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Abstract

Human enteroviruses (EVs) comprise more than 100 types of coxsackievirus, echovirus,

poliovirus and numbered enteroviruses, which are mainly transmitted by the faecal-oral

route leading to diverse diseases such as aseptic meningitis, encephalitis, and acute flaccid

paralysis, among others. Since enteroviruses are excreted in faeces, wastewater-based

epidemiology approaches are useful to describe EV diversity in a community. In Uruguay,

knowledge about enteroviruses is extremely limited. This study assessed the diversity of

enteroviruses through Illumina next-generation sequencing of VP1-amplicons obtained by

RT-PCR directly applied to viral concentrates of 84 wastewater samples collected in Uru-

guay during 2011–2012 and 2017–2018. Fifty out of the 84 samples were positive for

enteroviruses. There were detected 27 different types belonging to Enterovirus A species

(CVA2-A6, A10, A16, EV-A71, A90), Enterovirus B species (CVA9, B1-B5, E1, E6, E11,

E14, E21, E30) and Enterovirus C species (CVA1, A13, A19, A22, A24, EV-C99). Enterovi-

rus A71 (EV-A71) and echovirus 30 (E30) strains were studied more in depth through phylo-

genetic analysis, together with some strains previously detected by us in Argentina. Results

unveiled that EV-A71 sub-genogroup C2 circulates in both countries at least since 2011–

2012, and that the C1-like emerging variant recently entered in Argentina. We also con-

firmed the circulation of echovirus 30 genotypes E and F in Argentina, and reported the

detection of genotype E in Uruguay. To the best of our knowledge this is the first report of

the EV-A71 C1-like emerging variant in South-America, and the first report of EV-A71 and

E30 in Uruguay.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0255846 August 12, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lizasoain A, Mir D, Salvo M, Bortagaray

V, Masachessi G, Farı́as A, et al. (2021) First

evidence of enterovirus A71 and echovirus 30 in

Uruguay and genetic relationship with strains

circulating in the South American region. PLoS

ONE 16(8): e0255846. https://doi.org/10.1371/

journal.pone.0255846

Editor: Ahmed S. Abdel-Moneim, Taif University,

SAUDI ARABIA

Received: April 12, 2021

Accepted: July 24, 2021

Published: August 12, 2021

Copyright: © 2021 Lizasoain et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Raw FASTQ files are

available from NCBI’s Sequence Read Archive

repository under BioProyect number

PRJNA689577. Supporting Files are available from

https://doi.org/10.6084/m9.figshare.14331215.v2

The Customized Human Enterovirus Database

(CHED v1.0) is available from: https://doi.org/10.

6084/m9.figshare.14854437.v1 Nucleotide

sequences of Enterovirus A71 and Echovirus 30

reported by us and employed in phylogenetic

analyses in this study were deposited in GenBank

https://orcid.org/0000-0001-8062-6916
https://doi.org/10.1371/journal.pone.0255846
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255846&domain=pdf&date_stamp=2021-08-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255846&domain=pdf&date_stamp=2021-08-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255846&domain=pdf&date_stamp=2021-08-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255846&domain=pdf&date_stamp=2021-08-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255846&domain=pdf&date_stamp=2021-08-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255846&domain=pdf&date_stamp=2021-08-12
https://doi.org/10.1371/journal.pone.0255846
https://doi.org/10.1371/journal.pone.0255846
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.14331215.v2
https://doi.org/10.6084/m9.figshare.14854437.v1
https://doi.org/10.6084/m9.figshare.14854437.v1


Introduction

Human enteroviruses (EVs) are ubiquitous viruses mainly transmitted among all age groups

in a community by the faecal-oral route [1]. They are associated with a large number of clinical

conditions, ranging from nonspecific symptoms as fever and malaise, mild conditions as her-

pangina, gastroenteritis or hand-foot-and-mouth disease (HFMD), up to severe diseases as

aseptic meningitis (AM), encephalitis, pancreatitis, myocarditis, or acute flaccid paralysis

(AFP), among others [2].

EVs include around 100 types of coxsackievirus, echovirus, poliovirus and numbered

enteroviruses, which are genetically classified inside four viral species (Enterovirus A to Entero-
virus D) in the genus Enterovirus from the family Picornaviridae. Enterovirus A species

includes several coxsackievirus type A (CVA2-A8, A10, A12, A14-A16) and numbered entero-

virus A71, A76, A89-A91, A114, A119-A121. Enterovirus B species includes all the coxsackie-

virus B types (B1-B6), all the echovirus types (E1-E7, E9, E11-E21, E24-E27, E29-E33), a

coxsackievirus A9 type, and several numbered enteroviruses (EV-B69, EV-B73-B75,

EV-B77-B88, EV-B93, EV-B97, EV-B98, EV-B100, EV-B101, EV-B106, EV-B107, and

EV-B111). Enterovirus C species includes the three poliovirus types (PV1-PV3), several cox-

sackievirus A types (CVA1, A11, A13, A17, A19-A22, A24), and numbered enterovirus C95,

C96, C99, C102, C104, C105, C109, C113, and C116-C118. Enterovirus D species includes a

few numbered enteroviruses named D68, D70, D94, and D111 [3].

The epidemiology of EVs is a dynamic phenomenon that deserves continuous surveillance

since novel EV types are frequently discovered, and types originally associated with a specific

disease, could emerge associated with novel conditions [4–9]. During the last decades, poliovi-

rus has been a priority for public health surveillance systems worldwide due to its high inci-

dence in AFP cases [10]. In the poliovirus eradication era, other non-polio EVs are being

studied for their role as emerging pathogens associated with AFP, or as causing agents of cen-

tral nervous system (CNS) disease outbreaks [10–13]. Human enterovirus A71 (EV-A71) has

been historically associated with HFMD, including severe forms of the disease, and also is

strongly associated with severe and sometimes fatal CNS infections. Therefore, EV-A71 is cur-

rently considered as an emerging EV with serious consequences for human health. Several

molecular epidemiology and vaccine development efforts are on the way for its containment

and management. In fact, since 2015–2016 there are three inactivated, whole-virus EV-A71

vaccines licensed by China National Medical Products Administration (NMPA), which are

currently commercially available. The vaccines were formulated with the most prevalent

EV-A71 lineage in China as virus seed (C4 lineage), and elicited cross-protection against

prominent epidemic lineages reported worldwide over the past decade [14–16].

On the other hand, echovirus 30 (E30), an Enterovirus B species member, is frequently asso-

ciated with neurological symptoms, mainly AM [17, 18]. Its presence among a population

seems to be cyclic, characterised by repeated epidemics -frequently over large geographic

areas- every 3 to 5 years [19, 20].

Wastewater samples contain a high concentration of EVs particles as a result of their excre-

tion in human faeces during the infection by distinct types. Wastewater Based Epidemiology

(WBE) approaches are useful for describing the molecular diversity of EVs either as a comple-

ment of clinical surveillance, or as a tool to obtain information regarding enteroviruses when

clinical surveillance is not done in a community. WBE has displayed a valuable role both in

developed and developing areas of the world, increasing our knowledge about circulation of

many enteroviruses, including emerging variants of public health concern [21–23].

Most infections by EVs are asymptomatic, which could lead to a silent circulation of many

types in a community until the occurrence of outbreaks of diverse diseases [24–26]. Therefore,
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the possibility of detecting emerging types in wastewater, before the appearance of clinical

cases, makes WBE of EVs, a fundamental tool for epidemiological surveillance.

South America is often described as a region with scarce available genetic information

regarding EVs [20, 27]. Particularly in Uruguay, knowledge about molecular diversity of circu-

lating EVs is limited [28]. To assess the diversity of circulating EVs types in the Uruguayan

population, we performed an amplicon-deep sequencing approach of Uruguayan wastewater

samples collected in two different sampling periods in four cities (Bella Unión, Salto, Pay-

sandú, and Fray Bentos). Additionally, as part of a project to characterize the diversity of EVs

in the South American region, two EV types detected in this project (EV-A71 and E30) were

subjected to phylogenetic analysis along with sequences of strains previously detected in waste-

water from Córdoba, Argentina [29], to evaluate viral dynamics within a regional context and

to identify viral introductions and country-specific transmission clusters.

Materials and methods

Wastewater specimens

This work was based on the study of two sets of wastewater specimens collected during differ-

ent periods in cities from the North-western region of Uruguay (Fig 1). SET_1 comprises spec-

imens (100 ml each) collected monthly between March 2011 and February 2012 in four

Uruguayan cities: Bella Unión (30˚15’59.55’’S, 57˚36’4.79’’W), Salto (31˚23’18.82’’S, 57˚

58’35.09’’W), Paysandú (32˚19’38.38’’S, 58˚6’3.83’’W) and Fray Bentos (33˚7’8.95’’S, 58˚

Fig 1. Geographic location of the four Uruguayan cities in which wastewater samples for this study were collected. In the left panel, a map of South America shows

Uruguay in green. In the right panel, a zoom-view of the map of Uruguay shows Bella Unión, Salto, Paysandú, and Fray Bentos locations. Population size of each city is

also indicated. South American countries are named according to the Alpha-2 code as described in the ISO 3166 international standard.

https://doi.org/10.1371/journal.pone.0255846.g001
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20’3.38’’W). SET_2 comprises specimens (100 ml each) from three of the previous four cities

(Bella Unión, Salto and Fray Bentos) also collected once a month between March 2017 and

February 2018 at the same sampling points from 2011–2012. Specimens from Salto, Paysandú

and Fray Bentos consist of domestic raw wastewater, collected from master-pipes before dis-

charging onto the Uruguay river. Nevertheless, the specimens from Bella Unión were collected

from a natural glen that receives the effluent from a wastewater stabilization-pond.

One sampling point was determined in each city and since all of them were of public access,

none permits were required for collecting.

Samples (100 ml) were concentrated as previously described in Lizasoain et al. (2018) [28]

using a method of adsorption-elution to a negatively charged membrane and concentrating

virus in 1 ml of final eluate per sample (100-fold concentration).

Human enterovirus detection, next-generation sequencing and bioinformatics

Viral genomes were extracted from 140 μL of viral concentrate using the QIAamp1 Viral

RNA Mini Kit (Qiagen™, Hilden, Germany) according to manufacturer’s instructions. A RT-

nested PCR method proposed by Nix et al. [30] was used to amplify a partial segment of

VP1-coding segment with primers AN32-AN35 in the reverse transcription, and primers 222/

224 and AN88/AN89 in first and second PCR rounds, respectively. At the second round,

AN88 and AN89 primers were modified by addition of Illumina Universal Adapter sequences

at the 5´ends, according to the protocol of library preparation for metagenomic sequencing

[31] in Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA). PCR products were

loaded into agarose gels and after the electrophoresis, bands of the expected size were excised

and purified with the PureLink1Quick Gel Extraction and PCR Purification Combo Kit

(Invitrogen-Life Technologies, Carlsbad, CA, USA). Macrogen Inc. Next Generation Sequenc-

ing Service (Seoul, Republic of Korea), barcoded each sample and prepared the libraries with

Nextera XT Index Kit (Illumina Inc., San Diego, CA, USA). Samples were sequenced on Illu-

mina MiSeq 2 × 300 bp, producing paired end reads. Libraries from 2011–2012 and 2017–

2018 were sequenced in two independent runs.

Raw Illumina reads were paired using merge pairs algorithm with a minimum overlap

length of 50 bp in VSEARCH v2.11 [32]. The resulting contigs (merged paired reads) were fil-

tered out if their lengths were<100 bp, and if they contained homopolymer tracks >8 bp in

length. Quality trimming of contigs was performed by using—fastq_filter command and con-

tigs with more than 1.0 total expected errors (—fastq_maxee 1.0) were discarded. In order to

save time in further analyses, a dereplication step was performed using VSEARCH—derep_-

fulllength algorithm on the processed contigs to find unique sequences by clustering at 100%

sequence identity. All unique sequences without duplicates (singletons) were removed since

they were considered probable sequencing-error products. Probable chimeras (abskew = 2)

were also removed from each sample.

Clusters of contigs were generated with VSEARCH using identity criterion of 97%, adopt-

ing a representative sequence (centroid sequence) of each cluster for further analyses. Finally,

centroids sequences were mapped by VSEARCH’s—usearch_global at 80% sequence identity

against a Customized Human Enteroviruses Database (CHED v1.0), composed of 30,850

sequences of the viral capsid VP1 protein-coding region from 111 enterovirus types, which

were downloaded from NCBI nucleotide database [33].

Phylogenetic characterisation of enterovirus A71 and echovirus 30

All EV-A71 and E30 VP1 gene sequences > 800 nt with known location and sampling date

available in the GenBank by September 4th, 2020 were downloaded and combined with: 1)
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strains reported in this study and their best BLAST hits; 2) partial VP1 sequences from Cór-

doba city (Argentina) previously described by our group (13 sequences of EV-A71 and 20

sequences of E30), and their best BLAST hits.

Some reference sequences for EV-A71 and E30 used by Bessaud et al. [34] and Lema et al.

[35] respectively, were included in both datasets. This resulted in a final dataset composed by

7,658 sequences of EV-A71 and a dataset of 1,297 E30 sequences. Both datasets were aligned

with the Muscle program [36]. Maximum likelihood (ML) phylogenetic trees were inferred

with FastTree v2.1 software [37] under the GTR+Gamma20 model. The reliability of the phy-

logenies was estimated with the approximate likelihood-ratio test (aLRT) based on a Shimo-

daira–Hasegawa-like procedure [38, 39]. Phylogenetic trees were visualized and edited with

FigTree v1.4.3.

Nucleotide sequences of EV-A71 and E30 from Uruguay reported in this study were depos-

ited in GenBank and are available with the accession numbers MW196710-MW196712,

MW196730-MW196732 and MW196734.

Results

Human enterovirus detection and characterization

Fifty out of a total of 84 Uruguayan wastewater samples collected along 2011–2012 and 2017–

2018, were positive for EVs (Table 1).

All 50 positive samples yielded on average 117,996 paired merged reads (contigs), from

which around 8.5% reads were discarded according to established quality parameters. Finally,

Table 1. Human enterovirus positivity by city and next-generation sequencing performance of VP1-amplicons from Uruguayan wastewater samples.

Readsa

nc posd/n Paired raw Pair merged After quality filters Mapped EV types OTUse

2011–2012

BUb 12 2/12 123,658 71,433 66,894 81 2 2

±30,442 ±24,204 ±24,620 ±112

SAb 12 9/12 141,316 108,839 102,456 51,495 9 20

±11,113 ±8,792 ±8,258 ±37,689

PYb 12 6/12 142,165 109,995 100,220 69,225 10 18

±13,639 ±8,246 ±8,215 ±46,087

FBb 12 12/12 138,068 107,926 98,048 55,438 9 49

±10,917 ±10,115 ±10,101 ±38,385

2017–2018

BUb 12 5/12 273,134 117,851 106,113 48,148 10 32

±55,348 ±30,599 ±29,132 ±68,222

SAb 12 8/12 230,022 134,447 123,566 111,187 11 33

±38,869 ±26,489 ±21,294 ±48,422

FBb 12 8/12 237,664 144,687 130,894 119,975 11 30

±83,593 ±64,441 ±5,340 ±69,933

TOTAL 84 50/84 182,722 117,996 108,000 72,685 27 184

±66,244 ±33,488 ±28,751 ±56,864

aShaded values are averages for positive samples.
bBU: Bella Unión, SA: Salto, PY: Paysandú, FB: Fray Bentos.
cn: number of samples.
dpos: positive samples.
eOTUs: Operational Taxonomic Units (note that a single EV type could be represented by more than one OTU in a sample).

https://doi.org/10.1371/journal.pone.0255846.t001
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67.3% (72,685) of filtered contigs mapped with different EVs types (Table 1, S1 Table). In total,

27 different EV types belonging to Enterovirus A species (9 types), Enterovirus B species (12

types) and Enterovirus C species (6 types) were detected (Table 2, S2 Table). Values of nucleo-

tide identity between OTUs and reference sequences with which they were mapped, ranged

between 88.2 to 100, 81.1 to 100, and 80 to 98.7 for Enterovirus A, B, and C, respectively

(Table 2).

Only 5 EV types (CVA10, EV-A71, CVA9, E6 and CVA24) were detected at both sampling

periods, while 22 types were detected exclusively in either one of the two sampling periods: 12

types in 2011–2012 (CVA2, A3, A4, A16, A22, B1, B3, E1, E14, E21, EV-A90 and EV-C99),

and 10 types in 2017–2018 (CVA1, A5, A6, A13, A19, B2, B4, B5, E11 and E30) (Table 3). Neg-

ative samples were not further investigated.

Enterovirus A71 detection and characterisation

EV-A71 was detected in a sample from January 2012 collected in Paysandú (OTU-C), and in

samples from September and October 2017 collected in Bella Unión and Salto, respectively

Table 2. Distribution of percentage of sequence identity among OTUs and reference sequences with the which

they mapped in the Customized Human Enterovirus Database (CHED v1.0).

Nucleotide identity (%)

Min Max

Enterovirus A CVA2 88.2 92.3

CVA10 88.5 97.6

CVA3 88.8 88.8

EV-A90 90.2 90.9

CVA5 92.6 92.6

EV-A71 96,0 98.6

CVA4 96.6 96.9

CVA6 96.9 97.3

CVA16 99.6 100

Enterovirus B CVB2 81.1 98.4

E1 83.8 83.8

E14 84.3 84.3

CVA9 88.5 94.4

CVB5 91.7 97.8

E30 95.3 96.3

CVB4 96.9 96.9

E21 96.9 97.2

E11 97.8 97.8

CVB1 98.4 98.7

E6 98.4 100

CVB3 99.3 99.3

Enterovirus C CVA24 80.0 86.1

EV-C99 80.7 98.7

CVA13 81.8 86.4

CVA1 86.1 94.7

CVA19 93.9 94.6

CVA22 96.6 98.4

Values in bold are min/max percentages for each Enterovirus species.

https://doi.org/10.1371/journal.pone.0255846.t002
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(OTUs A and B); with an abundance (percentage of contigs mapping against EV-A71)

between less than 1% and more than 99% per sample (Table 4).

These OTUs were subject to phylogenetic analyses along with 7,655 strains worldwide

reported. The whole set of sequences segregated into seven different clusters (SH-aLRT� 0.9)

Table 3. Enterovirus types detected in wastewater samples from Uruguay in 2011–2012 and 2017–2018.

2011–2012 2017–2018

Typea/month M A M J J A S O N D J F M A M J J A S O N D J F

CVA2 X X

CVA3 X

CVA4 X X

CVA5 X

CVA6 X X X

CVA10 X X X X

CVA16 X X X X X X X X X X X X

EV-A71 X X X

EV-A90 X

CVA9 X X X X X X

CVB1 X X X X X

CVB2 X X X X X

CVB3 X X X

CVB4 X X

CVB5 X X X X

E1 X

E6 X X X X X X X X

E11 X

E14 X

E21 X X X

E30 X X

CVA1 X X X X X X

CVA13 X X

CVA19 X X X X X X

CVA22 X X X X X X X X

CVA24 X X X X X

EV-C99 X X X X X X X X X X

EV-C (untyped) X�

aCVA: coxsackievirus A, CVB: coxsackievirus B, E: echovirus, EV-A: enterovirus A, EV-C: enterovirus C.

� This OTU mapped with reference sequences of different types from Species C (CVA24 and EV-C99). Therefore, it was considered untyped. None of the other 183

OTUs presented incongruent results in the mapping process.

https://doi.org/10.1371/journal.pone.0255846.t003

Table 4. Defined OTUs of enterovirus A71 and echovirus 30.

Enterovirus A71 Echovirus 30

OTUsa OTU-A OTU-B OTU-C OTU-D OTU-F OTU-G OTU-H

Locationb BU SA PY BU BU FB FB

Date Sep-2017 Oct-2017 Jan-2012 Jun-2017 Jul-2017 Jun-2017 Jul-2017

Abundance (%contigs) 99.98% <1% <1% 16.40% 8% 99.97% 100%

aOTUs: Operational Taxonomic Units.
bBU: Bella Unión, SA: Salto, PY: Paysandú, FB: Fray Bentos.

https://doi.org/10.1371/journal.pone.0255846.t004

PLOS ONE Enterovirus diversity in wastewater assessed by next-generation sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0255846 August 12, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0255846.t003
https://doi.org/10.1371/journal.pone.0255846.t004
https://doi.org/10.1371/journal.pone.0255846


according to previously proposed genetic classification of the EV-A71 in genogroups A to G

[40]. Additionally, 4,550 strains of genogroup C segregated into sub-genogroups C1 to C5

(SH-aLRT�0.7) (Fig 2A, S1 File).

Uruguayan strains of EV-A71 detected in this study clustered together with 559 worldwide

strains reported as sub-genogroup C2 and dated between 1995 and 2018 (SH-aLRT = 0.9) (Fig

3, S3 File). Uruguayan OTUs A and B corresponding to Bella Union and Salto respectively,

segregated in a monophyletic sub-group (SH-aLRT = 0.73) alongside Argentine strains from

2017 and 2018 previously reported by our group [29]. Phylogenetic analysis suggests that there

were at least four other introductions of EV-A71 sub-genogroup C2 into South America (three

in Cordoba in 2011, 2012 and 2017, and one in Paysandú in 2012 [OTU-C]) characterised by

the absence of local dispersion evidence.

In turn, the sub-genogroup C1 (S4 File) encompassed a sub-cluster composed of two strains

from Córdoba Province, Argentina isolated in November and December 2017 alongside 196

sequences from Europe reported in the last 7 years (SH-aLRT = 0.84).

Echovirus 30 detection and characterisation

E30 was detected in samples from June and July 2017 in Bella Unión and Fray Bentos. Samples

from Bella Unión (OTUs-D and F) had less than 20% of contigs mapping with E30, and sam-

ples from Fray Bentos (OTUs-G and H) had abundances higher than 99% (Table 4). All E30

OTUs were selected for phylogenetic reconstruction together with 1,293 strains of global circu-

lation including sequences of strains detected previously in wastewater samples from Argen-

tina, as in the case of EV-A71.

E30 strains segregated into five well aLRT supported (�0.85) phylogenetic clusters, repre-

senting genotypes A, B, E, F and H after pruning of non-clustered sequences belonging to

genotypes C, D and G (Fig 2B, S2 File). The Uruguayan strains of E30 reported in this study

segregate into the E genotype alongside sequences from Córdoba-Argentina (all from 2017)

previously reported by our group [28] and other 19 strains reported in 2016–2017 in the

United Kingdom and Austria (SH-aLRT = 0.9) (Fig 4, S5 File). Additionally, five E30 strains

sampled in 2011–2012 in Córdoba and previously reported by our group [29], segregated in a

highly supported (SH-aLRT = 0.8) monophyletic group alongside Argentine sequences from

the same period reported during an outbreak of AM, and a Brazilian sequence reported in

2015 (Fig 4, S5 File).

On the other hand, six additional E30 strains from Córdoba reported in 2017, clustered

together with strains belonging to genotype F (S6 File), and shared a node (SH-aLRT = 0.72)

with a sub-cluster of European strains reported between 2014 and 2018.

Discussion

Twenty-seven different EVs types belonging to Enterovirus A, Enterovirus B and Enterovirus C

species were detected in this study, among which 12 circulated in 2011–2012, 10 in 2017–2018,

and 5 during both sampling periods.

In a previous study based on Sanger sequencing of amplicons directly obtained from waste-

water samples from SET_1 [28], we reported the presence of six out of all types now reported.

This means that by this Next-Generation Sequencing approach we expanded our knowledge

about the circulation of EVs in Uruguay, and updated the information about their circulation

to more recent years.

Contrarily to a previous observation made by us in Córdoba-Argentina [29], where most

types detected in 2011–2012 were also identified in samples from 2017–2018, an important

type´ exchange was observed between the same sampling periods analysed in Uruguay. A
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Fig 2. Maximum likelihood phylogenetic trees of enterovirus A71 and echovirus 30. Phylogenetic trees of

enterovirus A71 (a) and echovirus 30 (b) were constructed with 7,658 and 1,297 worldwide reported strains,

respectively, including 16 strains of EV-A71 and 22 strains of E30 from Uruguay and Argentina reported by us. Clades

were collapsed and named according to previously established classification in different lineages. SH-aLRT support

values are shown at branches. Each tree is midpoint rooted. For echovirus 30, lineages described by Lema et al. 2019

[35] as extinct were excluded. Bars at the bottom denote genetic distance. Clades containing sequences from this study

were highlighted.

https://doi.org/10.1371/journal.pone.0255846.g002
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Fig 3. Maximum likelihood phylogenetic tree of enterovirus A71 sub-genogroup C2. The image corresponds to the non-collapsed view of the C2 lineage from Fig 2A,

which clustered 573 worldwide circulating strains, including 11 strains from Argentina and 3 strains from Uruguay reported by us in this study. South American strains

and clusters that contain them were pink-highlighted, and magnified at right. Strains were named by their GenBank accession numbers, the Alpha-2 country codes

(ISO3166), and their detection dates. Black circles highlight Uruguayan strains. SH-aLRT values� 0.7 are shown. The bar at the bottom denotes genetic distance. S3 File

shows a full view of the entire tree.

https://doi.org/10.1371/journal.pone.0255846.g003
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plausible explanation for differences between the results obtained for Cordoba and Uruguay

could be related to the population size of the analysed cities and its effect in the duration of

transmission chains in the community. We can suppose that in larger populations -Córdoba

has 1,329,604 inhabitants- transmission chains are longer than in smaller cities such as those

studied by us in Uruguay (the most populated is Salto with 104,028 inhabitants).

Unfortunately, little information is available about the impact of EVs types in the Uru-

guayan population´ s health and there is a great uncertainty about which EV types are causing

AM, encephalitis, or AFP, among other diseases commonly associated with these viruses.

Therefore, the implications of the observed exchange of EV types over time for Uruguayan

public health, remain unknown.

Since samples from 2011–2012 remained frozen for longer periods than samples from

2017–2018 prior to the sequencing, this could be affecting the diversity of enteroviruses

assessed in the oldest samples. Moreover, primers proposed by Nix et al. [30] are quite degen-

erated and we found some mismatches during the alignment of primers to genomic sequences

of enteroviruses that were discovered after the date in the which these primers were designed,

which could be affecting the detection of additional types to the reported here. These limita-

tions of our study, lead us to consider that the diversity of enteroviruses in our samples proba-

bly could be higher than the described here. Despite the fact that primers designed by Nix et al.

are broadly reactive for enteroviruses, future studies should consider more than a single strat-

egy for detecting this group of highly diverse viruses.

EV-A71 is one of the main etiological agents causing HFMD epidemics worldwide, with

high incidence in the Asian-Pacific region [40]. There is a strong association between EV-A71

infections and severe forms of HFMD, sometimes with complications at CNS level [41–44].

Interestingly, our results show the Enterovirus A species type replacement along the two sam-

pling periods. In 2011–2012, CVA16 circulated predominantly, although in 2017–2018 other

types emerged as CVA6 or CVA10, coinciding with reports of HFMD epidemics attributed to

these pathogens since 2018 in this geographic region [45, 46]. Nevertheless, EV-A71 was not

detected during the study of clinical cases from these epidemics in spite of its detection in

wastewater samples collected in Uruguay in September and October, 2017. In the extent that

new reports from medical diagnosis describe the presence of EVs in Uruguay, WBE will be an

important complement to understand the dynamic of EVs circulation in the country.

Despite global efforts to understand the epidemiology of EV-A71, the knowledge about its

circulation in South America is limited. The first genetic record of EV-A71 in South America

comes from the detection of genogroup B in Colombia in 1994 [47], and then, in 1999 this

genogroup was detected in a stool sample obtained from a patient suffering AFP in Northern

Brazil [48]. However, first evidence about the circulation of the virus in Brazil comes from a

previous study of serum samples obtained from patients with AFP and paresy [49]. Besides,

strains from sub-genogroup C1 were isolated from nasopharyngeal swab samples collected

from individuals with flu-like symptoms in Peru in 2006–2009 [50]. Recently, a study found

EV-A71 responsible for ~8% of the AFP cases associated with enteroviruses in Brazil in the

period 2005–2017 [51]. Interestingly, the study reported that EV-A71 sub-genogroup B1

exclusively circulated up to 2014, and that sub-genogroup C2 replaced it from then. Our study

Fig 4. Maximum likelihood phylogenetic tree of echovirus 30 genotype E. The image corresponds to the non-collapsed view of

genotype E in Fig 2b, which clustered 508 worldwide circulating strains, including 16 strains from Uruguay and Argentina reported

by us in this study (blue branches). Clusters that contain Uruguayan and Argentine strains reported by us are blue-highlighted and

magnified at right. Strains were named by their GenBank accession numbers, the Alpha-2 country codes (ISO3166) and their

detection dates. Black circles highlight Uruguayan strains. SH-aLRT values� 0.7 are shown. The bar at the bottom denotes genetic

distance. S5 File shows a full view of the entire tree.

https://doi.org/10.1371/journal.pone.0255846.g004
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expands the knowledge about the geographic range of sub-genogroup C2 in South America,

through the characterization of several strains from both Uruguay and Argentina, representing

at least five different introduction events in the region, one of them successfully disseminated

in both countries during 2017–2018. Additionally, we evidenced that EV-A71 C2 has circu-

lated in South America at least from 2011, since we detected this sub-genogroup in a sample

collected in Córdoba that year.

First evidence about C2 circulation in the Americas are from 1997–1998 and come from

the USA [47]. EV-A71 has been characterized in the USA as a virus of low circulation, and spe-

cifically C2 was associated with some outbreaks in the middles 2000 [52–54]. However, C2 was

detected at a lower frequency than C1 during the study of a large outbreak of neurologic dis-

ease in children that occurred in 2018 [55]. Additionally, a low frequency of detection during

the study of HFMD cases reported in Cuba between 2011 and 2013, suggests a low circulation

of C2 in the Caribbean region too [56].

Unfortunately, since the South American C2 strains herein characterized belong to waste-

water samples, and considering the lack of reports from clinical surveillance, it is hard to know

whether they come from asymptomatic/mild infections, or from severe diseases such as mus-

cular paralysis or meningitis, that were not reported.

Interestingly, two EV-A71 strains detected in Córdoba in 2017 belong to a sub cluster pro-

posed as an emergent lineage of EV-A71 C1 (C1-like variant), which has been mainly detected

since 2015 in European countries [57–62]. The emergence of this C1-like variant in Europe

was associated with sporadic cases and outbreaks of severe neurological disorders such as AM,

encephalitis or AFP. This meant a concern for countries in which the C1-like variant replaced

other sub-genogroups increasing the number of affected individuals, or in where EV-A71 had

not been a problem until the C1-like variant entered. Moreover, China has recently reported

the emergence of a recombinant strain originated from C1-like variant strains and coxsackie-

virus A, that could not be effectively neutralized by EV-A71 C4a neutralizing antibodies,

which raises concern about the usefulness of the present immunization strategy against the

virus [63].

Beyond the first detection of the emergent C1-like variant in South America, our results

show the co-circulation of C2 and C1 sub-genogroups in Argentina during 2017, which could

propitiate the genomic recombination and upsurge of new variants. Therefore, the epidemic

potential of EV-A71 C1-like variant and the possibility of recombination events, together with

the severity of the diseases, the long-term sequelae in affected individuals, and the different

antigenicity between this variant and vaccine strains, raise concern and call for an active sur-

veillance in our region [63–66].

Although this study constitutes the first report of E30 in Uruguay, this virus was extensively

characterised from AM cases in the neighbour countries of Argentina and Brazil [17, 35, 67,

68]. In line with a previous study, we verify the circulation of E30 genotypes E and F in Argen-

tina [35]. The study of AM cases accounted for 2007–2008 in Córdoba [68] found a high pre-

dominance of lineage H. Despite this lineage seems to be replaced at local level by E and F in

next few years, this data shows how dynamic is the behaviour of E30 in Córdoba, and probably

in Argentina all.

In Uruguay, we only detected genotype E. The strains circulating in Uruguay in 2017 were

highly related to some strains that circulated in the same year in Argentina, raising the possi-

bility of a single event of introduction -probably from Europe- with a posterior regional dis-

persion, as was also suggested for EV-A71. On the other hand, some E30 strains detected in

wastewater samples from Argentina in 2011–2012, clustered together with other Argentine

strains also detected in 2011–2012 during the study of different outbreaks and sporadic cases

of AM [35].
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Although most of the Argentine E30 strains characterised by our group belong to genotype

E, a minor proportion corresponding to samples from Cordoba detected in 2017, belong to

genotype F. This genotype circulated in Argentina at least since 1998 when an outbreak of AM

occurred in the Province of Mendoza and its last register in the country was in 2007 [35]. In

our analysis, strains reported in Brazil in 2017, also clustered inside the genotype F, and strains

detected by us in Córdoba in 2017 too, which confirms the recent presence of this genotype in

the South American region.

Our results show that a previously unrecognized diversity of EV types circulated in Uru-

guay. Some of these types silently spread into the communities in the absence of published

reports from medical diagnosis about diseases such as AM, encephalitis or AFP. OTUs most

divergent regarding our database were mostly from species C (CVA24, EV-C99 and CVA13),

which agrees with the previous report of circulation in Uruguay of highly divergent strains

from this species [28]. These results emphasise the importance to sequence strains that circu-

late in remote geographic locations, in order to know divergent strains regarding those already

described in the rest of world, as a first step to understand the role of this divergence in the re-

emergence of types/subtypes [69]. In line with that, our study is a contribution to elucidate

global evolutionary patterns in the extent that divergent members of a genus scarcely described

in South America are being characterized.

Specifically, with regards to EV-A71 and E30, our results showed that some variants are

widely spread into our region, and others as the emergent EV-A71 C1-like variant -which was

detected only in Argentina at the end of 2017- probably entered very recently. Surveillance

programs should be strengthened in Uruguay -as well as in other South American countries-

to trace the dynamics and behaviour of endemic and emerging variants, especially of those EV

types strongly associated with severe diseases poorly studied in our geographic region.
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S1 Table. Data processing: Next-generation sequencing results and mapping process.

(XLSX)

S2 Table. Results of mapping process for all OTUs obtained in this study.
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S1 File. Maximum likelihood phylogenetic tree (midpoint rooted) constructed with 7,658

partial VP1 fragments of enterovirus A71 strains worldwide reported. The file is optimized

for FigTree v1.4.3.

(NXS)

S2 File. Maximum likelihood phylogenetic tree (midpoint rooted) constructed with 1,297

partial VP1 fragments of echovirus 30 strains worldwide reported. The file is optimized for

FigTree v1.4.3.

(NXS)

S3 File. Maximum likelihood phylogenetic tree of enterovirus A71 sub-genogroup C2.

(PNG)

S4 File. Maximum likelihood phylogenetic tree of enterovirus A71 sub-genogroup C1. The

image corresponds to the non-collapsed view of the C1 sub-genogroup in Fig 2a, which clus-

tered 440 worldwide circulating strains, including 2 strains from Argentina reported by us

(blue branches). SH-aLRT�0.7 are shown at branches. The C1 like-variant sub-cluster is

highlighted in red. GenBank accession numbers, Alpha-2 country codes (ISO3166) and
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detection dates code each strain. The bar at the bottom denotes genetic distance.

(PNG)

S5 File. Maximum likelihood phylogenetic tree of echovirus 30 genotype E.

(PNG)

S6 File. Maximum likelihood phylogenetic tree of echovirus 30 genotype F. The image cor-

responds to the non-collapsed view of the F genotype in Fig 2b, which clustered 350 worldwide

circulating strains, including 6 strains from Argentina (blue branches) reported by us. SH-

aLRT�0.7 are shown at branches. GenBank accession numbers, Alpha-2 country codes

(ISO3166) and detection dates code each strain. The bar at the bottom denotes genetic dis-

tance.

(PNG)
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