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Abstract: Time-Frequency localization or concentration principles are fundamental concepts of signal processing

and related fields. We shall prove some simultaneous localization or concentration inequalities for the Continuous

Wavelet Transform. We will also show that simultaneous localization in the scale-time(space) is impossible, in the

sense that the scale sections of the support of the wavelet transform of a non null Lp-function can not have finite

Lebesgue measure.
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1 INTRODUCTION

The Lebesgue Lp spaces have proved to be useful in modelling signals which are not necessarily re-

stricted to the usual finite energy case of L2(R), and on the other hand, Wavelet transforms are nowadays

a standard signal analysis-synthesis tool [13]. Let f ∈ Lp(Rn), p ∈ (1,+∞), then its continuous wavelet

transform (CWT) is defined as (here we use the L1 normalization) [10, 14]:

Wf(a, b) =
1

an

∫
Rn

ψ

(
x− b

a

)
f(x)dx , (a, b) ∈ R>0 × R

n, R>0 = (0,+∞) , (1)

for an admissible wavelet ψ [13]. The variable a represents, in some sense, the scales of the signal f
“acting” in an interval of time centered in the location parameter b. In view, that this integral transform

gives an alternative to the ordinary windowed Fourier transform time-frequency decomposition of f , it is of

interest to describe its simultaneous time-frequency or time-scale localization properties. We shall see that

if we want to study the time-scale localization in terms of the Lebesgue measure of the support of Wf we

have a similar restriction to that given by Benedicks for the Fourier transform, which says:

Theorem 1 [2] Let f ∈ L1(Rn), such that both supports of f and f̂ , have finite Lebesgue measure, then
f = 0 a.e.

Similar localization principles for wavelets are given in e.g. [9][16]. On the other hand, localization prop-

erties can also be stated as uncertainty inequalities like Heisenberg’s classical principle for the Fourier

transform [9]:

Theorem 2 Given f ∈ L2(R), then :
‖f‖2

L2

4π ≤ ‖xf(x)‖L2

∥∥∥λf̂(λ)∥∥∥
L2
. The inequality becomes an equality

if and only if f(x) = Ce−kx2 , with C ∈ C and k > 0.

This type of inequalities are studied for example in [16], for the Cohen class transforms in [11], for the

Linear Canonical Transform in [15, 19, 4] and in [8] for the Gabor-STFT transforms. Other generalizations

can be found in [12]. We shall first study some localization properties of the CWT of an Lp function-signal

in terms of some norm inequalities relating its CWT and its Fourier transform. Afterwords, in a similar

way to [2], we shall prove that the -scale- sections of the support of the wavelet transform of a non null

Lp-function cannot have finite Lebesgue measure.



2 PRELIMINARIES.

2.1 FOURIER TRANSFORM.

If S(Rn) denotes the Schwartz class of functions [7], for f ∈ S(Rn) we shall define its Fourier transform

as : F(f)(λ) = f̂(λ) =
∫
Rn

f(x)e−i 2π x.λdx . This linear operator extends to the Lebesgue spaces Lp(R)

and to the dual of S(Rn): S ′(Rn). A well known property is the Plancherel’s identity, of which an immediate

generalization is the Hausdorff-Young Inequality: if p ∈ (1, 2], then
∥∥∥f̂∥∥∥

Lq
≤ ‖f‖Lp , with 1

p +
1
q = 1 . A

sharper inequality is the Babenko-Beckner inequality [1]: if p ∈ (1, 2], then

∥∥∥f̂∥∥∥
Lq

≤ B(p, q) ‖f‖Lp , (2)

with B(p, q) =
(
p1/p

q1/q

)n
2

, 1
p +

1
q = 1 .

Finally, in our case we can prove the following generalization of theorem 2:

Lemma 1 Let f ∈ Lq(R) and p ∈ [2,∞), then if 1
p +

1
q = 1:

1

2πpB(p, q)

∥∥∥f̂∥∥∥p
Lp

≤
(∫

R

|λ|q|f̂(λ)|pdλ
) 1

q
(∫

R

|x|q|f(x)|qdx
) 1

q

,

where B(p, q) =
(
p1/p

q1/q

) 1
2 (the constant of the Babenko-Beckner inequality). If p �= 2, equality is attained

if and only if f = 0 a.e.

2.2 WAVELET TRANSFORM.

We recall that, for suitable wavelet function ψ, eq. 1 defines a bounded linear operator and indeed the

following characterization of the Lp spaces in terms of the continuous Wavelet transform holds [10, 14, 17]:

Theorem 3 Let f ∈ Lp(R), p ∈ (1,+∞), then there exists positive constants cψ(p), Cψ(p), only depending
on ψ and p, such that:

Aψ(p) ‖f‖Lp ≤

⎛
⎜⎝

∫
R>0

⎛
⎝∫

R

|Wf(a, b)|2da
a

⎞
⎠

p
2

db

⎞
⎟⎠

1
p

≤ Bψ(p) ‖f‖Lp .

Some properties of the continuous wavelet transform in Lp spaces are also studied in e.g. [14] for more

references. We will assume that the wavelet function ψ ∈ L1(Rn)
⋂
L2(Rn) verifies the admissibility

condition on ψ [13]: Cψ =
∫

[0,∞)

|ψ̂(λ)|2
|λ| dλ <∞.

3 UNCERTAINTY PRINCIPLES FOR THE WAVELET TRANSFORM.

We shall analyse the concentration of Wf . We will compare the localization of f (resp. f̂ ) with the

localization of its wavelet transform proving the following Heisenberg type uncertainty principles for the Lp

Wavelet transform (in the variable b):

Theorem 4 Let f ∈ Lp(R), p ∈ [2,+∞) and f̂ ∈ Lq(R) with 1
p +

1
q = 1, then:

Apψ(p) ‖f‖pLp

(B(p, q)Cψ2πp)
1
q

≤
∥∥∥λf̂∥∥∥

Lq

⎛
⎜⎝

∫
R>0

⎛
⎝∫

R

|b|q|Wf(a, b)|pdb
⎞
⎠

2
p

da

a

⎞
⎟⎠

p−1
2

.



REMARK.

The constant Aψ(p) is the same of theorem 3. This result, if p = 2, reduces to one obtained in [18].

Proof. (sketch) Checking that ψ ∈ Lq(R) with q ∈ (1, 2], and as f is a real function
∨
f = f̂ ∈ Lq(R), thus

by means of duality argument and since f =
∨̂
f , eq. 1 can be written as:

Wf(a, b) =
1

a

∫
R

ψ

(
x− b

a

)
f(x)dx =

1

a

∫
R

ψ

(
x− b

a

) ∨̂
f(x)dx =

∫
R

ψ̂ (aλ) f̂(λ)e−i2πλbdλ . (3)

thus, if 1
p +

1
q = 1, by lemma 1 :

∫
R

|Wf(a, b)|pdb ≤ 2π pB(p, q)

⎛
⎝∫

R

|b|q|Wf(a, b)|pdb
⎞
⎠

1
q
⎛
⎝∫

R

|λ|q|ψ̂ (aλ) f̂(λ)|qdλ
⎞
⎠

1
q

,

therefore:

I1 =

∫
R>0

⎛
⎝∫

R

|Wf(a, b)|pdb
⎞
⎠

2
p

da

a

≤
∫

R>0

⎛
⎜⎝2π pB(p, q)

⎛
⎝∫

R

|b|q|Wf(a, b)|pdb
⎞
⎠

1
q

⎞
⎟⎠

2
p
⎛
⎜⎝
⎛
⎝∫

R

|λ|q|ψ̂ (aλ) f̂(λ)|qdλ
⎞
⎠

1
q

⎞
⎟⎠

2
p

da

a
,

then by Hölder’s inequality:

I1

(2π pB(p, q))
2
p

≤

⎛
⎜⎝

∫
R>0

⎛
⎝∫

R

|b|q|Wf(a, b)|pdb
⎞
⎠

2
p

da

a

⎞
⎟⎠

1
q
⎛
⎜⎝

∫
R>0

⎛
⎝∫

R

|λ|q|ψ̂ (aλ) f̂(λ)|qdλ
⎞
⎠

2
q

da

a

⎞
⎟⎠

1
p

= I2I3 ,

But, since q ≤ 2 then 2
q ≥ 1 and therefore by Minkowski’s integral inequality we get that:

I3 ≤

⎛
⎜⎜⎝
∫
R

⎛
⎜⎝

∫
R>0

(
|λ|q|ψ̂ (aλ) f̂(λ)|q

) 2
q da

a

⎞
⎟⎠

q
2

dλ

⎞
⎟⎟⎠

2
qp

=

⎛
⎜⎜⎝
∫
R

|λ|q|f̂(λ)|q
⎛
⎜⎝

∫
R>0

|ψ̂ (aλ) |2da
a

⎞
⎟⎠

q
2

dλ

⎞
⎟⎟⎠

2
qp

≤ C
1
p

ψ

⎛
⎝∫

R

|λ|q|f̂(λ)|qdλ
⎞
⎠

2
qp

.

Finally, as p ≥ 2, again by Minkowski’s inequality:

I1 ≥

⎛
⎜⎜⎝
∫
R

⎛
⎜⎝

∫
R>0

|Wf(a, b)|2da
a

⎞
⎟⎠

p
2

db

⎞
⎟⎟⎠

2
p

Combining these bounds on I1, I3, and theorem 3 we get the desired result.

�



Denote the Lebesgue measure of a measurable subset A: |A|, and a for a measurable function f define

C(f) := {f �= 0}. We are dealing with f ∈ Lp(Rn) which consists of equivalence classes of functions,

however as we shall actually only consider the measure of these sets any contradiction is avoided. In

practice it is important to compare the time concentration versus the bandwidth of a signal. This can be

done by comparison of the size of the supports of f and f̂ or other time-frequency representation. We shall

prove that the scale sections of the support of the wavelet transform of a non null Lp-function cannot have

finite Lebesgue measure. For this result we will assume that the measure of the support of ψ̂ is finite (but

not necessarily band limited). In [18] a similar result is proved for p = 2, however that proof, which does

not need ψ̂ to be supported on a set of finite measure, relies heavily on Hilbert space methods, so it cannot

be directly modified for the case p �= 2.

Theorem 5 Let f ∈ Lp(Rn), p ∈ (1, 2], and ψ an admissible wavelet such that |C(ψ̂)| <∞. If for almost
all a ∈ R>0 : |Sa|Rn = |{b ∈ R

n : |Wf(a, b)| > 0}|
Rn <∞ , then f = 0 a.e.

Finally, from this result one obtains immediately:

Corollary 1 Let f ∈ Lp(Rn), p ∈ (1, 2], and ψ an admissible wavelet such that |C(ψ̂)| < ∞. If
|{(a, b) ∈ R>0 × R

n : |Wf(a, b)| > 0}|
R×Rn <∞, then f = 0 a.e.
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