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Abstract The parallel machines scheduling problem (PMSP) comprises the allocation of jobs on the resources

of the systems, i.e., a group of machines in parallel. The basic model consists of m identical machines and n

jobs. The jobs are assigned according to resource availability following some allocation rule. In this work, we

apply the Ant Colony Optimization (ACO) metaheuristic which includes four different specific heuristics in the

solution construction process to solve unrestricted PMSP for the minimization of the Maximum Tardiness (Tmax)

objective. We also present a comparison of previous results obtained by a simple Genetic Algorithm (GAs), and

an evidence of an improved performance of the ACO metaheuristic on this particular scheduling problem.

Keywords: Parallel Machine Scheduling, Maximum Tardiness, Ant Colony Optimization Algorithms, Specific

Heuristic Problem Information.

1 Introduction

The unrestricted PMSP is considered in this paper. The problem consists of scheduling n jobs on m
identical parallel machines (Pm) to minimize the Tmax. There are no constraints in the assignement of
the jobs to the machines, therefore the problem is described by (Pm||Tmax). This problem belongs to
more basic model of PMSP which is NP-hard, even when m = 2 [19]. The PMSP are representative of
many real world problems. In such systems it is usual to deal with minimizations of the objectives based
on the due dates, such as the Tmax. In the scheduling literature there are several methods of resolutions
for PMSP. In [18], [19] a set of dispatching rules and heuristics are presented. In [16] the PMSP was solved
with approximation algorithms based on linear and integer programming. In [7] a memetic algorithm
was developed, in [6] a column generation based on exact descomposition algorithm was presented.
Evolutionary Algorithms (EAs) with multirecombination methods [10], [11], and knowledge insertion
into problem [12] have been successfully applied to solve PMSP. Similarly, the ACO metaheuristic has
also been applied to solve scheduling problems, such as [8] for Travel Salesman Problem, [4] and [5] for
Single Machine Total Tardiness Problem, [13] for Job Shop Scheduling Problem, [3] for Scheduling Task
Graphs, [21] Flow Shop Scheduling Problem, [22] for Parallel Machine Shop, [2] for PMSP with setup
times, and [20] for PMSP with precedence constraints. All works mentioned above were tackled with
different problems, different instances and objective functions, except ([10], [11], and [12]).

In this work we propose an Ant Colony System (ACS) [8], an advanced algorithm derived from the
ACO metaheuristic, to applied unrestricted PMSP to minimize the Tmax. It is important to note that the
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pheromone trails and heuristic information are the driving forces in ant algorithms to efficiently explore
the search space. In the particular case of the heuristic information, different rules can be incorporated
according to the problem under consideration. For the scheduling problem studied in this work, the ACS
was implemented by considering different specific heuristics, which were based on the following rules:
Earliest Due Date (EDD), Shortest Processing Time (SPT), Longest Processing Time (LPT), and Least
Slack (SLACK). In addition, we compared the results with results obtained by simple Genetic Algorithms
belonging to previous works by Ferretti et al. [10].

The remainder of the paper is organized as follows. Section 2 introduces the Parallel Machines
Scheduling Problem. In Section 3, the Ant Colony Optimization metaheuristic and ACS algorithm for
PMSP are presented. The experimental design is described in Section 4. In Section 5, the results are
showed. Section 6 provides our conclusions.

2 Parallel Machines Scheduling Problem

The formal notation used in the literature [19] for the scheduling problem that we are dealing is a
triplet: (Pm || Tmax). The first field describes the machine environment Pm, the second one contains
the restrictions, we note that our problem is unrestricted, therefore this field is empty, and the third one
provides the objective function Tmax. This scheduling problem can be stated as follows: there are n jobs
to be processed without interruption on some of the m identical machines belonging to the system Pm;
each machine can process not more than one job at a time. Job j (j=1,2,...n) is made available for the
processing at time zero, it requires an uninterrupted positive processing time pj on a machine and it has
a due date dj by which it should ideally be finished. For a given processing order of the jobs (schedule),
the earliest completion time Cj and the maximum delay time Tj = {Cj - dj , 0} of the job j can be easily
estimated. The problem consists in finding a optimum schedule objective value. The objective to be
minimized is:

MaximumTardiness : Tmax = maxj (Tj )

The problems related to the due dates have received considerable attention from a practical and
theorical point of view, besides, they have considered as NP-Hard when 2 ≤ m ≤ n, check the literature
[19].

2.1 Conventional Heuristics to Scheduling Problems

Dispatching heuristics assign a priority index to every job in a waiting queue. The one with the highest
priority is selected to be processed next. There are different heuristics (e.g., [19] and [18]) for the above
mentioned problem whose principal property is not only the quality of the results but also give a schedule
closest the optimal sequence. The following dispatching heuristics were selected to determine priorities,
and they were used to build schedules by the Ant Colony System:

• EDD (Earliest Due Date first): the job with earliest due date is selected first and the final scheduled
jobs are ordered satisfying:

d1 ≤ d2 ≤ ... ≤ dn .

• SPT (Shortest Processing Time first): the job with shortest processing time is selected first and
the final scheduled jobs are ordered satisfying:

p1 ≤ p2 ≤ ... ≤ pn .

• LPT (Largest Processing Time first): the job with largest processing time is selected first and the
final scheduled jobs are ordered satisfying:

pn ≤ pn−1 ≤ ... ≤ p1 .

• SLACK (Least slack): the job with the smallest difference between due date and processing time
is selected first and the final scheduled jobs are ordered satisfying:

d1 − p1 ≤ d2 − p2 ≤ ... ≤ dn − pn .
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3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic in which a base process is the solutions construction,
(see in the bibliography [9]). It manages a colony of ants that concurrently and asynchronously visit
adjacent states of the considered problem by moving through neighbor nodes of the construction graph
G. They move by applying a stochastic local decision policy, denoted by Pij , which is descripted in
section 3.1, it makes use of pheromone trails, denoted by (τij) and heuristic information, denoted by
(ηij). In this way, ants increasingly build solutions to the optimization problem. Once an ant has built
a solution, or while the solution is being built, the ant evaluates the (partial) solution that will be used
by the update pheromones procedure to decide how much pheromone to deposit. Update pheromones
this is the process by which the pheromone trails are modified. The trails value can either increase,
as ants deposit pheromone on the components or connections they use, or decrease, due to pheromone
evaporation. From a practical point of view, the deposit of new pheromone increases the probability for
those components/connections, that were either used by many ants or that were used by at least one
ant, and which produced a very good solution, to be used again by future ants. On the other hand,
pheromone evaporation implements a useful form of forgetting: it avoids premature convergence of the
algorithm toward a suboptimal region, therefore favoring the exploration of new areas of the search space.

The Ant Colony System (ACS), is an ACO algorithm introduced by Dorigo and Gambardella [8]. It
uses a modified rule when an ant chooses the next travel node. It uses a best-so-far pheromone update
rule but applies pheromone evaporation only to the trail that belongs to the solution components that are
in best-so-far solution. It also uses a local pheromone update rule to decrease the pheromone values on
visited solution components, in order-to encourage exploration. A general outline of the ACS is presented
in Algorithm 1.

Algorithm 1 Pseudo-code for ACS

Initialize
for c=1 to Cycles-Number do

for k=1 to Ants-Number do

Construct-Ant-Solution (Local Update Pheromone)
Save-Best-Solution
Rank-Solution
Global-Update-Pheromone
Reallocation-Ants

end for

end for

Print-Best-Solution

3.1 ACS for (Pm||Tmax)

This section presents the description of the main components of the implemented ACS.

1. Construction graph: The ants perform random walks in a construction graph and these walks
represent feasible solutions of the underlying combinatorial optimization problem. To construct a
feasible solution the artificial ants successively choose jobs to be appended to the actual subsequence,
until all jobs are scheduled. Each ant decides independently of each other which job j should be
the i-th job in the sequence, and each ant generates a complete solution. A walk consists of
several “node-to-node” movements and these movements are performed on the basis of transition
probabilities. The transition probability Pij that job j be selected to be processed on position i in
the sequence is formally given by:

Pij =

{

τijη
β
ij

Στihη
β

ih

jǫΩ

0 otherwise
(1)
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Figure 1: Example of a construction graph for 6 jobs in mk machines in parallel.

where Ω is the set of non-scheduled jobs, and h belongs to Ω, ηij is the specific-problem heuristic
information, and τij the pheromone trails.

For example, for an instance problem of 6 jobs and mk machines, the construction graph can be
seen as in Figure 1. The nodes in the graph represent jobs whereas the edges represent the possible
walks that the ants can follow. The solution (J1, J2, J5, J6, J4, J3) is a walk in the graph represented
by boldface edges and it starts in J1 node.

2. The formulas of the local and global pheromone update are:

(a) Local Update Rule
τij = (1 − ρlocal)τij + ρlocalτ0 (2)

where ρlocal is a weight between 0 ≤ ρlocal ≤ 1, and τ0 is a constant value.

(b) Global Update Rule

τij(t + 1) = (1 − ρglobal)τij(t) + ρglobal∆τ b
ij(t + 1) (3)

where ∀(i, j)ǫT b and ρglobal is a weight between 0 ≤ ρglobal ≤ 1, ∆ is 1/fitness, b is the index
of the best-so-far solution, and T b is the path of b.

3. For selecting the next component j, ACS uses the next formula:

j =

{

arg.max{τijη
β
ij} q ≤ q0

Pij otherwise
(4)

where q is a random variable uniformly distributed in [0, 1], q0 is a parameter between 0 ≤ q0 ≤ 1,
and Pij is the probability item selection given in equation 1.

4. The objective function:
Min : Tmax = maxj (Tj )

where Tj = {Cj - dj, 0} is the maximum delay time, dj is the due date, and Cj is the earliest
completion time of the j job.
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5. Specific information heuristics η

(a) Earliest Due Date (EDD) based heuristic, where jobs are sorted and scheduled according to
ascending due dates.

ηEDD = 1/dj

(b) Shortest Processing Time (SPT) based heuristic, where jobs are sorted and scheduled according
to ascending shortest processing time.

ηSPT = 1/pj

(c) Largest Processing Time (LPT) based heuristic, where jobs are sorted and scheduled according
to ascending largest processing time.

ηLPT = pj

(d) Least Slack (SLACK) based heuristic, where jobs are sorted and scheduled according to as-
cending smallest difference between due date and processing time.

ηSLACK = 1/(dj − pj )

To implement the ACS with different heuristics we use the Mallba project [1]. It is an integrated way
to develop a skeleton library for combinatorial optimization that includes exact, heuristic, and hybrid
methods. The skeletons are based on the separation of two concepts: the problem to be solved and the
general resolution method to be used. The skeletons can be seen as generic templates that only need to
be instanced with the characteristics of the problem in order to solve it. All the features related to the
method of selected generic resolution and their interaction with the problem itself, are implemented by
the skeleton, while the particular characteristics of the problem must be provided by the user.

4 Experimental Design

As it is not easy to find published benchmarks for the unrestricted parallel machines scheduling problems
we worked on, we built our own test with proper data, based on selected data corresponding to weighed
tardiness problems taken from the OR-Library [17]. In such library, 125 test instances are available for
each problem size n = 40, n = 50 and n = 100, where n is the number of jobs.

For problems of size 40, 20 instances are selected and for problems of size 100, 20 instances are selected
as well, each instance with the same identification number, although they are not the same problem. That
is to say that we have a problem numbered 1 with 40 jobs and another one numbered 1 with 100 jobs,
and so on. The numbers of the problems are not consecutive because each one was selected randomly
from different groups. The tardiness factor is harder for those with the highest identification number.

The instances were randomly generated in the OR-Library as follows: For each job j (j = 1, ..., n), an
integer processing time p{j} was generated from the uniform distribution [1, 100] and integer processing
weight w{j} was generated from the uniform distribution [1, 10]. Instance classes of varying hardness
were generated by using different uniform distributions for generating the due dates. For a given relative
range of due dates RDD (RDD = 0.2, 0.4, 0.6, 0.8, 1.0) and a given average tardiness factor TF (TF =
0.2, 0.4, 0.6, 0.8, 1.0), an integer due date d(j) for each job j was randomly generated from the uniform
distribution [P (1 − TF − RDD/2), P (1 − TF + RDD/2)], where P = SUM{j = 1, ..., n} p(j). Five
instances were generated for each of the 25 pairs of values of RDD and TF , yielding 125 instances for
each value of n.

These data were the input for dispatching rules and conventional heuristics, and we used PARSIFAL
[18], a software package provided by Morton and Pentico to evaluate the instances problem by means of
different heuristics, as for example EDD and SPT used in this work. In this way, we got the benchmarks
(known optimal values) for problem instances for the Tmax objective function.

To evaluate and compare the ACS algorithms (each with different heuristic information), and compare
them with a simple Genetic Algorithm, the following relevant performance variables were chosen from
previous works [10]:
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Parameters

Names Values

number of runs 30
number of steps 1000

colony size 140
q0 0,9
t0 0,5

Table 1: Parameter values.

Parameters

Names EDD SLACK SPT LPT

β 5 5 10 5
ρlocal 0,05 0,05 0,02 0,05
ρglobal 0,9 0,9 0,5 0,5

Table 2: Parameter values chosen of experiments.

• Ebest = ((best value−opt-val)/opt-val) ∗ 100: it is the percentage error of the best found solution
when compared with the known or estimated (upper bound) optimum value opt-val. It gives a
measure on how far the best solution is from that opt-val. When this value is negative, it means
that the opt-val has been improved.

• Mean Ebest (MEbest): it is the mean value of Ebest throughout all runs.

• Mean Best (µBest): it is the mean objective value obtained from the best found solutions through-
out all runs.

• Hit Ratio: it is the percentage of runs where the ACS reaches or improves the known or estimated
optimum value.

The initial phase of the experiments consisted in stablishing some best parameter values for the ACS,
and some others were set from the related literature [15], and they are presented in Tables 1 and 2.

We used the same maximum number of evaluations in all the experiments. We took a maximum
number of 140, 000 evaluations, and used elitism. We performed several experiments with Tmax, for three
systems of unrestricted parallel machines scheduling problems:

• 20 instances of 40 jobs and m = 2 machines.

• 20 instances of 40 jobs and m = 5 machines.

• 20 instances of 100 jobs and m = 5 machines.

5 Analysis of Results

In tables 3, 4, and 5, we show the results obtained by two heuristics, ηEDD and ηSLACK of ACS algorithm
because they had the best performance for the three problems studied, and also we show the results
obtained by simple genetic algorithms GAs reported in [10].

In tables 3 and 4, we can see the µBest average value obtained by heuristic ηEDD were the best
minimun value, but if we look at the instances one to one, minimum values (the bold values), some
belong to GA and some to ACS. The highest average values of Hit Ratio were for the ηEDD and ηSLACK

heuristics. However, the Hit Ratio is zero or near zero for the instance numbers 66, 91, 111, 116, and
121. The some observation is true for GA algorithm.

In table 5 the minimun µBest average value was obtained by GA, but the best Hit Ratio averages
were for ηEDD and ηSLACK heuristics.
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Maximun Tardiness: n=40 y m=2

Inst. Opt. GA ACS (ηEDD) ACS (ηSLACK)

N val. µBest HRatio µBest HRatio µBest HRatio

1 235 225.73 9 216.0 100 216.0 100

6 599 614.7 17 594.0 100 594.0 100

11 1060 1018.1 93 998.0 100 998.0 100

19 1628 1635.93 20 1624.0 100 1624.0 100

21 1660 1639.67 100 1646.2 90 1688.5 20

26 55 66 60 27.0 100 27.0 100

31 494 527.47 7 474.0 100 474.0 100

36 869 920.23 7 852.0 100 852.0 100

41 1280 1421.8 7 1271.0 100 1271.1 100

46 1240 1224.0 80 1230.1 80 1381.8 0.0

56 247 293.17 0.0 229.0 100 229.0 100

61 602 762.73 0.0 604.1 0.0 604.0 0.0

66 1090 1244.43 0.0 1236.3 0.0 1272.2 0.0

71 1280 1289.27 53 1346.0 10 1398.8 0.0

86 493 535.43 17 457.0 100 457.0 100

91 896 1014.07 3 1164.4 0.0 1192.1 0.0

96 1537 1592.03 13 1630.6 30 1615.6 0.0

111 659 956.97 0.0 1014.6 0.0 1206.7 0.0

116 650 799.3 0.0 900.3 20 1635.2 0.0

121 1430 1486.07 13 1676.6 0.0 1954.0 0.0

AVG 900,2 963.36 29.0 959.56 61.5 1034.55 51.0

Table 3: The Opt-val are obtained by Parsifal, the µBest and HitRatio are obtained by simple genetic
algorithm GA and ACS algorithms using ηEDD and ηSLACK specific information heuristics.

Such heuristics use the due date dj values in their formulas, as does the objective function Tmax. We
could say that good performance of ACS algorithm which uses these heuristics, were due to the existing
relationship between the specific information used by the search process and the objective function to be
minimized.

However, for the three problems studied, the minimum best µBest values (the bold values) for in-
stances with higher identification numbers were the ones obtained by GA algorithm.

We also campare the results of ACS algorithms with different information heuristics, ηEDD, ηSLACK ,
ηSPT and ηLPT , by mean of statistic test. We use the EBest values of the 30 independent runs to do the
analysis of variance between four ACS algorithms. We apply the Kruskal-Wallis [14] one-way analysis
when the values (the sample) do not have a normal distribution (determined by Kolmogorov-Smirnov
test), and we apply Anova test when the values have a normal distribution. The Kruskal-Wallis and
Anova test, both return the p-value for the null hypotesis for all samples. If the p-values is zero or near
zero, that suggests that at least one sample is significantly different (or statistically significant) than
the other samples. Usually, if p-values are less than 0.05, we declare that the results are statistically
significant

For the three problems the p-values were zero in all instances, this means that all comparisons are
significantly different. However, if we use the Tukey method, we can do multiple comparison two by two,
and this way we can determine between what experimental conditions there are significant differences.

Tables 6 and 7 show the results of Tukey method, which are confidence intervals that compose the
upper bound, estimated value and lower bound for each pair of ACS algorithms, and this for each
instance. According to Tukey method, the differences between means in which the confidence interval
that encompasses the lower and upper limits do not contain the value 0 are statistically significant.

In tables bold confidence intervals belong to the algorithms that do not have difference significant. In
table 6, the ACS(ηEDD) is not different to ACS(ηSLACK) for instances 1, 6, 26 and 41. Similarly the
ACS(ηEDD) is not different to ACS(ηSPT ) for instances 21. In table 7, the ACS(ηEDD) is not different
to ACS(ηSLACK) for instances 61, 71, 111 and 41. Also ACS(ηSLACK) is not different to ACS(ηSPT )
for instance 66, and to ACS(ηLPT ) for instance 91. For instance 56 only are different ACS(ηEDD)
and ACS(ηSLACK), and for instance 86 only are different ACS(ηEDD) and ACS(ηSLACK), similarly
ACS(ηSPT ) and ACS(ηLPT ). The rest of the comparison of algorithms have difference significant.

Figure 2 show the results of the Tukey test to compare ACS (ηEDD) and ACS (ηSLACK) for some
difficult instances of the third problem.
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Maximun Tardiness: n=40 y m=5

Inst. Opt. GA ACS (ηEDD) ACS (ηSLACK)

N val. µBest HRatio µBest HRatio µBest HRatio

1 284 283.67 50 242.8 100 232.5 100

6 652 647.2 67 621.5 100 608.0 100

11 1130 1059.83 100 1030.9 100 1019.9 100

19 1700 1666.4 97 1656.0 100 1648.0 100

21 1720 1681.37 90 1734.6 10 1730.5 30

26 100 127.77 13 79.5 100 71.1 100

31 644 613.2 77 560.2 100 560.2 100

36 984 1001.8 37 919.3 100 908.1 100

41 1340 1446.07 3 1316.9 100 1326.0 100

46 1310 1270.43 100 1346.6 0.0 1340.8 0.0

56 318 403.97 0.0 263.7 100 255.1 100

61 737 896.37 0.0 717.9 100 684.7 100

66 1240 1363.9 0.0 1385.7 0.0 1429.1 0.0

71 1330 1352.97 10 1416.5 10 1464.9 0.0

86 589 624.0 23 541.6 100 564.4 100

91 1040 1112.8 17 1239.3 0.0 1308.2 0.0

96 1690 1699.27 50 1731.8 20 1766.1 10

111 699 1036.73 0.0 1131.1 0.0 1239.8 0.0

116 672 943.57 0.0 1050.7 0.0 1588.0 0.0

121 1580 1639.67 20 1778.9 0.0 1893.0 0.0

AVG 987.95 1043.55 38.0 1038.275 57.0 1081.92 57.0

Table 4: The Opt-val are obtained by Parsifal. the µBest and HitRatio are obtained by simple genetic
algorithm GA and ACS algorithms using ηEDD and ηSLACK specific information heuristics.

6 Conclusions

We present four versions of ACS algorithm, each implemented with a different heuristic: 1) ηEDD based
on Earliest Due Date rule, 2) ηSPT based on Shortest Processing Time, 3) ηLPT based on Largest
Processing Time, and 4) ηSLACK based on Least Slack. The experiments were performed considering 20
instances for each proposed system, with the purpose of minimizing Tmax.

The results show that ACS (ηEDD) and ACS (ηSLACK) were those who had a better behavior.
For most simple instances (1 to 61) obtained competitive results both versions, being the ACS (ηEDD)
outperformed by ACS (ηSLACK). However for more complex instances (from 61 onwards) ACS (ηEDD)
was who had the best achievements, but none became achieve, in any run, the benchmark values.

The results also were comparable with those obtained by a simple GA, but we can not say that the
same about the results reported by other advanced GAs [10].

Clearly, more work must be done because none of the ACS algorithms achieve the optimum known
to all the problem discussed.

We are actually working on the construction of an ACS hybridized with local search mechanism in
order to be able to improve the solutions forward by the ACS algorithm.
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Multiple comparison of means by Tukey method for the Ebest of ACS algorithms

Inst. ACS 1 ACS 2 Lower Bound Estimated Value Upper Bound

1 EDD SLACK -16,8646 6,1333 29,1313

EDD SPT -64,9313 -41,9333 -18,9354

EDD LPT -94,9313 -71,9333 -48,9354

SLACK SPT -71,0646 -48,0667 -25,0687

SLACK LPT -101,0646 -78,0667 -55,0687

SPT LPT -52,9979 -30 -7,0021

6 EDD SLACK -0,6128 0,1329 0,8787

EDD SPT -12,6962 -11,9504 -11,2046

EDD LPT -41,2596 -40,5139 -39,7681

SLACK SPT -12,8291 -12,0833 -11,3376

SLACK LPT -41,3926 -40,6468 -39,9011

SPT LPT -29,3092 -28,5635 -27,8177

11 EDD SLACK 0,0465 0,4071 0,7677

EDD SPT -8,3148 -7,9542 -7,5936

EDD LPT -26,4153 -26,0547 -25,6941

SLACK SPT -8,7219 -8,3613 -8,0007

SLACK LPT -26,8224 -26,4618 -26,1012

SPT LPT -18,4611 -18,1005 -17,7399

19 EDD SLACK 0,0497 0,3719 0,694

EDD SPT -7,5068 -7,1846 -6,8624

EDD LPT -24,9557 -24,6335 -24,3113

SLACK SPT -7,8786 -7,5565 -7,2343

SLACK LPT -25,3276 -25,0054 -24,6832

SPT LPT -17,7711 -17,4489 -17,1267

21 EDD SLACK -78,1287 -55,0833 -32,0379

EDD SPT -43,5121 -20,4667 2,5787

EDD LPT -108,2287 -85,1833 -62,1379

SLACK SPT 11,5713 34,6167 57,6621

SLACK LPT -53,1454 -30,1 -7,0546

SPT LPT -87,7621 -64,7167 -41,6713

26 EDD SLACK -0,0115 0,0032 0,0179

EDD SPT -0,4143 -0,3996 -0,3849

EDD LPT -1,0263 -1,0116 -0,9969

SLACK SPT -0,4175 -0,4028 -0,3881

SLACK LPT -1,0295 -1,0148 -1,0001

SPT LPT -0,6267 -0,612 -0,5973

31 EDD SLACK 6,811 29,8667 52,9223

EDD SPT -53,1223 -30,0667 -7,011

EDD LPT -83,1223 -60,0667 -37,011

SLACK SPT -82,989 -59,9333 -36,8777

SLACK LPT -112,989 -89,9333 -66,8777

SPT LPT -53,0557 -30 -6,9443

36 EDD SLACK 0,1281 0,8648 1,6015

EDD SPT -24,6313 -23,8946 -23,158

EDD LPT -86,7839 -86,0472 -85,3105

SLACK SPT -25,4961 -24,7594 -24,0227

SLACK LPT -87,6486 -86,912 -86,1753

SPT LPT -62,8892 -62,1525 -61,4158

41 EDD SLACK -0,3245 0,2794 0,8833

EDD SPT -19,9139 -19,31 -18,7061

EDD LPT -50,0154 -49,4115 -48,8076

SLACK SPT -20,1933 -19,5894 -18,9855

SLACK LPT -50,2948 -49,6909 -49,087

SPT LPT -30,7054 -30,1015 -29,4976

46 EDD SLACK -9,8424 -9,1201 -8,3978

EDD SPT -4,7405 -4,0182 -3,2959

EDD LPT -14,5738 -13,8515 -13,1292

SLACK SPT 4,3796 5,1019 5,8242

SLACK LPT -5,4538 -4,7314 -4,0091

SPT LPT -10,5556 -9,8333 -9,111

56 EDD SLACK 0,6577 3,6617 6,6657

EDD SPT -193,5959 -190,5919 187,5879

EDD LPT -350,3672 -347,3633 344,3593

SLACK SPT -197,2576 -194,2536 191,2496

SLACK LPT -354,0289 -351,025 348,021

SPT LPT -159,7753 -156,7714 153,7674

Table 6: Multiple comparison means by Tukey method of the simple instances of 100 jobs and 5 machines.
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Multiple comparison of means by Tukey method for the Ebest of ACS algorithms

Inst. ACS 1 ACS 2 Lower Bound Estimated Value Upper Bound

61 EDD SLACK -38,5507 -15,5 7,5507

EDD SPT -75,8007 -52,75 -29,6993

EDD LPT -105,8007 -82,75 -59,6993

SLACK SPT -60,3007 -37,25 -14,1993

SLACK LPT -90,3007 -67,25 -44,1993

SPT LPT -53,0507 -30 -6,9493

66 EDD SLACK -17,5555 -12,7281 -7,9007

EDD SPT -19,7878 -14,9604 -10,133

EDD LPT -54,5842 -49,7568 -44,9294

SLACK SPT -7,0596 -2,2323 2,5951

SLACK LPT -41,8561 -37,0287 -32,2013

SPT LPT -39,6238 -34,7964 -29,9691

71 EDD SLACK -27,1267 -4,0667 18,9933

EDD SPT -67,8933 -44,8333 -21,7733

EDD LPT -99,36 -76,3 -53,24

SLACK SPT -63,8267 -40,7667 -17,7067

SLACK LPT -95,2933 -72,2333 -49,1733

SPT LPT -54,5267 -31,4667 -8,4067

86 EDD SLACK -19,4349 -14,6398 -9,8447

EDD SPT -172,1392 -167,3441 162,549

EDD LPT -276,2629 -271,4678 266,6727

SLACK SPT -157,4994 -152,7043 147,9092

SLACK LPT -261,6231 -256,828 252,0329

SPT LPT -108,9188 -104,1237 -99,3286

91 EDD SLACK -60,9698 -37,9167 -14,8635

EDD SPT -53,0865 -30,0333 -6,9802

EDD LPT 105,7032 -82,65 -59,5968

SLACK SPT -15,1698 7,8833 30,9365

SLACK LPT -67,7865 -44,7333 -21,6802

SPT LPT -75,6698 -52,6167 -29,5635

96 EDD SLACK -79,9042 -56,9 -33,8958

EDD SPT -50,4542 -27,45 -4,4458

EDD LPT -111,1209 -88,1167 -65,1125

SLACK SPT 6,4458 29,45 52,4542

SLACK LPT -54,2209 -31,2167 -8,2125

SPT LPT -83,6709 -60,6667 -37,6625

111 EDD SLACK -18,5013 4,5667 27,6346

EDD SPT -65,7846 -42,7167 -19,6487

EDD LPT -95,7846 -72,7167 -49,6487

SLACK SPT -70,3513 -47,2833 -24,2154

SLACK LPT -100,3513 -77,2833 -54,2154

SPT LPT -53,068 -30 -6,932

116 EDD SLACK -37,9127 -33,4224 -28,9321

EDD SPT -14,7489 -10,2586 -5,7683

EDD LPT -60,8769 -56,3866 -51,8963

SLACK SPT 18,6735 23,1638 27,6541

SLACK LPT -27,4545 -22,9642 -18,4739

SPT LPT -50,6183 -46,128 -41,6377

121 EDD SLACK -82,1816 -59,15 -36,1184

EDD SPT -51,3316 -28,3 -5,2684

EDD LPT -112,1816 -89,15 -66,1184

SLACK SPT 7,8184 30,85 53,8816

SLACK LPT -53,0316 -30 -6,9684

SPT LPT -83,8816 -60,85 -37,8184

Table 7: Multiple comparison means by Tukey method of hard instances of 100 jobs and 5 machines.


