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Abstract: The cardiovascular disease (CVD) frequently developed during metabolic syndrome and 

type-2 diabetes mellitus is associated with increased levels of aggregation-prone small LDL 

particles. Aggregated LDL (aggLDL) internalization is mediated by low-density lipoprotein 

receptor-related protein-1 (LRP1) promoting intracellular cholesteryl ester (CE) accumulation. 

Additionally, LRP1 plays a key function in the regulation of insulin receptor (IR) and glucose 

transporter type 4 (GLUT4) activities. Nevertheless, the link between LRP1, CE accumulation, and 

insulin response has not been previously studied in cardiomyocytes. We aimed to identify 

mechanisms through which aggLDL, by its interaction with LRP1, produce CE accumulation and 

affects the insulin-induced intracellular signaling and GLUT4 trafficking in HL-1 cells. We 

demonstrated that LRP1 mediates the endocytosis of aggLDL and promotes CE accumulation in 

these cells. Moreover, aggLDL reduced the molecular association between IR and LRP1 and 

impaired insulin-induced intracellular signaling activation. Finally, aggLDL affected GLUT4 

translocation to the plasma membrane and the 2-NBDG uptake in insulin-stimulated cells. We 

conclude that LRP1 is a key regulator of the insulin response, which can be altered by CE 

accumulation through LRP1-mediated aggLDL endocytosis. 
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1. Introduction 

Metabolic syndrome (MS) and type-2 diabetes mellitus (T2DM) are chronic metabolic disorders 

and prevalent diseases adversely impacting health worldwide, which are characterized by increased 

levels of circulating glucose, insulin, atherogenic lipoprotein subfractions, and inflammatory 

cytokines [1,2]. These mediators of metabolic disease modify multiple molecular pathways, such as 

ceramide-induced apoptosis, increased formation of reactive oxygen species, mitochondrial 

dysfunction, and endoplasmic reticulum stress, which drive multiple alterations in different cell 
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types, including cardiomyocytes [1,3]. Cardiomyocytes are insulin-responsive cells and impaired 

insulin-signaling are associated with heart failure [4]. The excessive accumulation of neutral lipids is 

a phenomena associated with altered insulin signaling activation in hepatocytes, muscle cells, and 

myocardium [5,6]. However, the molecular mechanisms underlying the link between impaired 

insulin action and lipid accumulation are largely unknown. 

Patients with MS and T2DM usually present increased levels of aggregation-prone small LDL 

particles in addition to other anomalies in the lipoprotein profile [7]. These small LDL particles have 

a high tendency to become retained and aggregated (aggLDL) in extracellular spaces, but a small 

proportion of aggLDL has also been detected in circulation [7–9]. Whereas native LDL are recognized 

by the LDL receptor (LDLR), aggLDL are taken up by the LDL receptor-related protein 1 (LRP1) [10]. 

Moreover, LRP1 is involved in intracellular CE accumulation in muscle cells [11–13], which promotes 

a significant up-regulation of the lrp1 gene expression mediated by the sterol regulatory element-

binding proteins (SREBP) down-regulation [14–16]. 

It is known that LRP1 regulates the intracellular traffic of insulin-responsive vesicles containing 

the glucose transporter GLUT4 (GSV for GLUT4 storage vesicles) in fat and muscle cells [17]. These 

vesicles are trafficked and fused with the plasma membrane (PM) under insulin stimulus, through a 

mechanism dependent on the activation of the PI3K (phosphatidylinositol-3-kinase)/Akt pathway 

[18,19]. LRP1 depletion in GSV substantially reduces GLUT4 sorting to the PM promoting decreased 

glucose uptake [20]. In addition, it has been shown in hepatic and neuron-specific LRP1 knock-out 

mice that this receptor interacts with insulin receptor (IR) and regulates its intracellular signaling in 

neurons and hepatocytes [21,22]. Recently, we found that the blockage of LRP1 exocytosis towards 

the PM affected the insulin-induced intracellular signaling in retinal Müller glial cells [23]. These data 

suggest that LRP1 plays a key role in the insulin response in different types of cells and tissues. 

On the basis of these previous results, we hypothesize that LRP1 is involved both in CE 

accumulation and insulin response impairment in cardiomyocytes treated with aggLDL. Thus, the 

main objective of the present study was to evaluate the role of LRP1 in the aggLDL-mediated 

intracellular CE accumulation and in the impairment of insulin response evaluated through the 

insulin signaling activation, GLUT4 trafficking and glucose uptake in HL-1 cardiomyocytes-derived 

cell line. Herein, we demonstrated that LRP1 mediates the aggLDL binding and endocytosis, 

promoting CE accumulation in these cells. The aggLDL/LRP1 complex was accumulated in early 

endosomes [EEA1+] but not in other recycling vesicles such as TGN [TGN46+] or recycling endocytic 

compartments [Rab4+ and Rab11+]. Finally, aggLDL-treated HL-1 cells showed a decreased insulin 

response, which was evidenced by: (i) reduced molecular association between LRP1 and IR; (ii) 

decreased insulin-induced intracellular signaling (IR, Akt, and AS160 phosphorylation); (iii) 

impaired GLUT4 translocation to the PM; and (iv) reduced extracellular glucose uptake. 

2. Material and Methods 

2.1. HL-1 Cardiomyocyte-Derived Cell Line, Cultures, and Reagents 

The murine HL-1 cardiomyocyte-derived cell line was generated by Dr. W.C. Claycomb 

(Louisiana State University Medical Centre, New Orleans, LA, USA) [24,25]. HL-1 cells were 

maintained in Claycomb Medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal 

bovine serum (FBS) (Invitrogen, Buenos Aires, Argentina), 100 µM nor-epinephrine (Sigma-Aldrich, 

St. Louis, MO, USA), 100 units/mL penicillin, 100 g/mL streptomycin (Invitrogen, Buenos Aires, 

Argentina), and L-glutamine 2 mM (GlutaMAX from Invitrogen, Buenos Aires, Argentina) in plastic 

dishes, coated with 12.5 g/mL fibronectin (Sigma-Aldrich, St. Louis, MO, USA) and 0.02% gelatin, in 

a 5% CO2 atmosphere at 37 °C. Insulin was from Apidra® Solostar® 100 U/mL (Sanofi-Aventis, 

Germany). Rabbit anti-IR (cs4B8), rabbit anti-pIR (Tyr1361, cs84B2), and rabbit anti-Akt (#9272) 

monoclonal antibodies were from Cell Signaling Technology (Beverly, MA, USA). Rabbit anti-pAkt 

(Ser473, #07-789) antibody was from Merck KGaA (Darmstadt, Germany). Rabbit anti-AS160 

(#ab24469) and rabbit anti-pAS160 (Thr642, #ab65753) antibodies were from Abcam (Cambridge, MA, 

USA). Mouse monoclonal anti-β-actin (#A2228) was from Sigma-Aldrich (St. Louis, MO, USA). 
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Mouse monoclonal anti-APT1A1 (M7-PB-E9) was from ThermoFisher Scientific (Rockford, IL, USA). 

Rabbit anti-LRP1 (ab92544), mouse monoclonal anti-LRP1 (#ab28320), rabbit anti-GLUT4 (#ab654), 

rabbit anti-EEA1 (#ab2900), rabbit anti-Rab4 (#ab13252), rabbit anti-Rab11 (#ab65200), and rabbit anti-

TGN46 (#ab50595) monoclonal antibodies being purchased from Abcam (Cambridge, MA, USA). 

Immunofluorescences were performed with the secondary antibodies raised in goat anti-rabbit IgG 

conjugated with Alexa Fluor 647, 594 or 488, and anti-mouse IgG conjugated with Alexa Fluor 594 or 

488 (diluted 1/800) (Invitrogen, Buenos Aires, Argentina). GST-RAP was expressed and purified as 

described elsewhere [26] and used without further modification. In this work, 400 nM GST-RAP was 

used to inhibit the binding of aggLDL to LRP1. 

2.2. LDL Isolation and Modification 

Total LDL (d 1.019–d 1.063 g/mL) was isolated by sequential ultracentrifugation using KBr 

gradients, in the density range of 1.019–1.063 g/mL, from six different pools of plasma of 

normocholesterolemic volunteers. For the protein quantification we used a Pierce kit (#23225, 

ThermoFisher Scientific (Rockford, IL, USA). Apolipoprotein B integrity was tested by SDS-PAGE in 

10% acrylamide gels. Aggregated LDL was generated by vortexing LDL in PBS 1X for 5 min at room 

temperature [27], and then was centrifuged at 10,000 rpm for 10 min to precipitate the aggLDL. 

Finally, aggLDL was suspended in PBS 1X to a protein concentration of 1 mg/mL. The ultrastructure 

of aggLDL obtained by vortexing was similar to that of LDL modified by versican, one of the main 

chondroitin sulfate proteoglycans structuring the arterial intima [28]. 

2.3. DiI-Labeling of LDL 

DiI (1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine, Invitrogen, Buenos Aires, Argentina) 

is a lipophilic long-chain dialkylcarbocyanine that binds to lipoproteins and emits fluorescence at 565 

nm. The LDL (1 mg/mL) were incubated for 12 h with DiI in a proportion of 3 μL per 1 mg of 

lipoprotein in PBS 1X at 37 °C, exhaustively dialyzed in PBS 1X for 24 h to eliminate the excess of free 

DiI and filtered through a 0.22 μm filter. Finally, these stained LDL were aggregated mechanically by 

vortexing. 

2.4. Lipid Extraction and Determination of CE, TG, and FC Content 

HL-1 cells were serum-starved overnight and then exposed to aggLDL (100 μg/mL) for 8 h. Next, 

cells were exhaustively washed and harvested in NaOH 0.1 M. Lipids were extracted with 

dichloromethane/methanol [1:2] and cholesteryl esters (CE), free cholesterol (FC) and triglycerides 

(TG) content was analyzed by thin layer chromatography. The organic solvent was removed under 

N2 stream, the lipid extract was dissolved in dichloromethane and one aliquot was partitioned by 

thin layer chromatography (TLC) performed on silica G-24 plates. Different concentrations of 

standards (a mixture of cholesterol, cholesterol palmitate and triglycerides) were applied to each 

plate. The chromatographic solution was heptane/diethylether/acetic acid (74:21:4, v/v/v). The 

developing was carried out with a 5% solution of phosphomolybdic acid/5% sulfuric acid in ethanol 

and heating 7 min at 100 °C. The spots corresponding to CE, TG, and FC were quantified by 

densitometry against the standard curve of cholesterol palmitate, triglycerides, and cholesterol, 

respectively, using a computing densitometer. 

2.5. Western Blot Analysis 

HL-1 cells were cultured as above and cell protein extracts were prepared using RIPA lysis 

buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% 

SDS, 1 mM PMSF, 10 mM sodium ortho-vanadate, and protease inhibitor cocktails (Sigma-Aldrich, 

St. Louis, MO, USA). Forty micrograms of cell protein extracts were diluted in sample buffer 5X with 

DTT (dithiothreitol) and then heated for 5 min at 95 °C. Electrophoresis on 10% SDS-polyacrylamide 

gels was applied and proteins were electrotransferred to a nitrocellulose membrane (GE Healthcare 

Life Science, Amsterdam, The Netherlands). Nonspecific binding was blocked with 5% non-fat dry 
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milk in a Tris-HCl saline buffer containing 0.01% Tween 20 (TBS-T) for 60 min at room temperature. 

The membranes were incubated overnight at 4 °C with diluted primary antibodies and secondary 

antibodies raised in goat anti-mouse IgG IRDye® 680CW and goat anti-rabbit IgG IRDye® 800CW (LI-

COR Biosciences, Lincoln, NE, USA) diluted 1/10,000 for 1 h at room temperature. The specific bands 

were revealed using Odyssey CLx near-infrared fluorescence imaging system (LI-COR Biosciences, 

Lincoln, NE, USA). 

2.6. Confocal Microscopy 

HL-1 cells were cultured as above on cover glass. After different stimulus the cells were washed 

with PBS 1X, fixed with 4% paraformaldehyde (PFA), quenched with 50 mM NH4Cl, permeabilized 

for 30 min with 0.5% (v/v) saponin, blocked with 2% bovine serum albumin (BSA) and incubated with 

the respective primary antibody (diluted from 1/100 to 1/250) for 1 h, and revealed with a secondary 

antibody conjugated with Alexa Fluor (1/800) and Hoechst 33,258 colorant (1/2000) for 1 h. Finally, 

the cells were mounted on glass slides with Mowiol 4–88 reagent from Calbiochem (Merck KGaA, 

Darmstadt, Germany). For co-localization analyses, fluorescent images were obtained with an 

Olympus FluoView FV1200 confocal laser scanning biological microscope (Olympus, NY, USA). 

Whole cells were scanned and optical sections were obtained in 0.25-μm steps perpendicular to the 

z-axis, with images being processed using the FV10-ASW Viewer 3.1 (Olympus, NY, USA) and 

quantified by ImageJ software (NIH, Bethesda, Maryland, USA). 

2.7. Real Time-PCR 

The cells were serum-starved overnight and then exposed to the different stimuli and treated 

with the TRIzol® reagent (Invitrogen, Buenos Aires, Argentina) for total RNA extraction. One μg of 

total RNA was reverse transcribed in a total volume of 20 μL using random hexaprimers and reverse 

transcriptase. The PCR primers listed below were used to quantify the transcripts of LRP1, and β-

actin. The results were normalized to RT-PCR products of β-actin transcripts. Transcripts were 

quantified by real-time qRT-PCR (ABI 7500 Sequence Detection System, Applied Biosystems, 

California, USA) using Sequence Detection software v1.4. Amplification conditions included a warm 

start at 95 °C for 10 min, followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. Specificity was 

verified by fusion curve analysis and electrophoresis in 2% agarose gel with fluorescence detection 

with SYBR® Safe DNA (Invitrogen, Buenos Aires, Argentina). Relative gene expression was 

calculated according to the 2-Ct method. Each sample was analyzed in triplicate. No amplification 

was observed in the PCRs using water or RNA samples incubated without reverse transcriptase 

during cDNA synthesis. 

Sequences of mouse primers: 

lrp1 forward 5’-TGGAGCAGATGGCAATCGACT-3 ‘ 

lrp1 reverse 5’- CGAGTTGGTGGCGTAGAGATAGTT-3 ‘ 

β-actin forward 5’-AAATCTGGCACCACACCTTC-3 ‘ 

β-actin reverse 5’-GGGGTGTTGAAGGTCTCAAA-3 ‘ 

2.8. Immunoprecipitation (IP) Assays 

HL-1 cells were cultured as above, they were treated with or without aggLDL (100 μg/mL) for 8 

h and then stimulated or not with 100 nM of insulin for 30 min. Cell protein extracts were prepared 

using RIPA lysis buffer and incubated for 2 h at 4 °C with rabbit anti-LRP1 monoclonal antibody or 

rabbit non-immune IgG as IP control (2 μg/200 μg of total proteins). Then, these were incubated 

overnight at 4 °C with protein A-conjugated agarose beads following the manufacturer’s procedure 

(sc-2001; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and the proteins were separated and 

treated for Western blot using rabbit anti-IR (1/1000) and rabbit anti-LRP1 (1/10,000) monoclonal 

antibodies. Secondary antibodies raised in goat anti-mouse IgG IRDye® 680CW and goat anti-rabbit 

IgG IRDye® 800CW (LI-COR Biosciences, Lincoln, NE, USA) diluted 1/10,000 for 1 h at room 

temperature. The specific bands were revealed using Odyssey CLx near-infrared fluorescence 
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imaging system (LI-COR) and were quantified by densitometric analysis using Image Studio 

Software (LI-COR Biosciences, Lincoln, NE, USA). As loading control of total protein extracts β-actin 

was used. 

2.9. Biotin-Labeling Cell Surface Protein Assay 

HL-1 cells were cultured as above and then treated with or without aggLDL (100 μg/mL) for 8 

h, followed by the stimulation with 100 nM of insulin for 30 min. To determine the level of LRP1 and 

GLUT4 at the cell surface a biotin-labeling protein assay (EZ-Link™ Sulfo-NHS-SS-Biotin (cat: 21331), 

Thermo Scientific, Rockford, IL, USA) was used. Briefly, cells were incubated for 2 h at 4 °C with a 

0.12 mg/mL of biotin solution. Then, were incubate with 0.1 mM glycine solution for 30 min and 

washed with PBS 1X three times to remove the excess of biotin, after which corresponding cell lysates 

were generated. The biotinylated proteins were pulled down using streptavidin-conjugated agarose 

beads (Pierce™ Streptavidin Agarose (cat: 20353), Thermo Scientific, Rockford, IL, USA) for 2 h at 

room temperature. The biotinylated-plasma membrane proteins and total proteins (corresponding to 

10% of proteins incubated with agarose beads) were eluted by adding sample buffer 6X, DTT 1M and 

heating at 100 °C for 5 min, and then treated for Western blot using rabbit anti-LRP1 (1/10,000), rabbit 

anti-GLUT4 (1/2000), mouse monoclonal anti-ATP1A1 (1/1500), or mouse monoclonal anti-β-actin 

(1/5000) monoclonal antibodies. The membranes were incubated overnight at 4 °C with diluted 

primary antibodies and secondary antibodies raised in goat anti-mouse IgG IRDye® 680CW and goat 

anti-rabbit IgG IRDye® 800CW (LI-COR Biosciences, Lincoln, NE, USA) diluted 1/10,000 for 1 h at 

room temperature. The specific bands were revealed using Odyssey CLx near-infrared fluorescence 

imaging system (LI-COR Biosciences, Lincoln, NE, USA) and were quantified by densitometric 

analysis using Image Studio Software (LI-COR Biosciences, Lincoln, NE, USA). As loading control of 

PM protein and total protein extracts biotinylated-ATP1A1 and β-actin were used, respectively. The 

content of each biotinylated protein in the PM was analyzed by densitometry and related to 

biotinylated-ATP1A1 protein. 

2.10. 2-NBDG Uptake Assay 

HL-1 cells were cultured as above, and they were treated with or without aggLDL (100 μg/mL) 

for 8 h and then stimulated or not with 100 nM of insulin for 30 min together with 80 μΜ of 2-Deoxy-

2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG solution; Sigma-Aldrich, St. Louis, 

MO, USA). The 2-NBDG is a glucose fluorescent analog that is not metabolized and displays emission 

maxima of 540 nm. After stimulus, cells were washed with PBS 1X, fixed with 4% of 

paraformaldehyde, quenched with 50 mM NH4Cl, permeabilized for 30 min with 0.5% (v/v) saponin, 

blocked with 2% BSA and incubated with Hoechst 33,258 colorant (1/2000) for 1 h. Finally, cells were 

mounted on glass slides with Mowiol 4–88 reagent. Fluorescent images were obtained with an 

Olympus FluoView FV1200 confocal laser scanning biological microscope (Olympus, NY, USA). 

Whole cells were scanned and optical sections were obtained in 0.25-μm steps perpendicular to the 

z-axis, with images being processed using the FV10-ASW Viewer 3.1 (Olympus, NY, USA) and the 

total fluorescence in the whole cell area was quantified by ImageJ software. For microscope 

quantification of the co-localization level, a JACoP plug-in from ImageJ software (NIH, Bethesda, 

MD, USA) was used.  

2.11. Statistical Treatment of Data 

At least 50 cells/condition were analyzed and the averages of the vesicle percentages containing 

both proteins were calculated using the Manders’ coefficients and compared by the Student’s t-test. 

For Western blot and cell-surface protein detection assay, the data was expressed as the mean ± SEM 

and comparisons between two groups were performed using a paired t-test. Results from more than 

two groups were analyzed by one-way ANOVA followed by Dunnett’s post-hoc analysis (GraphPad 

Prism 5.0, San Diego, CA, USA). Values of p < 0.05 were considered to be significant. 
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3. Results 

3.1. LRP1 Mediates Intracellular CE Accumulation by AggLDL Endocytosis 

It has been reported that LRP1 is the cell surface receptor responsible for the binding and 

endocytosis of aggLDL and CE accumulation in VSMCs, macrophages and HL-1 cells [11,29]. 

Accordingly, using lipid extraction and subsequent thin layer chromatography, also we detected an 

increased accumulation of CE as well as lipid droplet formation in HL-1 cells treated with aggLDL 

for 8 and 18 h, respectively (Figures 1A,B and S1A). AggLDL treatment did not significantly affect 

cell survival (Figure S1B). Next, to evaluate whether LRP1 is mediating this lipid accumulation, HL-

1 cells were preincubated with GST-RAP, which blocks the binding of all LRP1 ligands, followed by 

treatment with DiI-labeled aggLDL (aggLDL-DiI) during 8 h and next analyzed by confocal 

microscopy. As expected, the presence of GST-RAP significantly blocked the uptake of aggLDL 

(Figure 1C,D). These results support the concept that LRP1 mediates the aggLDL uptake by HL-1 

cells producing intracellular CE accumulation. 

 

Figure 1. Intracellular lipid content and aggLDL uptake in HL-1 cells. (A) Thin layer chromatography 

assay of lipid extracts from HL-1 cells incubated with 100 µg/mL aggLDL for 8 h. Bands correspond 

to intracellular cholesteryl ester (CE), triglycerides (TG), and free cholesterol (FC). The CE/TG/FC 

bands from the standards analyzed by duplicate are shown in the right panel. (B) Bar graph represents 

the mean ± SEM of the optical densities of the bands corresponding to CE relative to the FC content 

for each condition. The statistical comparison of means was carried out through Student’s t-test for 

independent samples. (***) indicates significant differences (p < 0.0001) vs. control. Three independent 

experiments were performed. (C) Confocal microscopy of HL-1 cells preincubated or not with 400 nM 

GST-RAP and next treated with 100 µg/mL aggLDL-DiI for 8 h. The fluorescent emission of aggLDL-

DiI is observed red and yellow dotted line represents the cell shape. The cell nuclei were labeled with 

Hoechst. The scale bar corresponds to 10 µm. (D) Bar graph represents the Mean ± SEM of the Dil 

fluorescence intensity per cell area. (*) indicates significant differences (p < 0.05) between aggLDL 

treatment with or without GST-RAP. Three independent experiments were performed by duplicate 

and 20 cells were analyzed per experiment. 
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3.2. Aggregated LDL Endocytosis Leads to AggLDL/LRP1 Complex Accumulation in Endosomal 

Compartments 

To evaluate the endocytic pathway that follows LRP1 after binding to aggLDL, HL-1 cells were 

incubated with aggLDL-DiI for 8 h at 37 °C and then immunostained for detection of LRP1 at different 

intracellular compartments. Confocal microscopy experiments showed that LRP1 and aggLDL-DiI 

colocalized in vesicular structures in a high proportion (−50%) (Figure 2A). The co-localization 

analysis of the different subcellular compartments indicated that main of the LRP1 co-localization 

with aggLDL occurred in endocytic early endosome [EEA1+] (Figure 2B,C) while a weak co-

localization occurred in [Rab11+] and [Rab4+] endocytic recycling as well as trans-Golgi [TGN46+] 

compartments (Figure 2C). These data indicate that aggLDL/LRP1 complex is internalized and 

accumulated in endocytic compartments in HL-1 cells. 

It has been shown that aggLDL prolongs the half-life of LRP1 by inhibiting the proteasomal 

LRP1 degradation, which in turn favors the uptake and intracellular CE accumulation in VSMC [11]. 

Therefore, we evaluated the effect of HL-1 exposure to aggLDL for 8 h on LRP1 mRNA and protein 

levels through quantitative RT-PCR and Western blot assays, respectively. Figure 2D,E shows that 

aggLDL did not alter mRNA or protein levels of LRP1 at this end point. Therefore, these results 

demonstrate that aggLDL does not modify the LRP1 protein levels in HL-1 cells. 
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Figure 2. Intracellular distribution and expression level of LRP1 in HL-1 cells. (A) Confocal 

microscopy of HL-1 cells incubated in the absence or presence of 100 µg/mL aggLDL-Dil for 8 h. LRP1 

in green and aggLDL-DiI in red are shown. Inset: 4× magnification of framed region in the dotted 

lines. The MASK represents the binary image where co-localization pixels between LRP1 and aggLDL 

are shown in white. The corresponding quantitative analysis is shown as the mean ± SD of the 

percentages of co-localization. The images are representative of 30 cells per condition, coming from 

three independent experiments. The scale bar corresponds to 10 μm. (B) Confocal microscopy in HL-

1 cells incubated with 100 µg/mL aggLDL-DiI for 8 h showing the triple co-localization analysis 

between LRP1 and aggLDL-Dil together with early endosome marker [EEA1+]. The inset represents 

the 4× magnification of the framed regions in the dotted lines. The white arrowheads indicate vesicles 

containing triple co-localization sectors. The images are representative of 30 cells per condition, 

coming from three independent experiments. The scale bar corresponds to 10 μm. (C) The bar graph 

represents the mean ± SEM of the co-localization percentages of the triple co-localization between 

LRP1, aggLDL-Dil and different intracellular compartment markers (EEA1, Rab4, Rab11, and 

TGN46), obtained from the quantification performed in 30 cells per condition. (D) Quantitative RT-

PCR assay to evaluate LRP1 mRNA expression in HL-1 cells exposed to 100 μg/mL aggLDL for 8 h. 
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Bar graph showing the Mean ± SEM of mRNA levels. The RT-PCR products of Actin transcripts were 

used as loading controls. (E) Western blot assay for the immunodetection of the LRP1 β-subunit in 

HL-1 cells treated with 100 μg/mL aggLDL for 8 h. The immunodetection of β-actin was used as a 

protein loading control. The bar graph represents the relative intensity of LRP1 band normalized to 

β-actin and reported as a fold change against controls from three different experiments performed in 

triplicate. 

3.3. Aggregated LDL Reduces the Molecular Association Between LRP1 and IR 

It has been demonstrated that LRP1 mediates the insulin-induced IR phosphorylation in mouse 

brain [21]. In addition, hepatic LRP1 deficiency impaired the insulin response of mice fed with high-

fat diet [22]. Considering that aggLDL/LRP1 complex is accumulated in endocytic compartments, the 

cellular functionality of this receptor may be affected. Therefore, we have focused to investigate 

whether aggLDL may alter the molecular association between LRP1 and IR. In this way, HL-1 cells 

were incubated with aggLDL for 8 h and then stimulated with insulin for 30 min. Next, 

immunoprecipitation procedures were carried out using an anti-IR antibody followed by Western 

blot assays for LRP1 (Figure 3A). The quantitative analysis (Figure 3B) of bands showed that under 

basal conditions (without insulin) a molecular association is produced between LRP1 and IR (lane 2) 

that was reduced by aggLDL (lane 3). Insulin increased the LRP1/IR association (lane 5) that was also 

impaired in the presence of aggLDL (lane 4). Similar results were obtained when 

immunoprecipitation assays were carried out with anti-LRP1 antibody followed by Western blot 

assays for IR (Figure S1C,D). 

To evaluate whether the inhibitory effect of aggLDL on the molecular association between IR 

and LRP1 involves the ligand-receptor interaction, immunoprecipitation assays were carried out in 

cells preincubated with GST-RAP for 30 min. Under basal conditions (without insulin), GST-RAP did 

not affect the molecular association between LRP1 and IR (lanes 2 and 6) but effectively blocked the 

aggLDL effect on LRP1/IR association (lanes 3 and 8) (Figure 3C,D). In the presence of insulin, GST-

RAP restored the molecular association between LRP1 and IR in cells treated with aggLDL (lanes 4, 

5, and 7) (Figure 3C,D). Thus, these results indicate that the molecular association between LRP1 and 

IR in HL-1 cells is reduced by aggLDL. 
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Figure 3. Molecular association between IR and LRP1 in aggLDL-treated HL-1 cells. (A) 

Immunoprecipitation assay for IR. Cell lysate was immunoprecipitated with an anti-IR antibody and 

then subjected to SDS-PAGE and followed by Western blot assays for LRP1 and total IR. Cells were 

incubated or not with 100 µg/mL aggLDL for 8 h and then stimulated or not with 100 nM insulin for 

30 min. Lane 1, immunoglobulin isotype control (IC). The detection of LRP1, IR and β-actin in total 

cell lysates is shown in the lower panel of the Western blot. (B) The bar graph represents the 

densitometric quantification of the bands obtained in the Western blot. Values were expressed as the 

mean ± SEM of the relative intensity of LRP1 bands with respect to IR and shown as a fold change 

against control (white bar). (***) indicate significant differences (p < 0.0001) vs. control. Three 

independent experiments were performed in duplicate. (C) Immunoprecipitation assays for IR 

followed by Western blot for LRP1 β-subunit. Cells were or not preincubated with 400 nM GST-RAP 

for 30 min, then incubated or not with 100 µg/mL aggLDL for 8 h in the presence of 400 nM GST-RAP 

and subsequently stimulated or not with 100 nM insulin for 30 min. Lane 1, immunoglobulin isotype 

control (IC). The detection of LRP1 and β-actin in the total cell lysates is shown in the lower panel of 

the Western blot. (D) The bar graph represents the densitometric quantification of the bands obtained 

in the Western blot. The values were expressed as Mean ± SEM of the relative intensity of LRP1 bands 

with respect to IR, and reported as fold change against the corresponding control (white bar). (*) (p < 

0.05) and (**) (p < 0.01) indicate significant difference regarding to controls. Three independent 

experiments were performed by duplicate. 

3.4. Aggregated LDL Impairs Insulin-Induced Intracellular Signaling Activation 

Our group has previously demonstrated that insulin promotes the LRP1 translocation to the PM 

by activation of the insulin-induced intracellular signaling pathway [23,30]. Here, we investigated 

whether aggLDL may affect both LRP1 and IR levels on the cell surface. For this purpose, HL-1 cells 

were treated with aggLDL for 8 h, stimulated or not with insulin for 30 min and the levels of both 

receptors in the PM were analyzed by biotinylation assay of surface proteins followed by Western 
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blot. Figure 4A,B show that insulin as well as aggLDL significantly increased IR and LRP1 protein 

levels in the PM respect to control. In cells treated with aggLDL and then stimulated with insulin, the 

levels of LRP1 protein on the PM were increased over the control while those of IR remained 

unaltered. 

Based on these results, we study whether aggLDL affects insulin intracellular signaling 

activation in HL-1 cells. For this, cells were treated with aggLDL for 8 h, then stimulated with insulin 

for different times, and the activation of the insulin-induced intracellular signaling was evaluated by 

Western blot assays for phosphorylated IR (p-IR), Akt (p-Akt) and AS160 (p-AS160). Figure 4C,D 

shows that aggLDL significantly counteracted the time-dependent insulin-induced phosphorylation 

of IR, Akt and AS160. To evaluate whether the inhibitory effect of aggLDL on the insulin-induced 

intracellular signaling involves LRP1, HL-1 cells were incubated with GST-RAP previous to aggLDL 

and insulin treatments. Figure 4E,F shows that GST-RAP prevented the inhibitory effect of aggLDL 

on insulin-activated intracellular signaling as evidenced by increased p-Akt levels. These results 

indicate that aggLDL via LRP1 impairs the insulin intracellular signaling activation in HL-1 cells. 

 

Figure 4. LRP1 and IR protein levels in the PM and insulin-induced intracellular signaling activation 

in HL-1 cells. (A) Biotinylation assay of surface LRP1 and IR proteins. Cells were incubated with 100 

µg/mL aggLDL for 8 h and subsequent stimulated with 100 nM insulin for 30 min. Biotinylated 
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proteins were isolated from protein extracts through streptavidin-conjugated bead pull-down. The 

lower panel of the Western blot shows the detection of LRP1 and IR in total lysates, where 20% of the 

total protein content was loaded for the incubation with beads. Biotin-ATP1A1 and β-actin were used 

as protein loading controls of PM and total protein extracts, respectively. (B) Bar graphs show the 

mean ± SEM of the relative optical densities (O.D.) (referred to biotin-ATP1A1 as loading control of 

PM proteins) of the bands corresponding to LRP1 and IR of cell surface, expressed as fold change 

against the control (white bar). (***) (p < 0.001) and (**) (p < 0.01) indicate significant difference respect 

to control. Three independent experiments were performed by triplicate. (C) The Western blot assay 

of phosphorylated IR (p-IR), Akt (p-Akt) and AS160 (p-AS160) relative to each total protein in HL-1 

cells treated with aggLDL as above and stimulated or not with 100 nM insulin for 5 min to 30 min. 

The immunodetection of β-actin was used as a protein loading control. (D) Bar graphs represent the 

densitometric quantification of the bands obtained in the Western blot results. Respective values were 

expressed as the mean ± SEM of the relative intensity of p-IR/IR, p-Akt/t-Akt or p-AS160/t-AS160 

represented as fold change against the controls (white bar). (*) (p < 0.05), (**) (p < 0.01), and (***) (p < 

0.0001) indicate significant difference between different conditions. Three independent experiments 

were performed by duplicate. (E) Western blot assay for phosphorylated Akt (p-Akt) and total Akt (t-

Akt) in HL-1 cells preincubated or not with 400 nM GST-RAP for 30 min, treated or not with 100 

µg/mL aggLDL for 8 h and stimulated or not with 100 nM insulin for 5 min and 15 min. The 

immunodetection of β-actin was used as a protein loading control. (F) Bar graph represents the 

densitometric quantification of the bands. Values were expressed as the mean ± SEM of the relative 

intensity of p-Akt/t-Akt, reported as fold of change respect to the corresponding controls (lanes 1 and 

5). (**) (p < 0.01) and (***) (p < 0.0001) indicate significant difference respect to cells treated or not with 

aggLDL and with or without GST-RAP. Three independent experiments were performed by 

duplicate. 

3.5. Aggregated LDL Affects the GLUT4 Traffic to the Cell Surface and Glucose Uptake 

The insulin-induced intracellular signaling is a critical event for the GLUT4 traffic to the PM, 

which promotes the uptake of extracellular glucose [19]. HL-1 cells also express GLUT1, which 

internalizes glucose in an insulin-independent manner [31]. Herein, we found that the 

GLUT4/GLUT1 ratio is not modified in the presence of aggLDL and insulin in HL-1 cells (Figure 

S1E,F). Based on this, we evaluated whether aggLDL may affect the GLUT4 traffic to the cell surface 

in HL-1 cells stimulated with insulin. In this way, cells were treated with aggLDL for 8 h and 

stimulated with insulin for 30 min and the GLUT4 protein level on the PM was measured by 

biotinylation assay of surface proteins. Figure 5A,B shows that insulin increased GLUT4 in the PM, 

whereas aggLDL alone did not produce significant changes on the GLUT4 in the cell surface. Finally, 

the insulin-induced GLUT4 traffic to the PM was impaired by aggLDL treatment. 

Taking into account that aggLDL affects the insulin-induced GLUT4 traffic to the PM, we 

evaluated the glucose uptake by HL-1 cells. Thus, cells were treated with aggLDL and insulin as 

above in the presence of 2-NBDG, a glucose fluorescent analogue, for 30 min. Figure 5C,D shows that 

insulin stimulation significantly increased the 2-NBDG uptake, while aggLDL treatment alone did 

not alter glucose uptake. However, cells treated with aggLDL evidenced a significant decrease in 2-

NBDG uptake in response to insulin. Finally, to explore the potential role of LRP1 in this effect of 

aggLDL, HL-1 cells were preincubated with GST-RAP for 30 min before cells were exposed to 

aggLDL, insulin and 2-NBDG treatments. Figure 5E,F shows that the GST-RAP incubation 

counteracted the impairment effect of aggLDL on the insulin response. These results indicate that 

aggLDL/LRP1 complex endocytosis affects insulin-induced GLUT4 traffic to the PM and, therefore, 

the glucose uptake by HL-1 cells. 
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Figure 5. Level of GLUT4 protein in the plasma membrane and 2- NBDG uptake by HL-1 cells treated 

with aggLDL and insulin. (A) Biotinylation assay of surface proteins for the detection of biotinylated 

GLUT4, from protein extracts after an incubation assay with 100 µg/mL aggLDL for 8 h and 

subsequent stimulation with 100 nM insulin for 30 min. Next, biotinylated proteins on the cell surface 

were subsequently isolated by incubation with streptavidin-conjugated beads. The GLUT4 detection 

in the total cell lysates is shown in the lower panel of the Western blot. ATP1A1 and β-actin were used 

as protein loading controls, respectively. (B) Bar graph represents the mean ± SEM of the relative 
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optical densities (O.D.) (referred to biotin-ATP1A1 as loading control of PM proteins) of the bands 

corresponding to GLUT4 at the cell surface for the different conditions, expressed as the fold change 

against controls (white bar). (*) (p < 0.05) indicates significant difference against controls. Three 

independent experiments were performed by triplicate. (C) Confocal microscopy of HL-1 cells 

incubated or not with 100 µg/mL aggLDL for 8 h and stimulated or not with 100 nM insulin for 30 

min, together with 80 μM 2-NBDG (green). The images are representative of 20 cells per condition 

from three independent experiments. The scale bar corresponds to 10 μm. Dotted line represents the 

cell shape. (D) Bar graph represents the mean ± SEM of the fluorescence intensity of 2-NBDG per cell 

area, expressed as the fold chances against controls (white bar). (***) (p < 0.0001) indicates the 

significant differences against controls. (E) Confocal microscopy of HL-1 cells preincubated with 400 

nM GST-RAP and treated or not with 100 µg/mL aggLDL for 8 h. Then, cells were stimulated or not 

with 100 nM insulin for 30 min, together with 80 μM 2-NBDG (green). Images are representative of 

20 cells per condition. The scale bar corresponds to 20 μm. The dotted line represents the cell shape. 

(F) Bar graph represents the mean ± SEM of the fluorescence intensity of 2-NBDG per cell area, 

expressed as fold change against controls (white bar). (***) (p < 0.0001) indicates significant difference 

respect to control. Three independent experiments in duplicate were performed. 

4. Discussion 

Frequently, insulin resistance coexists with an imbalance in lipoprotein metabolism which has a 

strong impact on cardiac metabolism [3]. Previous studies from our group demonstrated LRP1 

mediated the CE accumulation in HL-1 cells as well as in neonatal rat ventricular cardiomyocytes 

(NRVC) [10]. Although HL-1 is a derived cell line from mouse atrial cardiomyocytes and presents 

certain limitations as an experimental model, numerous research groups have been based on the use 

of the HL-1 cell line for the study of normal cardiomyocyte function and also in several pathologies 

[32–34]. In the present study, we demonstrated that LRP1 mediates aggLDL binding and endocytosis 

in this cell line. The aggLDL/LRP1 complex is accumulated in early endosomes [EEA1+] but not in 

other recycling vesicles such as TGN [TGN46+] or recycling endocytic compartments [Rab4+ and 

Rab11+]. Interestingly, aggLDL-treated HL-1 cells showed a decreased insulin response, which was 

evidenced by: (i) reduced molecular association between LRP1 and IR; (ii) decreased insulin-induced 

intracellular signaling (IR, Akt, and AS160 phosphorylation); (iii) impaired GLUT4 traffic to the PM 

and (iv) reduced extracellular glucose uptake. 

In the present work, we show that aggLDL increases intracellular CE accumulation, which is 

fully blocked by GST-RAP, an intracellular chaperone protein that compete and inhibit the binding 

of all LRP1 ligands [35]. LRP1 internalizes its ligands by endocytosis mediated by a chlatrin-coated 

pit process, which is followed by a significant accumulation of the ligand/receptor complex in early 

endosomes [36]. From this endosomal accumulation, the cargo is routed to a degradation pathway 

via late endosomes and lysosomes after a few minutes, whereas LRP1 is intracellularly stored in LRP1 

storage vesicles (LSVs) and recycling compartments, and subsequently returned to the PM though 

secretory and exocytic pathways [23,37]. Here, we demonstrate that both aggLDL and LRP1 were 

mainly localized in endocytic endosomes, which suggest that aggLDL modifies LRP1 intracellular 

traffic and, therefore, may potentially influence LRP1 functions. 

It has been demonstrated that LRP1 is located mainly in clathrin-rich membrane domains, 

whereas IR is localized in lipid rafts/caveolae domains where the receptor signaling pathway 

downstream is activated by insulin [38–40]. In this way, LRP1 seems to be transiently translocated in 

lipid rafts/caveolae domains under the stimulating effect of insulin [41]. Our team has previously 

shown that LRP1 membrane compartmentalization is altered in human myocardial samples from 

dilated cardiomyopathy patients [42]. In the present study, we show that aggLDL counteracted 

insulin-induced IR sorting to the PM and reduced the molecular association of LRP1 with IR. 

Together, our results would suggest that aggLDL mainly alters the LRP1 endocytic processing and 

its insulin-dependent distribution from clathrin domain to lipid rafts/caveolae domain. Likely, 

further studies are needed to evaluate if impaired LRP1 and IR membrane distribution is caused by 

increased CE accumulation in membrane rich cholesterol domains. 
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LRP1 cooperates as a scaffold protein with IR for its adequate phosphorylation by insulin action 

in neurons and hepatocytes, although the molecular mechanism is not clear yet and requires further 

investigation [21,22]. The alteration of the LRP1 expression in these cell types results in a defective 

signaling of the insulin [22,43]. In the present study, we demonstrated that aggLDL counteracts 

insulin-induced intracellular signaling (IR, Akt, and AS160 phosphorylation), which was restored by 

the presence of GST-RAP. In turn, this aggLDL impairment effect of insulin signaling had deleterious 

consequences on insulin-induced GLUT4 traffic to the PM. Our findings corroborated that aggLDL 

affect the exocytosis of this glucose transporter towards the cell surface, probably due to the alteration 

in the insulin-induced intracellular signaling. As consequence of the aggLDL inhibitory effect on 

LRP1-mediated GLUT4 traffic, 2-NBDG uptake was reduced in aggLDL-loaded HL-1 cells. Further 

studies will be required to know whether aggLDL also affects other insulin actions on lipid and 

protein metabolism as well as on cellular energy [44,45]. In this last aspect, it would be interesting to 

investigate the aggLDL effect by stimulation times longer than 8 h, not only to assess the possible 

damage caused by CE but also by the disruption of the insulin response on cell viability. 

5. Conclusions 

Figure 6 shows the conclusive scheme of our results in which it is represented that the LRP1-

mediated aggregated LDL uptake causes intracellular CE accumulation and contributes to altering 

the insulin response through impairment of insulin signaling, GLUT4 traffic to the PM, and glucose 

uptake by HL-1 cells. 

 

Figure 6. LRP1-mediated aggregated LDL uptake and impaired insulin response in HL-1 cells. LRP1 

mediates the binding and endocytosis of aggLDL (indicated as (a) causing intracellular cholesteryl 

ester (CE) accumulation. In the present work we demonstrated that the LRP1/aggLDL complex is 

located mainly in early endosomes [EEA1+], which could have consequences in LRP1 insulin-

dependent distribution from clathrin domain to lipid rafts/caveolae domain (indicated as b). In 

addition, we showed that the aggLDL accumulation also modified the molecular association between 

LRP1 and IR, which could contribute to an impaired insulin response characterized by (1) altered 

insulin-induced intracellular signaling activation, (2) reduced GLUT4 traffic to the PM, and (3) 

decreased glucose uptake. EE, early endosomes; GLUT4, glucose transporter 4; GSV, GLUT4 storage 

vesicles. 
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Non-Standard Abbreviations 

2-NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-Deoxyglucose). 

aggLDL Aggregated low-density lipoprotein. 

CE Cholesteryl ester. 

GLUT4 Glucose transporter type 4. 

GSV GLUT4 storage vesicles. 

IR Insulin receptor. 

LDL Low-density lipoprotein. 

LRP1 Low-density lipoprotein receptor-related protein-1. 
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