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Abstract

Allergic asthma is the most common phenotype of the pathology, having an early-onset in

childhood and producing a Th2-driven airways remodeling process that leads to symptoms

and pathophysiological changes. The avoidance of aeroallergen exposure in early life has

been shown to prevent asthma, but without repeated success and with the underlying pre-

ventive mechanisms at the beginning of asthma far to be fully recognized. In the present

study, we aimed to evaluate if neonatal LPS-induced boost in epithelial host defenses con-

tribute to prevent OVA-induced asthma in adult mice. To this, we focused on the response

of bronchiolar club cells (CC), which are highly specialized in maintaining the epithelial

homeostasis in the lung. In these cells, neonatal LPS administration increased the expres-

sion of TLR4 and TNFα, as well as the immunodulatory/antiallergic proteins: club cell secre-

tory protein (CCSP) and surfactant protein D (SP-D). LPS also prevented mucous

metaplasia of club cells and reduced the epidermal growth factor receptor (EGFR)-depen-

dent mucin overproduction, with mice displaying normal breathing patterns after OVA chal-

lenge. Furthermore, the overexpression of the epithelial Th2-related molecule TSLP was

blunted, and normal TSLP and IL-4 levels were found in the bronchoalveolar lavage. A

lower eosinophilia was detected in LPS-pretreated mice, along with an increase in phago-

cytes and regulatory cells (CD4+CD25+FOXP3+ and CD4+IL-10+), together with higher

levels of IL-12 and TNFα. In conclusion, our study demonstrates stable asthma-preventive

epithelial effects promoted by neonatal LPS stimulation, leading to the presence of regula-

tory cells in the lung. These anti-allergic dynamic mechanisms would be overlaid in the epi-

thelium, favored by an adequate epidemiological environment, during the development of

asthma.
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Introduction

Asthma is a heterogeneous disease with diverse underlying processes and many clinical expres-

sions. The most common phenotype is allergic asthma, which has an early-onset in childhood

and it is associated with a familiar history of allergic diseases. Histologically, it is characterized

by chronic airway inflammation, with activated mast cells and an increased number of eosino-

phils, T cells, natural killer T cells, and CD4+ Th2 cells that release interleukin IL-4, IL-13, and

IL-5. Additionally, IgE-secreting B cells are induced during the asthmatic process [1, 2]. In this

phenotype, the continuous exposure to allergens produces several consequences in the struc-

ture and function of the airways, with the establishment of a remodeling process including

mucus hypersecretion, smooth muscle hyperplasia, subepithelial fibrosis, blood vessel prolifer-

ation and the infiltration of inflammatory cells [3]. Although the avoidance of airborne aller-

gen exposure in early life has been tested in randomized clinical trials, it has not been fully

successful in preventing asthma development, suggesting that there are underlying mecha-

nisms that have not yet been completely identified [4, 5].

The progressive rise in allergic diseases in recent decades suggests the involvement of envi-

ronmental factors in their pathophysiology [6]. Based on epidemiological evidence, the

hygiene hypothesis infers that the reduction of early life infections due to the modern lifestyle

weakens protective effects against allergic disorders [7]. In agreement, multiple studies have

revealed a low childhood prevalence of asthma in rural areas compared with urban areas,

which was related to perinatal microbial exposure originating from the high levels of endotox-

ins present in dust samples [8–12]. Moreover, mouse models have identified potential immune

mechanisms in which environmental microbial stimulation of the airways reduces allergic

inflammation in the offspring, favoring homeostatic responses [13–22]. However, experimen-

tal studies also indicate that the level of lipopolysaccharide (LPS) exposure can determine the

type of inflammatory response generated and provide a potential mechanistic explanation to

epidemiological data on endotoxin exposure and asthma prevalence. Thus, the exposure to

high-level LPS with allergic antigens results in increased antigen-specific Th 1 responses,

whereas a low dose of LPS could promote Th2 sensitization, with LPS acting as a Th2 adjuvant

[23–25]. In steady state conditions, the homeostasis of the airways relies on bronchioalveolar

cells [26, 27]. For this purpose, airway epithelial cells (AECs) express inflammatory, anti-

inflammatory, chemoattractants, antimicrobial mediators, and pattern recognition receptors

to detect environmental molecules such as endotoxin and to initiate an innate immune

response by activating dendritic cells [28]. This link between innate and adaptive immunity

has revealed a significant role of AECs in lung immunity, and highlighted that an abnormal

epithelial response may lead to a chronic inflammatory response [29]. When AECs come into

contact with inhaled stimuli, which contain multiple proteolytic allergens, they are induced to

produce ROS and pro-Th2 cytokines such as TSLP, IL-25, and IL-33 [30–32]. There is also

increasing evidence concerning AECs intrinsic alterations in childhood asthma, which make

the airways more vulnerable to airborne allergens and predispose them to Th2 responses [33–

36]. These experimental data have indicated that AECs are essential controllers of the immune

response to allergens, and may be an early player that biases a Th2 response in the immature

immunity system. Therefore, AECs play a particular role since they are situated at the cross-

roads of the innate host defense and allergic inflammation.

Such contrasting epithelial activities are clearly exemplified by bronchiolar club cells. They

are stem/progenitor cells of the AECs airways and perform a myriad of homeostatic mecha-

nisms, including detoxification of xenobiotics [37, 38]. In addition, CC directly contribute to

the host defenses by secreting monocyte and neutrophil chemoattractants, the antibacterial

collectin SP-D and the immunomodulatory CCSP [39–45]. However, under allergic genetic
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predisposition, CC can also activate a Th2-inflammation via the IL-4 receptor, thereby driving

eosinophil accumulation by producing eotaxin. Furthermore, they are the principal cells that

undergo EGFR-mediated mucous metaplasia, as demonstrated in experimental models of

asthma [32] [46–48]. Interestingly, both SP-D and CCSP play a direct role in suppressing aller-

gic inflammation both in vivo and in vitro, leading to an increase in Th1 cytokines under LPS

stimulation. Moreover, there are many investigations that have reported a reduction in these

mediators in allergic/asthmatic patients, as well as in mouse models of asthma [39, 42, 43, 49–

56].

The potential of CC to respond to a Th1 inflammatory stimulus by activating epithelial pro-

tective mechanisms has often been used in studies to determine whether this homeostatic role

of the epithelium prevents the development of Th2 inflammation. In a previous study, we

reported that in the adult mouse, the pre-exposition to LPS prior to allergen sensitization

avoids mucous metaplasia of CC, and consequently, the loss of anti-allergic products. We also

observed a reduction of eosinophil influx, IL-4 levels and airway hyperreactivity, whereas the

Th1-related cytokines IL-12 and Interferon-gamma were enhanced [57]. Considering that

early life represents a better window of opportunity for triggering an appropriate maturation

of innate immunity, in the present study we evaluated whether the LPS stimulation during the

neonatal period provides a better asthma-preventive effect by protecting adult AECs from

Th2-driven inflammation.

Materials and methods

Animals

Balb/c mice were provided by Fun Vet (Universidad Nacional de La Plata, Argentina) and

housed under controlled temperature and lighting conditions, with free access to tap water

and commercial lab chow (GEPSA FEEDS, Buenos Aires, Argentina). Animals were randomly

assigned to four groups (n = 6 each), and the experiments were repeated at least three times.

Animal care and experiments were conducted following the recommendations of the Inter-

national Guiding Principles for Biomedical Research Involving Animals and approved by the

Institutional Animal Care and Use Committee, CICUAL of the School of Medicine, National

University of Córdoba, (Ref 97/20). During the airway challenge, animals were lightly anesthe-

tized by inhaled isoflurane before the dropwise delivery of the volume into the nares using a

pipetman; which allowed a quicker recovery time. For Bronchoalveolar lavage and lung collec-

tion, mice were anesthetized (i.p.) with a mixture of ketamine (60 mg/kg) and xylazine (15

mg/kg) and immediately sacrificed by exsanguination.

Experimental design

Neonatal treatment. Balb/c mice offspring were exposed to intranasal applications on

day 3 after birth and subsequently on every other day up to 13 days of life. While one group of

animals were treated with PBS, the other received 1μg/5μl of LPS (Escherichia coli O55:B5

Sigma-Aldrich; St. Louis, MO, USA) according to protocols optimized for volume [15], treat-

ment timing [19], and according to evidence indicating that this dose induces antigen-specific

Th1 responses and previous studies [17, 23].

Allergen sensitization in weaned animals. At the age of 4 weeks, animals were sensitized

by subsequent i.p injections of 0.1 ml of Ovalbumin (OVA) grade VI (100μg/100 μl, Sigma-

Aldrich) absorbed to 1 mg of inject Alum (Pierce Rockford, USA) on the 4th and 6th weeks of

life.

Airway challenge in puberty and adulthood. Ten days later (7h weeks of life), neonatally

LPS-treated mice as well as PBS-exposed ones were divided into 2 groups. Whereas the LPSn/
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OVA and PBSn/OVA mice were challenged daily (on 10 consecutive days) by an intranasal

application of 50μl of 1% OVA, the LPSn and PBSn mice were submitted to an intranasal

application of saline (Fig 1). Then, after 24h, at 9h weeks of life, mice were sacrificed and pro-

cessed according to the specific methods outlined below.

http://dx.doi.org/10.17504/protocols.io.bdwwi7fe

Lung histopathology

A morphological analysis was performed in the right lungs of 3 mice per group, as previously

described [54]. Briefly, in at least in 3 experiments, lungs were differentially fixed for either

ultrastructural or histopathology analysis by intratracheal perfusion, and prepared for exami-

nation under a transmission electron microscope (Zeiss LEO 906E) or light microscope

(Axiostar Plus, Zeiss, Germany).

Mucous cell staining

The Alcian blue-periodic acid Schiff (AB-PAS) staining technique was used, as previously

described [54], to identify mucous-secreting cells in the bronchiolar epithelium. Photomicro-

graphs at x400 were taken using a light microscope equipped with a digital camera (Axiocam

ERc5s). A total of 20–30 bronchioles (900–1700 μm diameter) per mouse were analyzed, and

the number of epithelial AB-PAS positive cells per 100μm of basement membrane was quanti-

fied using Image J (NIH version 1.43).

Immunohistochemical analysis of lung tissue

Immunohistochemical staining was performed as described elsewhere [57]. Briefly, after being

blocked, the sections were incubated overnight at 4ºC with antibodies recognizing SP-D

(1:1000-Chemicon, Temecula, CA, USA), TNFα (1:50—Hycult, Plymouth Meeting, USA),

CCSP (Clara cell CC10 antibody 1:1000—Santa Cruz Biotechnology, Santa Cruz, CA, USA),

Toll-like receptor (TLR) 4 (1:100- Santa Cruz Biotechnology), TSLP (1:200- Gene Tex, USA)

or phosphorylated EGFR (pEGFR) (1:50—Santa Cruz Biotechnology), with the bound anti-

bodies being detected using anti-rabbit (for SP-D, TNFα, TSLP and CCSP) or anti-goat (for

TLR4 and pEGFR) biotin-labeled antibodies (Vector Laboratories, Burlingame, CA, USA) in

1% PBS-BSA. The sections were then incubated with ABC complex (VECTASTAIN Vector

Labs, Southfield, MI, USA). Diaminobenzidinde (DAB, Sigma-Aldrich) was used as a chromo-

gen substrate. The scoring of TSLP reactivity was performed with a computer-assisted imaging

Fig 1. Experimental design. (A) Timeline diagram and (B) table with protocols employed in this study. All data are

representative of at least 12 animals per group in 3 independent experiments.

https://doi.org/10.1371/journal.pone.0226233.g001
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system (Image J by NIH, Bethesda, MD, USA), based on the intensity and the stained area

measured in each field of vision, and expressed as epithelial pixels per total area.

http://dx.doi.org/10.17504/protocols.io.bdw9i7h6

Bronchoalveolar lavage collection and cell counting

Bronchoalveolar lavage (BAL) was obtained (n = 9 mice/group in three different experiments)

as described elsewhere [54]. Briefly, after three serial intra-tracheal instillations of 1 ml PBS,

the cells obtained were centrifuged at 200g, resuspended and counted, with the supernatant

being stored at -70ºC for ELISA.

For cytospin preparations, about 12.5x104 cells from the pellets were cytocentrifuged onto

slides, some of which were preserved at -70˚C for immunofluorescence, while others were

stained with May Grünwald-Giemsa (Biopur Diagnostic, Rosario, Argentina), after which the

cells were counted and total count informed per BAL. These cell populations were evaluated

for two samples per mouse, with a total of 2400 cells per group being counted.

Immunofluorescence

Cytospin preparations (3 per mice) obtained from the BAL (3 mice per group) were withdrawn

at room temperature and immediately fixed with 4% formaldehyde, permeabilized with 0.25%

Triton X-100 in PBS and incubated for 1 h in 5% PBS-BSA to block non-specific binding. The

slides were first double immunostained by incubating overnight at 4ºC with a mix of anti-CD4

conjugated with PerCP (BioLegend, San Diego, CA, USA) and anti IL-10 conjugated with PE

(BD Biosciences Pharmingen, San Diego, CA), and then mounted using fluoromount contain-

ing 4’-6-diamidino-2-phenylindole (DAPI). Afterwards, the cells were viewed with Fluoview

1000 Confocal and laser scanning microscope, (Olympus, Tokyo, Japan), with serial x 60

microphotographs (10 per coverslide) being obtained and all double immunostained cells

being evaluated for three different experiments in order to determine the relative percentages.

http://dx.doi.org/10.17504/protocols.io.bdxzi7p6

Flow cytometry

Pellet cells obtained from BAL (n = 5 mice/group in three different experiments) were incu-

bated for 30 min at 4˚C with a mix of conjugated antibodies (Biolegend) for the following T-

cell subset superficial markers: APC-Cy7 anti-mouse CD45 (1:600), FITC anti-mouse CD4

(1:200) and PerCP anti-mouse CD25 (1:200). Next, the cells were fixed (CITOFIX; BD Biosci-

ences Pharmingen, San Diego, CA) for 20 min at 4˚C and permeabilized with Perm/Wash

(BD Biosciences Pharmigen), before being incubated with a dilution 1:30 of the APC anti-

mouse forkhead box P3 (FOXP3) intracytoplasmic antibody (eBioscience) for 30 min at 4˚C.

Finally, the cells were washed, suspended in filtered PBS and analyzed by flow cytometry

(1x105 events/experimental treatment), FACSCanto II Flow Cytometer, BD Biosciences, San

Diego, CA, USA). Data analysis was carried out using the FlowJo software (Tree Star, Ashland,

OR).

http://dx.doi.org/10.17504/protocols.io.bdx3i7qn

Immunobloting

SP-D, TLR4, and TNFα levels were determined in total lung homogenates from 3 animals per

group for three different experiments by western blot as previously described [54]. The total

protein concentration was measured with a Bio-Rad kit (Bio-Rad Laboratories, Hercules, CA,

USA) and 75μg/lane of adjusted denatured protein samples were separated on 12% SDS-PAGE
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and blotted onto a Hybond-C membrane (Amersham Pharmacia-GE, Piscataway, NJ, USA).

Membranes were then blocked with 5% defatted dry milk in TBS/0.1% Tween 20, and incu-

bated for 3h with one of the following antibodies: rabbit anti-SP-D (1:1000—Chemicon, rabbit

anti-TNFα (1:50 –Hycult) or mouse anti-TLR4 (1:300 Abcam, Maryland, USA). Blots were

incubated with a peroxidase-conjugated (HRP) anti-rabbit (Jackson Immunoresearch Labs

Inc, West Grove, PA, USA), or anti-mouse (Jackson Immunoresearch) secondary antibodies

at a 1:2000 dilution. Finally, the membranes were rinsed in TBS/0.1% Tween-20 and exposed

to Pierce™ ECL Western Blotting Substrate (Thermo Fischer Scientific), following the manu-

facturer’s instructions. Emitted light was captured on Hyperfilm (Amersham-Pharmacia), and

a densitometry analysis was performed by applying the Scion Image software (V. beta 4.0.2,

Scion Image Corp., Frederick, MD, USA). In addition, β-actin expression was used as an inter-

nal control to confirm equivalent total protein loading using a mouse antibody (ACTB, 1:4000;

mouse anti-mouse βactin; Sigma-Aldrich).

Dot blot analysis

The CCSP protein expression was evaluated in lung homogenates using a Bio-Rad kit. Samples

were then adjusted to 5μg/μl in PBS, pH 7.4, and 10μl of each sample were spotted onto a

Hybond C membrane (Amersham Pharmacia). The membrane was blocked with 5% fat-free

milk in PBS buffer for 1h, before being incubated for 3h with the rabbit primary antibody anti-

CC10 1:500 (Santa Cruz Biotechnology) in blocking buffer at room temperature. After wash-

ing with TBS–Tween-20 buffer, the membrane was treated with a HRP-conjugated anti-rabbit

antibody (Jackson Immunoresearch) and the next handle was as described above for Western

blot. http://dx.doi.org/10.17504/protocols.io.bbyhipt6

Cytokine detection by ELISA

Cytokine production was measured in the BAL supernatant, following the manufacturer´s

instructions, by applying commercially available sandwich ELISA kits for IL-4 (BD Biosci-

ences), IL-12 and TSLP (Biolegend, San Diego, CA, USA), as well as for TNFα and IFNγ
(eBioscience, San Diego, CA, USA).

RNA isolation and gene expression analysis

Total RNA was extracted from right lung tissue samples (~0,01mg) with Trizol reagent. RNA

was subsequently purified using the Direct-zol RNA min prep kit (Zymo Research), following

the manufacturer’s instructions, and quantified with a ND-1,000, NanoDrop spectrophotome-

ter (Thermo Scientific) at 260 nm, 1μg of RNA was used as the template for reverse transcrip-

tion, following the manufacturer’s instructions (EpiScriptTM Reverse Transcriptase System kit,

Epicentre, USA), using random hexamer primers (Fermentas, Thermo Fisher Scientific, MA,

USA) and a My Cicle rTM BIO-RAD (Thermal Cycler System, CA, USA).

Real-Time PCR analysis was performed on an ABI Prism 7500 detection system (Applied

Biosystem, CA, USA) using Power SYBR Green PCR Master Mix (Applied Biosystems,

Thermo Fisher Scientific). Relative changes in gene expression were calculated by the 2-ΔΔCt

method normalized against the housekeeping gene 18S. The amplification efficiency for each

pair of primers was calculated using standard curves generated by serial dilutions of cDNA,

with all primers used being from Invitrogen (Buenos Aires, Argentina) and detailed below:

TSLPfp: 5’-AGAGAAATGACGGTACTCAGG-3’, TSLPrp: 5’-TTCTGGAGATTGCATGA
AGGA-3’; 18sfp 5’-ATGCGGCGGCGTTATTCC-3’, 18srp: 5’-GCTATCAATCTGTCAATC
CTGTCC-3’; CCSPfp: 5’-GATCGCCATCACAATCACTG-3’, CCSPrp: 5’-CTCTTGTGGG
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AGGGTATCCA-3’; SP-Dfp: 5’-TGGACCCAAAGGAGAGAATG-3’, SP-Drp: 5’-CATGCCA

GGAGCACCTACTT-3’.

http://dx.doi.org/10.17504/protocols.io.bdx5i7q6

Clinical score assessment of the degree of respiratory distress

For the three different protocols at days 7–10 of the allergen challenge, the breathing patterns

of mice (n = 6/group) were recorded on video for the first minute after OVA instillation (S2

File and http://dx.doi.org/10.17504/protocols.io.bbymipu6). The values assigned to increasing

signs of respiratory distress were adapted from the respiratory failure clinical score system

developed by Wood [58]. This scoring was performed, via a double-blind procedure, by three

different physician operators and analyzed by a non-parametric statistical test (see below).

Statistical analysis

In general, the data obtained were analyzed by a one-way ANOVA, followed by a post-hoc

comparison with the Tukey-Kramer test. In particular, for the analysis of clinical score data,

we applied the Kruskal Wallis test. For all tests, a p<0.05 significance level was used. Statistical

tests were performed using the InfoStat (Faculty of Agricultural Sciences, National University

of Córdoba, Córdoba, Argentina) statistical program.

Results

Neonatal LPS stimulation prevented OVA-induced allergic airway

inflammation triggered in puberty and adulthood

AECs act as a physical and biochemical barrier with an involvement in every stage of the

inflammatory reaction. As a part of the epithelial-mesenchymal trophic unit, they have been

suggested as a potential mechanism for the exaggerated response seen in asthma.[33]. There-

fore, we initiated evaluating the effect of an early exposition to LPS (LPSn/OVA group) on an

ulterior OVA allergic response in the airways, by analyzing the levels of cytokines and cellular

inflammatory content in BAL as well as the breathing patterns recorded in the different mouse

groups.

Neonatal LPS treatment affected the development of experimental asthma triggered after

weaning. As shown in Fig 2, the establishment of experimental asthma in 7–9 week old mice

was largely prevented, as indicated by the significantly lower influx of both total inflammatory

cells and eosinophils into the airway lumen of LPSn/OVA mice compared to the PBSn/OVA

group (Fig 2A and 2B). In addition, the number of macrophages remained unchanged whereas

neutrophils increased significantly (Fig 2A). Surprisingly, IL-4 and TSLP, both associated with

Th2 inflammation, exhibited normal levels in the BAL of LPS pre-treated mice in spite of the

allergen-challenge, while they were significantly higher in PBSn/OVA group (Fig 2C and 2D

respectively). As expected, in the LPSn group, neither the BAL cell count nor IL-4 content

were different from controls (Fig 2B and 2C). However, TSLP was remarkably reduced to

non-detectable levels (Fig 2D).

To test whether the inflammatory parameters were accompanied by changes in the degree

of respiratory distress, a clinical scoring system was applied (S2 File and S3 File). While most

of the neonatal PBS-exposed mice displayed more signs of respiratory distress after an OVA

challenge, the breathing pattern of LPSn/OVA mice was similar to that of control mice (Fig

2E).
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Neonatal LPS application promoted TNFα, IL-12, and IFNγ secretion as

well as Treg cells in the airways microenvironment in front of OVA

stimulation

After demonstrating the abrogation of a Th2 inflammatory response, we investigated whether

neonatal LPS exposure influences the content of other components of the immune response in

the BAL. In the milieu within the airway, LPS stimulus increased inflammatory cytokines such

as IL-12 and TNFα in both the LPSn and LPSn/OVA mice groups (Fig 3A and 3B, respec-

tively). In addition, it was noteworthy that LPS induced high levels of IFNγ (a prototypical Th1

cytokine) in the LPSn group, but not in LPSn/OVA animals (Fig 3C).

With this in mind, we further investigated the participation of regulatory T cells in this

modulatory response by flow cytometry and the presence of IL-10 cells by immunofluores-

cence in BAL. We performed a flow cytometry analysis (Fig 3D) gating on the subset of CD4+/

CD45+/CD25+/FOXP3+ Tregs. The percentage as well as the absolute number of CD25+/

FOXP3+ Treg cells (Fig 3E) exhibited a higher influx after allergen challenge in the LPS-

Fig 2. Allergic inflammatory state. (A) Differential quantification of cell populations in bronchoalveolar lavage

(BAL). Bar graph representing the total number of macrophages, esosinophils, neutrophils and lymphocytes in BAL.

(B) total cell count in BAL. (C) and (D): Levels of IL-4 and TSLP by ELISA. (E) Score of respiratory distress,

representing increasing signs of distress obtained in the first minute after intranasal challenge in all groups. Data

represent mean ± SD ���p<0.001 vs PBSn,�� p<0.01 vs PBSn, �p<0.05 vs PBSn, •• p<0.01 vs PBSn/OVA. All data are

representative of at least 6 animals per group in 3 independent experiments.

https://doi.org/10.1371/journal.pone.0226233.g002
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preexposed group (48.16% ± 10.2 LPSn/OVA vs 19.65% ± 4.22 PBSn/OVA—p<0,01- and

16296,52 ± 5185,01 cells vs 280,68 ± 60,09 cells—p<0,01). Meanwhile neither the percentage

or the absolute number in the PBSnOVA group reached a significant change (p = 0.0510 and

p = 0.6062 respectively). In addition, immunofluorescence performed on cytospins by confocal

microscopy revealed an increased level of IL-10 positive cells in the LPSn/OVA group com-

pared with PBSn animals (Fig 3F). Appreciably in the LPSn and LPSnOVA groups, almost

every CD4+ cell also expressed IL10. We then calculated the IL-10+/CD4+ cell ratio that

revealed a significant polarization of CD4 cells in both groups (LPSn and LPSn/OVA) com-

pared to control (Fig 3F).

Neonatal LPS exposure abrogated the development of mucous metaplasia

and pro-allergic mediators in the bronchiolar epithelium

We first analyzed changes in the expression of the specific epithelial molecules involved in the

allergic process that are known to increase in the bronchiolar epithelium during asthma. As

shown [57], OVA-allergic inflammation incited mucous cell metaplasia in the bronchiolar CC

via EGFR signalling. Fig 4 shows an increased number of mucous secreting cells (AB-PAS

panel in Fig 4A and Fig 4B) as well as the overexpression of phosphorylated-EGFR in the apical

cytoplasm of CC in PBSn/OVA mice. In contrast, in LPSn/OVA mice, both pEGFR overex-

pression (pEGFR panel in Fig 4A) and the mucous metaplasia (Fig 4B) were largely reduced by

the neonatal endotoxin-treatment.

We also studied the effects of neonatal LPS on the expression of TSLP, an epithelial cell

cytokine that promotes Th2 differentiation after allergen contact. Similarly to pEGFR and

mucous metaplasia induction, bronchiolar epithelial cells of PBSn/OVA group showed a

strong TSLP immunoreactivity in the apical cytoplasm, while CC of LPSn/OVA animals did

not result in overexpression of TSLP (TSLP panel in Fig 4A and 4C). These results were

Fig 3. Modulatory response of the airway environment in BAL. (A), (B) and (C) IL-12, TNFα and IFNγ levels in

bronchoalveolar lavage (BAL) by ELISA, respectively. (D) Representative experimental analysis by flow cytometry, of

the percentage of CD25+FOXP3+ cells is shown in the Q2 quadrant. (E) Percentage of CD4+CD25+FOXP3+ cells and

absolute number obtained for all groups by flow cytometry in BAL. (F) Immunofluorescence count of CD4+ and IL 10

+, and the ratio of IL10+/CD4+cells, performed in cytospin. Data are represented as mean ±SEM, �p< 0.05 vs PBSn,
��p<0.01 vs PBSn, ���p<0.001vs PBSn. All data are representative of at least 5 animals per group in 3 independent

experiment.

https://doi.org/10.1371/journal.pone.0226233.g003
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corroborated by qPCR (Fig 4D), which showed that lung TSLP mRNA almost duplicated its

expression in PBSn/OVA animals (1.85 ± 0.09 PBSn/OVA vs 1 ± 0.1 PBSn), while remaining

unchanged in LPSn/OVA mice (1.12 ± 0.19).

In previous studies, we demonstrated that the ultrastructure of CC is a sensitive parameter

of the airway allergic inflammation [54, 57]. For this reason, we studied the CC morphological

profile in all groups by electron microscopy (Fig 5), which revealed the preservation of the typ-

ical cellular profile in PBSn mice, characterized by the presence of a dome-shape cupola and

numerous polymorphic mitochondria in the cytoplasm, along with scarce spherical electron-

dense secretory granules under the plasma membrane (Fig 5A). These parameters could also

be seen in LPSn/OVA mice, differing only in an increased number of normal electron-dense

granules along with a higher development of RER (Fig 5D). On the other hand, PBSn/OVA

animals displayed a characteristic mucous cell metaplasia with a hypertrophied cytoplasm

filled with numerous large electron-lucent secretory granules, slim mitochondria and abun-

dant RER (Fig 5B). In control mice, which were only exposed to LPS, the CC also developed

an increased number of electron-dense granules, as was shown in LPSn/OVA animals (Fig

5C). In this group, the evident reduction in their CC cupola was probably due to the repeated

LPS intranasal instillation they received in neonatal life.

Neonatal LPS stimulus promoted a long-lasting increase of innate

mediators and Th2-immunomodulatory proteins in the bronchiolar

epithelium

Next, we analyzed whether mucous metaplasia prevention by neonatal LPS treatment corre-

lated with changes in the expression of the epithelial host defense mediators CCSP and SP-D

as previously described (55). OVA-allergic inflammation induced a reduction in the immuno-

reactivity of CCSP and SP-D in CC of the PBSn/OVA group when compared to its control

Fig 4. Mucous metaplasia analysis in club cells and epithelial TSLP expression. (A) Representative

photomicrographs of Alcian blue-periodic acid Schiff (AB-PAS), TSLP and pEGFR staining of bronchiolar sections.

Scale bars: 20μm. In AB-PAS panel, arrows indicate AB-PAS positive cells in the PBSn/OVA and LPSn/OVA groups,

while arrowheads indicate infiltrating inflammatory cells. In the TSLP panel, arrows indicate positive cells in PBSn/

OVA, although some cells (arrowhead) from the inflammatory response also expressed TSLP. The inset selection

demonstrates the lack of staining in club cells of the LPSn/OVA groups. In pEGFR, panel arrows indicate positive cells

in PBSn/OVA, while the inset demonstrates the apical expression of the activated receptor in CC. (B) Graph represents

AB-PAS cell count per 100μm. (C) Graph represents morphometric analysis of TSLP staining. (D) TSLP mRNA

expression by Real-Time PCR analysis. Graph represents fold increase in expression in lung tissue homogenate. Data

are represented as mean ±SEM, �p<0.05 vs PBSn, ���p<0.001 vs PBSn, ### p<0.001 vs PBSn/OVA. All data are

representative of at least 6 animals per group in 3 independent experiment.

https://doi.org/10.1371/journal.pone.0226233.g004
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group (arrowhead in CCSP and SP-D panels in Fig 6A). In addition, for both LPSn and LPSn/

OVA groups, a strong CCSP and SP-D immunolabeling was observed (arrows in CCSP and

SP-D panels Fig 6A). These changes were also verified by immunoblotting (Fig 6B and 6C).

However, neonatal LPS-instillation did not result in an increase in mRNA expression of CCSP

or SP-D in LPSn or LPSn/OVA (Fig 6F and 6G, respectively). This may have been due to the

stimulus for protein secretion provided by the allergen challenge in the LPSn/OVA group and/

or to the contribution of SP-D of the Type II alveolar cells (asterisk in Fig 6A), which could

explain the high SP-D content found by western blot analysis for these groups.

Regarding the microbial recognition receptor and cytokine response once activated, we

found that, both TLR4 and TNFα increased their expression in both neonatal LPS-stimulated

groups (Fig 6D and 6E and arrows in TLR4 and TNFα panels Fig 6E). Suggesting a specific

response to the endotoxin in the bronchiolar epithelium that induced a persistent elevation of

these defense molecules and seemed to be preserved in spite of allergen stimulus.

Discussion

In the present work we demonstrate that neonatal LPS treatment triggers anti-allergic secre-

tory products of the local airway epithelium that persist into adulthood. Among these prod-

ucts, CCSP and SP-D increased in the epithelial CC and lung tissue, together with the

upregulation of TLR-4 and TNFα, which are related to innate host defenses. In correlation,

CC skipped the mucous metaplasia pathway after an airborne allergen challenge, preserving

their typical phenotype and reducing EGFR, mucins, and TSLP (a pro-Th2 cytokine)

Fig 5. Club cell ultrastructural features. Representative electron micrograph images of CC morphology of PBSn (A),

PBSn/OVA (B), LPSn (C) and LPSn/OVA (D) groups. Scale bar represents 5μm. Nu: nucleus, Mi: mitochondria, Ci:

ciliated cells, Golgi: Golgi apparatus, RER: rough endoplasmic reticulum. Arrowheads: normal electron dense granules,

arrows: electron lucid granules. All data are representative of at least 6 animals per group in 3 independent

experiments.

https://doi.org/10.1371/journal.pone.0226233.g005
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overexpression. Furthermore, under allergic stimulation, animals with neonatal LPS treatment

exhibited normal breathing patterns and IL-4 and TSLP levels, but a lower eosinophilia as

compared with control group. In contrast, in these mice, an increase in phagocytes and regula-

tory T cells (CD4+CD25+FOXP3+ and CD4+IL-10+), as well as in IL-12 and TNFα levels, was

observed. These results reveal a possible novel preventative and therapeutic approach for

asthma, focused on increasing airway resistance to environmental insults, rather than by sup-

pressing the Th2 downstream inflammation once established. The finding of anti-allergic

effects being associated with CCSP and SP-D is consistent with previous studies [19] [42, 43,

Fig 6. Club cell expression of host defense proteins and antimicrobial cytokines. (A) Immunostaining of CCSP, SP-D, TLR4 and TNFα performed on lung

sections of all groups. Positive cells appear in brown against the blue counterstain of haematoxylin. Scale bars: 20μm. (B) Dot blot of CCSP expression in lung

homogenates. Fragments of the same original blot were rearranged vertical black lines denote the spliced to remove irrelevant lanes. (C), (D) and (E) Western

Blot of SP-D, TLR4 and TNFα lung content, respectively. Graph represents fold increase of the relative expression in lung homogenate by densitometric

analysis. Fragments of the same original blot were rearranged; vertical black lines denote the spliced to remove irrelevant lanes. (F) and (G) CCSP and SP-D

mRNA respectively expression by Real-Time PCR analysis. Graph represents fold increase expression in lung tissue homogenate. Data are represented as mean

±SEM, �p< 0.05 vs PBSn, ��p<0.01 vs PBSn, \• p<0.05 vs PBSn. All data are representative of at least 6 animals per group in 3 independent experiments.

https://doi.org/10.1371/journal.pone.0226233.g006
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50–53]. Also, there is evidence that these proteins down-regulate type 2 differentiation of Th

cells, inhibit allergen-activation of innate immune cells (eosinophils, basophils, and mast cells)

and are reduced in both BAL and the serum of asthmatic individuals [49, 59, 60]. Previous

reports from our laboratory revealed an interplay between the establishment of asthma and the

reduction in CCSP and SP-D levels, which were later restored by Budesonide or Montelukast

treatment in a mouse model [54].

Recently, we showed that the pre-treatment of adult mice with LPS before an allergic

inflammation partially prevent CCSP and SP-D reduction in CC, with the increase of IL-4 lev-

els, hindering airway hyperresponsiveness [57]. However, in the present work, we demon-

strated that when endotoxin treatment is performed in neonatal life, it achieves more extensive

asthma prevention in adulthood. This neonatal treatment not only avoided metaplastic

changes in CC, but also preserved the mRNA levels of CCSP and SP-D. Moreover, the charac-

teristic increase in IL-4 and respiratory distress after OVA challenge was limited. These results

are similar to the blunting of a Th-2 allergic response and airway hyperresponsiveness reported

by other authors using infant or pregnant mice and a microbial stimulus [13, 15, 17, 19].

In our study, a high dose of LPS was used, inducing a typical Th1 proinflammatory

response, while suppressing the Th2-associated cytokine IL4 [17, 23]. As expected, an increase

in TNFα and IL-12 was observed in both groups exposed to LPS. Nevertheless, a robust Th1

response was only seen in LPS-exposed animals as indicated by the high IFNγ levels, while in

LPSn/OVA, the most important immunological change was the increased number of Tregs. In

addition, whereas the LPSn/OVA group was the only one that attained a significant number of

CD4+IL10+ cells, both groups (LPSn and LPSn/OVA) demonstrated a significantly higher

ratio of IL10+ /CD4+ cells ex vivo compared to PBSn animals. Although the experimental

design of our study cannot explain how a rise in IL-12 coexisted with a Treg response in the

LPSn/OVA group, other authors have related the persistent increase in IL-12 cytokine with

protection against a challenging infection [61, 62]. Investigations conducted by Gerhold et al.

in 8-week-old Balb/c mice with systemic administration of an anti-IL-12 before LPS stimulus

demonstrated that the reduction of an ulterior allergic inflammation occurs in an IL-12 depen-

dent way [17]. Regarding the Treg response, Nguyen et al. previously described that TSLP

directly impaired the function of pulmonary Treg cells obtained from allergic asthma patient

[63], as indicated by a significant decrease in suppressive activity and IL-10 production, which

was associated with the TSLP expression levels in BAL. Therefore, it is likely that the reduction

in TSLP induced by LPS pretreatment in this study had the additional effect of restoring Treg

cells.

In agreement with our results, experimental studies on neonatal Balb/c mice exposed to

LPS with different protocols of sensitization and exposition to OVA demonstrated the occur-

rence of a response involving the expression of IL-10 and IFN-γ after re-exposition to allergen

[15, 19]. Furthermore, Gerhold et al. demonstrated that LPS, in either prenatal or postnatal

stimulation, induced a persistent elevation in soluble factors, such as CD14 and Lipopolysac-

charide binding protein, and TLR4 mRNA expression in young mice [15]. More recently, the

gene expression levels of innate and adaptive immunity essential markers in white blood cells

in farmers’ children were assessed in the multinational and prospective epidemiological study

PARSIFAL [64]. This study compared farmers’ children to non-farmers’ children with respect

to essential marker expression and the prevalence of asthma, with the authors showing an

enhanced expression of innate immunity genes, such as IRAK-4 and RIPK1, as well as the reg-

ulatory molecules IL-10, TGF-beta, SOCS4, and IRAK-2 in farmers [64]. Although the correla-

tion of Tregs and host defense molecules described was similar to our results, our findings

pointed to evaluate the involvement of the epithelium.
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As described above, several experimental and clinical studies have established a correlation

between LPS pre-exposure and asthma phenotype abrogation, with our present study attempt-

ing to determine the changes occurring in this context in the pro-allergic cytokines secreted by

the epithelium, such as TSLP. Our results demonstrated that neonatal exposition to LPS corre-

lated with the abrogation of TSLP expression in the epithelium and BAL. Therefore, the dimi-

nution of TSLP could contribute to reduce the allergen-induced TLSP recruits dendritic cells

that amplify the Th2 response and reduce Treg cell expansion [30]. In recent decades, several

neonatal and pregnancy animal models have suggested that the transition from the quiescent

Th2-polarized fetal immune phenotype towards the more active Th1-pattern of mature adap-

tive immunity is intrinsically slower in the atopic population, thereby increasing the risk of an

allergen priming response against environmental antigens [21, 22] [65–70]. Hence, it would be

important in future research to evaluate whether this early pro-inflammatory stimulus by LPS

could cooperate with the progression of this transition.

LPS reduced the TSLP mRNA basal expression in the present study, which is consistent

with its intrinsic capacity to counterbalance different pro- allergic actions, and blunted the

subsequent overproduction of TSLP after OVA exposition. In a human bronchial epithelial

cell line, Lin et al also demonstrated that LPS pre-treatment was able to reduce the induction

of TSLP mRNA levels by means of a virus that causes neonatal respiratory disease [71]. Inter-

estingly, in this study, the basal mRNA levels of the different signaling proteins involved in the

TSLP overproduction were down-regulated only when a repeated LPS- preventive treatment

was applied. In a process, these authors attributed this effect to the modulation in the expres-

sion of innate immunity signaling molecules of the airway epithelial cells that mitigate the

allergic response.

The main contribution of the present study is to highlight the involvement of the bronch-

ioalveolar epithelium in early microbial protection from an allergic disorder, a topic that still

remains largely unaddressed. This was demonstrated by the stable changes observed in the

expression of antiallergic and host defense factors by CC, as well as by the reduction to basal

levels of potent epithelial-Th2 mediators, all of which were promoted by neonatal LPS-stimula-

tion that further polarized the Treg response after an allergen exposition. Taken together, our

results indicate that there are several anti-allergic dynamic mechanisms overlaid in the epithe-

lium that may be favored in an adequate epidemiological environment.
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