichment analysis of the 933 phosphoproteins 
quantified in the Et Arabidopsis phosphoproteome 
against GenRS and UnRS. We found that from the 933 
phosphoproteins identified experimentally in Et sample, 
22 were new phosphoproteins never reported as such 
before (not included in ExpRS, Table  S1). From these, 
11 were present in UnRS (this means they could be pre-
dicted), but the other 11 were not present in the UnRS 
(this means that these phosphoproteins could not be 
predicted with the strict parameters used in PhosPhAt 
and MusiteDeep and have not been found in any pre-
vious phosphoproteome experiment available before) 
(Table  S1). To perform GO term analysis, these new 
phosphoproteins are not a problem when the sample is 
compared against the GenRS because the last one con-
tains all the genes in the genome. However, this may not 
be the case when the comparison is against the UnRS 
because this is a database that should always include all 
phosphorylated proteins. In other words, UnRS requires 
to be updated with new phosphoproteins found experi-
mentally. So, we added our 11 new phosphoproteins to 
UnRS to define the Union+ 11 reference set (Un11RS) 
(Table  S1). This set now contains 18,280 phosphopro-
teins. As it was expected for the addition of a reduced 
number of proteins, the UnRS and Un11RS differ only 

in 1 GO term for CC (Plastid membrane, GO: 0042170) 
when each one is compared to the GenRS.

We then performed GO term enrichment analysis in Et 
samples by comparing Et vs. GenRS, Et vs. Un11RS and 
Un11RS vs. GenRS (Fig. 3). The latter is virtually a repeti-
tion of UnRS vs GenRS (Fig. 2). The results were plotted 
as binary heatmaps in which gray cells represent signifi-
cant (Parent-Child Fisher_FDR < 0.01), and white cells 
non-significant GO terms for each comparison (Fig.  3). 
The terms assigned to the same heatmap’s pattern were 
categorized in six groups (CG1-CG6, CG for Contrast 
Group) (Fig.  3). Contrast groups were sorted according 
to the number of terms in each group for BP. We found 
125, 54 and 49 terms for BP, MF and CC respectively that 
behave significantly differently for one, two or the three 
comparisons (Fig. 3, Table S4).

According to our previous analysis we reasoned that a 
specific GO term is enriched in the Et sample when the 
GO term is significantly enriched in both comparisons: 
Et vs. GenRS and Et vs. Un11RS. Two groups fulfilled this 
statement: CG2 and CG3 (Fig.  3). The overrepresented 
terms in CG2 were significantly enriched in both com-
parisons (Et vs. GenRS and Et vs. Un11RS) but were not 
enriched in Un11RS (Un11RS vs GenRS, not significant). 
The terms in CG3 changed their frequency in all the com-
parisons, that means that their frequency in Et vs Un11RS 
increased beyond that in the already existing enrich-
ment in Un11RS vs GenRS (Fig. 3). In other words, even 
though frequency distributions of the GO terms in CG3 
are overrepresented in the phosphoproteome dataset 
with respect to the genome, these frequencies are even 
higher in the Et sample. Because different enriched GO 
terms can be related to each other and altogether high-
light specific processes of relevance we further analyzed 

Fig. 3 Heatmap representing significantly overrepresented GO terms in the Et phosphoproteome sample. Heatmap represents the number of 
GO terms that change significantly in one, two or the three comparisons: Et vs GenRS; Et vs Un11RS and Un11RS vs GenRS. Results are categorized 
in 6 groups (CG1-CG6; CG: for Contrast Group). Gray: significant Parent-Child Fisher_FDR < 0.01; white: not significant. BP: Biological Process, MF: 
Molecular Function, CC: Cellular Component
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those specific GO terms more related to each other. For 
this, we investigated the topology similarity among GO 
terms in CG2 and CG3 by measuring the semantic simi-
larity for each one of the ontologies. The semantic simi-
larity is a measure of the interrelation between points 
[20]. The measures of semantic similarity allow us to 
obtain a numeric value according to the closeness of the 
significance of a term in a certain ontology. Thus, the 
more semantic similarity, the more closeness of the terms 
and the more functional similarity. On the other hand, 
we also calculated the GenRatio as the percentage of the 
genes associated with each GO term that are present in 
Et sample for CG2 and CG3 and for the three ontolo-
gies (GenRatio) (Table S5). Figure 4 shows a graphic rep-
resentation of the semantic similarity among GO terms 
for BP where the diameter of the symbol is directly pro-
portional to the GenRatio. Most of the GO terms for BP 
showed a GenRatio between 4 and 12% (Table S5). Sur-
prisingly, this percentage rose up to 48.5% for the GO 
term “regulation of mRNA splicing, via spliceosome” 
(GO:0048024) and to 42.5% for “regulation of RNA splic-
ing” (GO:0043484) (Fig. 4 and Table S5). Also, the terms 
“regulation of mRNA processing” (GO:0050684) and 
“regulation of mRNA metabolic process” (GO:1903311) 
showed 38.6 and 29.5% of GenRatio respectively (Fig.  4 

and Table  S5). The terms “mRNA metabolic process” 
(GO:0016071, 10.2%) and “RNA process” (GO:0006396, 
8.7%) were also overrepresented GO terms specific to 
the Et sample although with lower GenRatios (Fig. 4 and 
Table  S5). The relationships among these six GO terms 
are shown as a DAG (directed acyclic graph) (Fig.  S1). 
Eighty-one unique phosphoproteins from Et sample were 
found to be present in the six GO terms related to RNA 
process and splicing in BP (Table S6). The specific terms 
“clathrin binding” (GO:0030276 29.7%), “protein serine/
threonin/tyrosin kinase activity” (GO:0004712 18.6%) 
and “mRNA binding” (GO:0003729 16%) were the terms 
with the highest GenRatio for MF (Fig. S2 and Table S5). 
The terms “cytoplasmic microtubules” (32.3%), “nuclear 
membrane” (20%), “nuclear body” (18.6%) and spliceoso-
mal complex (16%) present the highest GenRatios for CC 
(Fig. S2 and Table S5).

The group that contained more overrepresented terms 
was CG1 (69, 46 and 24 for BP, MF and CC respectively, 
Fig. 3). In this group, we found those terms only enriched 
in the comparison Un11RS vs. GenRS (the phospho-
proteomic reference set), but not in the comparisons of 
the Et vs GenRS or Un11RS (Fig.  3 and Table  S4). This 
group included those GO terms that were enriched in the 
phosphoproteome per se, but they were not enriched in 

Fig. 4 Semantic similarity for CG2 and CG3 for BP. The terms were represented graphically in two dimensions such that the distance between 
points on the plot approximates their multivariate dissimilarity as closely as possible. Each circle represents a GO term. The GenRatio is directly 
proportional to the diameter of the symbol and is indicated between brackets in red
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the sample (phosphorylation pathways that do not par-
ticipate during etiolation). CG4 represents the terms 
that were enriched in Et with respect to the GenRS, 
however these terms were not specific to the Et sam-
ple (Et vs Un11RS, not significative) rather to the phos-
phoproteome per se (Un11RS vs GenRS, significative) 
(Table S4). These could be genes associated with general, 
but not specific, phosphorylation signal processing also 
recruited to mediate dark signaling. CG5 and CG6 rep-
resent those GO terms that were significantly enriched 
only in the comparison of Et samples against GenRS or 
Un11RS respectively (Fig.  3 and Table  S4). Both groups 
are formed by a small number of GO terms and all of 
them showed high parent-child _FDR values (Table S4).

In summary, a large-scale phosphoproteomic assay 
from etiolated seedlings identified 22 new phospho-
proteins. Moreover, the implementation of a strategy to 
uncover specific phosphoproteomic pathways revealed 
that phosphorylation of proteins related to mRNA pro-
cessing, and more specifically proteins involved in 
mRNA splicing is an important process that takes place 
during etiolation in Arabidopsis. Finally, “clathrin bind-
ing” for MF and “cytoplasmic microtubule” for CC were 
GO terms specifically enriched in etiolated seedlings.

Discussion
One goal of almost all the phosphoproteomic studies is 
to uncover biological or signaling processes that are spe-
cific to an experimental condition or genetic background 
by analyzing the complete set of phosphoproteins iden-
tified. In this regard, GO term analysis is the most used 
bioinformatic tool. A key prerequisite for performing GO 
enrichment analysis is the availability of an appropriate 
reference set to compare against when looking for over-
represented terms. Generally, the whole genome is used 
as a reference set. However, when we compare phos-
phoproteome data against the genome it is assumed that 
the frequency distribution of the GO terms of a whole 
phosphoproteome is not different from the genome, a 
hypothesis not tested before. As a comprehensive phos-
phoproteome database is not available, we constructed 
three phosphoproteome reference sets: ExpRS, PredRS 
and UnRS from Arabidopsis. Our results show that GO 
term frequency in these phosphoproteome reference sets 
are statistically different from the GenRS, thus those GO 
terms are enriched in the phosphoproteome of Arabi-
dopsis by default (Fig. 2, Table S2).

In this work, we provide evidence that UnRS is a plau-
sible and the best set to be used as a phosphoproteome 
reference set that would help in uncovering those GO 
terms specific to an Arabidopsis phosphoproteome sam-
ple. When PredRS and ExpRS behave similarly in their 

GO term frequency only a few terms present the opposite 
pattern in UnRS (Fig. 2). As we show here, it is important 
to update UnRS as new phosphoproteomic experiments 
are performed.

We show and characterize the phosphoproteome of 
etiolated Arabidopsis seedlings, identifying 933 proteins 
that are phosphorylated in 5-days-old dark-grown seed-
lings (Table  S3). Twenty-two of those phosphoproteins 
have not been reported before, 11 of which could not be 
predicted either (Table S1). Thus, we updated UnRS with 
these 11 phosphoproteins to obtain Un11RS and use it as 
a reference set.

Our results show that in a standard comparison of the 
Et sample to the Genome only (Et vs GenRS), we can find 
54, 8 and 25 significantly overrepresented GO terms for 
BP, MF and CC respectively (sum of the terms in groups 
CG2 to CG5, Fig. 3). However, of these, 11, 1 and 5 terms 
for BP, MF and CC respectively are predicted not to be 
specific to the phosphoproteome of etiolated tissues (sum 
of the terms groups CG4 and CG5, Fig.  3). Using addi-
tional comparison of Et sample with Un11RS enables us 
to uncover specific GO terms related to RNA processing, 
and more specifically mRNA splicing for the three ontol-
ogies (Fig.  3, Fig.4, Table  S5 and Fig.  S2). These terms 
were not only specifically overrepresented in Et sam-
ples, but also they showed the highest GenRatios rising 
up to 48.5% (Fig. 4, Fig. S2 and Table S5). The GO terms 
“cytoplasmic microtubule” for CC and “clathrin binding” 
for MF were also over represented with high GenRatios 
(Fig. S2) and could be related to active cellular expansion 
taking place during etiolation.

In RNA splicing, the accurate process of the precur-
sor-mRNAs affects mRNA stabilization regulating dif-
ferent developmental programs. In particular, genes 
containing introns undergo alternative splicing leading 
to multiple mRNAs. The Arabidopsis SR (serine-arginine 
rich) protein family is a highly conserved family of RNA 
binding proteins involved in the regulation of precur-
sor-mRNA splicing. In this study, we found 7 SR genes: 
SR34, RSZ22a, SC35, SCL30, RS2Z33, RS31, RS40 and 
RS41 (Table  S6). Notably, SCL30, RS2Z33, RS31, RS40 
and RS41 were among the ten plant specific SR genes 
[21], suggesting that phosphorylation and the molecular 
mechanism of SR proteins in etiolated seedlings might be 
unique.

It is well known that many proteins involved in splic-
ing are regulated by phosphorylation [3, 22]. PRP4KA 
(PRE-MRNA PROCESSING 4 KINASE A) is a splice-
osome-associated kinase in Arabidopsis that affects 
alternative splicing patterns by phosphorylating dif-
ferent splicing target regulators [23]. Interestingly, we 
found PRP4KA as a phosphorylated protein in the Et 
sample (AT3G25840, Table  S6). More surprisingly, we 
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found 7 targets of PRP4KA phosphorylation: 3 splicing 
factors (ATSF1, RS40 and RS41), 3 RNA binding pro-
teins (BTR1L, CCR2 and ELF9) and 1 mRNA decapping 
protein (VCS) (Table  S6 and [23]. We found PRP40A 
(PRE-MRNA-PROCESSING PROTEIN 40A) and 
PRP40B (PRE-MRNA-PROCESSING PROTEIN 40B) in 
Et samples, two phosphoproteins that bind the phospho-
rylated C-terminal domain of the largest subunit of RNA 
polymerase II. SR proteins can be recruited to the RNA 
polymerase II complex interacting by its carboxy termi-
nal domain [24], and its phosphorylation plays a major 
role in transcription that finally regulates development 
and growth.

Our results show that phosphorylated RNA splicing 
proteins are highly overrepresented in dark tissues and 
pre-mRNA processing by alternative splicing might be 
an important co-transcriptional process relevant during 
etiolation development. Transition to light also changes 
the alternative splicing of several genes in etiolated and 
light-grown Arabidopsis [25, 26]. From the 81 phospho-
proteins in Et samples related to RNA processing and 
splicing, we found 25 which alternative splicing changes 
upon light treatments (Table  S6). In this context, phos-
phorylation patterns of RNA splicing proteins in the dark 
might not be trivial then for the de-etiolation process. 
How the phosphorylation status of splicing related pro-
teins is important for etiolation or for light to trigger a 
rapid response to de-etiolation is an interesting matter 
for future studies.

The term “cytoplasmic microtubules” was highly over-
represented in the etiolated phosphoproteome (Fig.  2). 
This term includes phosphoproteins that bind and 
modulate cytoplasmic microtubule orientation called 
MAPs (Table S6). Phosphorylation is a well-known reg-
ulation mechanism in MAPs [27]. We found MAP65-1 
and MAP65-2 among the 10 phosphoproteins in the 
term “cytoplasmic microtubule” (Table  S6), that have 
been reported to promote hypocotyl elongation in dark 
[28]. WDL3 was also a phosphoprotein found in the 
term cytoplasmic microtubules. In the dark, the MAP 
WDL3 is recognized by its phosphorylation pattern and 
degraded by the 26S proteasome, while in light WDL3 is 
stabilized favoring the longitudinal orientation of micro-
tubules arresting hypocotyl growth [29]. These results 
suggest that phosphorylation of MAPs as a whole is 
important during etiolation. The relationship between 
MAPs phosphorylation and hypocotyl elongation in dark 
requires more investigations.

It is noteworthy that the 69, 46 and 24 terms for BP, 
MF and CC respectively from CG1 (Fig. 3) highlight GO 
terms involving phospho-signaling that do not have a rel-
evant role in dark development. We found terms related 
to defense response for BP and plastid and thylakoid for 

CC in this group (Table  S6). This is consistent with the 
hypothesis that plants invest its resources in functions 
that comprise its fitness rather than in other functions 
as defense that could be inducible when they are needed 
[30]. In the dark, plastids and thylakoids are not even 
developed.

Conclusions
In this work, we show a novel strategy that includes the 
comparisons of a phosphoproteome sample not only 
against the genome but also against a phosphoproteome 
database of reference. We propose UnRS, a database con-
taining all the phosphoproteins found experimentally 
plus those that could be predicted with strict parame-
ters, as the phosphoproteome reference set in Arabidop-
sis. The only requirement to perform this strategy is to 
update the database with the new phosphoproteins that 
have been identified. This novel strategy has the power 
to single out, from an array of phosphorylation-activated 
processes, those that are specific for a particular condi-
tion. Additionally, this strategy could be applicable to 
other species with public available phosphoproteome 
data. We also show that RNA splicing, microtubule and 
clathrin binding proteins are promising areas of research 
in dark development in Arabidopsis as major targets of 
phosphorylation.

Methods
Procedures for building Phosphoproteomes of reference
GenRS
To obtain the list of protein-coding genes, the whole 
Arabidopsis thaliana proteome was downloaded from 
arabi dospis. org website (Data Sources). This list is 
composed of 48,359 proteins since every splicing vari-
ant is included, and they are associated with in-use IDs 
(Table  S7 (see S7.1)). So, it became the reference list 
to map every other dataset to get rid of obsolete IDs. 
After trimming the splicing variants and filtering for 
unique registers, a list of 27,655 root-IDs were retrieved 
(Table  S7 (see S7.2)), that correspond to all Arabidop-
sis thaliana protein-coding genes [15]. This dataset is 
GenRS (Table S1, Table S7 (see S7.3)).

ExpRS
To build ExpRS, 55 of the most significant Arabidopsis 
thaliana phosphoproteomic datasets published in litera-
ture were collected. These datasets were mostly retrieved 
from the updated databases PhosPhAt4.0 [31–33] and 
P3DB3.5 [14] and supplemented with [8] data; and the 
recent released Arabidopsis thaliana expression atlas 
which contains one of the most comprehensive single 
Arabidopsis thaliana phosphoproteomes published so 
far [9]. Links to databases can be found at Data Sources. 
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Among all these studies included; 17 used cell cultures, 
and the rest used soil-, plate-, or hydroponically grown 
tissue, including young seedlings and leaves/rosettes (32), 
roots (6), pollen (2), or seeds (5). Various types of stress 
treatments were employed, in particular nutrient stress 
(nitrogen, sugars, and phosphate), but also hormone 
treatments (e.g., ethylene and abscisic acid) and biotic 
stress (as exposed previously in [8]). However, more than 
65% of the ExpRS dataset belongs to control conditions. 
To assemble ExpRS, we retrieve the lists of genes encod-
ing for phosphoproteins identified by mass spectrometry 
in each study. All in all, ExpRS contains 13,137 genes that 
encode for proteins with experimental evidence of phos-
phorylation (Table S1, Table S7 (see S7.4)).

PredRS
The predicted phosphoproteome named PredRS, was 
built combining two of the most accurate and updated 
predictors used in plants: MusiteDeep [34–36] and Phos-
PhAt [31–33]. We evaluated performance of MusiteDeep, 
PhosPhAt and the ensemble of both classifiers (PredRS), 
in order to achieve a high confident prediction with the 
highest number of phosphoprotein-coding-genes experi-
mentally validated (Table S7 (see S7.5)).

MusiteDeep
MusiteDeep [34–36] provides a deep-learning frame-
work for protein post-translational modification site 
prediction [34]. The method overview and deep learning 
architecture are well detailed in [34].

MusiteDeep phosphorylation predictor uses protein 
sequences as input and calculates a score at the amino 
acid level. All the residues annotated by UniProtKB/
Swiss-Prot as phosphorylated were treated as posi-
tive sites, while the residues with the same amino acids 
excluding annotations were regarded as the negative sites 
[34].

With the aim to formulate the prediction as a binary 
classification between “gene encoding for a phosphoryl-
ated protein” or positive result, and “gene encoding for 
a non-phosphorylated protein” or negative result; a pre-
diction score was required to be assigned per protein 
rather than per site. In this regard, we considered a posi-
tive prediction if MusiteDeep predicted any site as phos-
phorylated. This constituted a new classifier based on 
MusiteDeep.

All the Arabidopsis proteins’ sequences were submit-
ted to MusiteDeep Phosphorylation (S,T) and Phos-
phorylation (Y) prediction models (Data Sources). The 
cutoff was set to zero in order to obtain the complete 
unfiltered set of putative phosphoserine S, phospho-
threonine T and phosphotyrosine Y) (Table  S7 (see 
S7.6)). For every S, T and Y in each protein, a prediction 

score was obtained (Table S7 (see S7.7)), otherwise we 
setted − 1 as a flag for missing prediction scores. We 
retrieved the maximum prediction score among phos-
phoserine score, phosphothreonine score and phospho-
tyrosine score for each protein (Table S7 (see S7.8)). We 
then calculated a single score for each protein (protein 
score) as the maximum between phosphoserine, phos-
phothreonine and phosphotyrosine scores (Table  S7 
(see S7.9)). As exposed previously, several proteins 
may be encoded by the same gene due to splicing vari-
ants. So we calculated a prediction score (Gene Score) 
for each gene as the maximum of protein scores within 
the proteins encoded by the same gene (Table  S7 (see 
S7.10)). These gene scores belong to the new classifier 
based on MusiteDeep.

A true positive result (tp) is a gene predicted as 
coding for a phosphorylated protein and included in 
ExpRS, thus experimentally validated. In this regard, 
each gene has been labeled according to ExpRS so as to 
judge it as a true or false positive prediction. According 
to this, a false positive result (fp) is a gene predicted as 
coding for phosphorylated protein and not included in 
ExpRS. A true negative result (tn) is a gene predicted 
as coding for non-phosphorylated protein and not 
included in ExpRS. A false negative result (fn) is a gene 
predicted as coding for non-phosphorylated protein 
and included in ExpRS. These parameters characterize 
a classifier’s performance.

To determine the optimal classifier’s threshold for gene 
scores, we have calculated the value on the ROC curve 
(Receiver Operating Characteristic) which maximizes 
true positive rate (tpr = tp / (tp + fn)) and minimizes 
false positive rate (fpr = fp / (fp + tn)). AUC (Area under 
ROC Curve) score for this classifier was 0.73 and the 
value obtained for the threshold was 0.85. Therefore, the 
optimal threshold for this classifier was calculated as the 
mean of the results from computing the optimal thresh-
old value for 5000 random samples of 30% of the total 
set. With threshold set in 0.85, classifier’s performance 
results in fpr = 0.35, tpr = 0.69 and 4105 genes predicted 
as fn.

PhosPhAt
PhosPhAt offers a phosphorylation site prediction tool 
specifically trained on experimentally identified Arabi-
dopsis thaliana phosphorylation motifs [14]. It is based 
on a Support-Vector-Machines algorithm whose feature-
vector consists of the sequence of amino acids and their 
chemical-physical properties [14]. The high-confident 
predicted sites are available to download from PhosPhAt 
website (Data Sources).
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We retrieved the genes that encode for proteins with 
predicted sites by PhosPhAt, and considered as true posi-
tive results every gene included in ExpRS. According to 
this, PhosPhAt’s performance resulted in fpr = 0.001, 
tpr = 0.769 and 3034 genes predicted as fn.

PredRS performance
PredRS resulted from the combination of PhosPhAt and 
MusiteDeep predictions. PredRS considered a gene as 
encoding for a phosphorylated protein, if either Phos-
PhAt or MusiteDeep predicted it as positive.

Metrics obtained for PredRS performance were the 
following: Sensitivity or recall = 0.91, specificity = 0.66, 
precision = 0.71, fpr = 0.34, tpr = 0.91 and 1113 genes 
predicted as fn.

According to our evaluation of the predictors’ perfor-
mance on Arabidopsis data, PhosPhAt outperformed 
MusiteDeep, because of lower fpr and higher tpr. How-
ever, PredRS presented the highest tpr and lowest fn, 
leading to high sensitivity and precision values. This is 
the reason why it constituted the predicted phospho-
proteome of reference in this study. PredRS contains 
17,156 highly confident predicted phosphoprotein-
coding genes (Table  S1 and Table  S7 (see S7.11)), 70% 
of which are experimentally validated (intersect with 
ExpRS).

UnRS
To assemble the current Arabidopsis thaliana phos-
phoproteome so far, we performed the union of ExpRS 
and PredRS, leading to a list of 18,269 phosphopro-
tein-coding genes (Table S7 (see S7.12)). For contrast 
tests, 11 novel phosphoproteins from in-house unpub-
lished data were added to UnRS becoming U11RS 
(Table S1).

Phosphoproteomic from etiolated Arabidopsis seedlings
Plant material
WT seeds from ecotype Landsberg erecta background 
were obtained from the Arabidopsis Biological Resource 
center (ABRC, Ohio, USA). No specific permission 
is need to use WT ABRC seeds. Seeds were steri-
lized for 2 h in a  Cl2 (g) atmosphere generated by the 
addition of 1.5 ml HCl (37% v/v) to 50 ml of bleach 
(sodium hypochlorite). Sterilized seeds were sown 
on Murashige-Skoog 0.5X agar 0.8% (w/v) medium in 
petri dishes and incubated at 4 °C in D during 3 d for 
stratification. Chilled seeds were exposed to a 2 h red 
light pulse (50 μmol  m− 2  s− 1) at 22 °C to synchronize 
germination, and then kept in darkness for 5 d before 
harvest.

Protein extraction, phosphopeptide enrichment 
and LC‑MS/MS
Fifteen g of seedlings from 5-d-dark-grown WT seed-
lings were harvested and grinded with mortar and pes-
tle in liquid  N2. Seedling powder was resuspended in 
750 μl of cold extraction buffer (0.7 M sucrose, 0.1 M 
KCl, 0.5 M Tris-Cl, pH 7.5, 50 mM EDTA and 2% v/v 
β-Merchaptoethanol). Seven hundred fifty micro-
liters of phenol equilibrated at pH 8 with Tris-HCl 
was added and incubated at 4 °C for 30 min. Phases 
were separated by centrifugation during 30 min at 
9000 g (4 °C). The phenolic phase was recovered and 
re-extracted with an equal volume of cold extrac-
tion buffer. Proteins were precipitated by addition of 
five volume of 0.1 M ammonium acetate in methanol 
(chilled at − 20 °C) to the phenolic phase, incubated 
overnight at − 20 °C, and centrifuged during 1 h at 
12,000 g (4 °C). The pellets were washed twice with two 
volumes of cold methanol. The washing procedure was 
repeated twice with two volumes of cold acetone. The 
pellets were dried and resuspended in 100 μl of resus-
pension buffer (50 mM potassium phosphate buffer, 
pH 7.5, 8 M urea, protease inhibitors 1X (RocheTM) 
and phophatase inhibitors 1X (RocheTM). Total pro-
teins were quantified by Bradford method [37] and 
lyophilized. Lyophilized proteins were sent for phos-
phopeptide enrichment and mass spectrometry label 
free quantification to the Proteomic Platform of Chu 
de Quebec Research Centre (Laval, QC). Samples were 
resuspended in 450 μl of 50 mM Ammonium bicarbo-
nate. A trypsin digestion of 450 μg of each sample was 
performed followed by phosphopeptide enrichment 
using Pierce™  TiO2 Phosphopeptide Enrichment and 
Clean-up Kit. 1/5th of the elution for each sample was 
injected in a Thermo Orbitrap Fusion Mass Spectrom-
eter. It was performed a 120 min run with a 90 min 
gradient in a data dependent acquisition (DDA) with 
high energy collision induced dissociation (HCD) MS/
MS-IT detection mode. We performed 3 independent 
replicates.

Bioinformatic analysis
The bioinformatic analysis was performed using Max-
Quant/Andromeda engine, setting as fixed modifications: 
Carbamidomethylation (C), and variable modifications: 
Oxidation (M) + Phosphorylation (STY). The database 
employed was UniProt CP_Arabidopsis Thaliana. The 
quantification was done using signal intensity values of 
peptides. A peptide was considered quantifiable if it had 
at least 2 signal intensity values among biological repli-
cates. Missing signal intensity values were imputed with a 
noise value corresponding to the 1-percentile of all inten-
sity values by sample. The mass spectrometry proteomics 
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data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE [38] partner repository with the 
dataset identifier PXD008274.

This in-house data corresponds to the etiolated Arabi-
dopsis seedlings’ phosphoproteome, called Et in this 
study. It contains 933 genes that encode for phosphopro-
teins quantified in this study (Table S1), out of a total of 
1152 identified filtering with FDR 1%.

GO enrichment analysis in TopGO
Semi-automated Gene Ontology (GO) terms enrich-
ment analysis [39] were performed through the TopGO 
package as described in [40]. We implemented and 
applied the ParentChild algorithm [41] for eliminating 
local similarities and dependencies between GO terms. 
For statistics, we computed Fisher’s exact test which is 
based on gene counts [42] (Table S7 (see S7.13)).

The GO is composed of thousands of functional 
classes (terms) structured according to a directed acyclic 
graph (DAG). When a gene is annotated with a class, all 
inferences emerging from the structure of the GO must 
also hold true. This is known as the “True Path Rule”. 
In other words, “an annotation for a class in the hierar-
chy is automatically transferred to its ancestors, while 
genes unannotated for a class cannot be annotated for its 
descendants” [43]. Provided a list of terms enriched in a 
gene dataset, if the child term has highly statistically sig-
nificant enrichment, the parent term might appear sig-
nificantly enriched purely as a consequence of including 
all the genes from the child term. This is the reason why 
GO enrichment analysis cannot be done independently 
for each term; if so, each gene would be counted multi-
ple times.

To build the TopGO data object, three elements were 
required: the GO annotations for mapping the genes to 
the GO terms [44–46]; the dataset of reference to which 
every dataset was compared (gene universe or popu-
lation); and the dataset to be tested for enrichment of 
GO terms (intersection with the gene universe must 
be complete). GO annotations for the three ontologies 
(Biological Process, Molecular Function and Cellular 
Component) were retrieved from GO.db version 3.12 
(Data Sources). Mapping was performed as specified 
in Table  S7 (see S7.14). GenRS was defined as the gene 
universe for comparing every phosphoproteomic data-
set in this study (PredRS vs. GenRS, ExpRS vs. GenRS, 
UnRS vs. GenRS in Fig. 2; and Et vs. GenRS, Un11RS vs. 
GenRS in Fig.3). And Un11RS became the gene universe 
when comparing Et (Et vs. Un11RS in Fig. 3). Statistical 
analysis yielded p-values that were adjusted for multiple 
testing. In consequence, FDR correction procedure pro-
duced conservative p-values and declared fewer terms 

as significant. We considered significant those values 
smaller than 0.01 (Table S7 (see S7.15)).

A binary matrix was constructed with the significant 
(taking value 1) and non-significant (taking value 0) GO 
terms, for each comparison in Fig. 2 and Fig.3 (Table S7 
(see S7.16)). These results were resumed as binary heat-
maps, in which the GO terms sharing the same pattern 
were classified into groups. For each ontology, the count 
of GO terms in each group was specified.

Semantic similarity analysis
In order to identify the phosphorylation pathways in Et, 
we determined the proportion of genes associated with 
every significant GO term in groups CG2 and CG3, that 
are present in Et sample; and their interrelation in the GO 
graph. First, we constructed the lists of genes associated 
with the significant GO terms in each group (Table  S7 
(see S7.17 and S7.18)). Then, we computed the GenRatio 
(Calculation of percentage of genes associated with each 
GO term that are present in Et sample) for each of these 
terms in groups CG2 and CG3. (Table  S7 (see S7.19)). 
Finally, semantic similarity graphs were built in order to 
locate the significant terms in the GO structure using 
GenRatio values as nodes’ sizes (Fig. 4).

The semantic comparisons of Gene Ontology (GO) 
annotations provide quantitative ways to compute simi-
larities between genes and gene groups [20]. Considering 
that the specificity of a GO term is usually determined 
by its location in the GO graph, it has been proposed a 
graph-based strategy to compute semantic similarity 
using the topology of the GO graph structure [47]. In 
Wang’s method, the semantics of GO terms are encoded 
into a numeric format and the different semantic contri-
butions of the distinct relations are considered [20]. GO 
terms Semantic similarity was calculated using ViSEAGO 
package [48] (Table S7 (see S7.20)). The Wang semantic 
similarity plots display nodes scattered in a 2-dimen-
sion space according to their semantic similarity. Every 
node represents a significant GO term coloured accord-
ing to the comparison/s, and their size represents their 
corresponding GenRatio. DAG graphs were built using 
GOview (Data Sources) so as to show the relationship of 
GO terms with higher GenRatios (Fig. S1).
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