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a b s t r a c t

When dealing with situations in which the responses are discrete or show some type
of asymmetry, the linear model is not appropriate to establish the relation between the
responses and the covariates. Generalized linear models serve this purpose, since they
allow one to model the mean of the responses through a link function, linearly on the
covariates. When atypical observations are present in the sample, robust estimators are
useful to provide fair estimations as well as to build outlier detection rules. The focus
of this paper is to define robust estimators for the regression parameter when missing
data possibly occur in the responses. The estimators introduced turn out to be consistent
under mild conditions. In particular, resistant methods for Poisson and Gamma models
are given. A simulation study allows one to compare the behaviour of the classical and
robust estimators, under different contamination schemes. The robustness of the proposed
procedures is studied through the influence function, while asymptotic variances are
derived from it. Besides, outlier detection rules are defined using the influence function.
The procedure is also illustrated by analysing a real data set.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The generalized linearmodel (glm), introduced byNelder andWedderburn [21], underliesmost of the statistical analyses
that are used in applied and social research. The fact that the standard linear model does not handle nonnormal responses,
y, motivated in recent decades a great development of glm, which can represent discrete or continuous responses evenwith
an asymmetric behaviour. The glm provides a unified approach that enables one to model categorical, binary, Poisson and
other response types.

The glm assumes that the observations (yi, xti ), 1 ≤ i ≤ n, xi ∈ Rk, are independent with the same distribution as (y, xt)
∈ Rk+1 such that the conditional distribution of y|xbelongs to the canonical exponential family exp{[yθ(x)−B(θ(x))]/A(τ )+
C(y, τ )}, for known functions A, B and C . In this situation, if we denote by B′ the derivative of B, the mean µ(x) = E(y|x) =

B′ (θ(x)) is modelled linearly through a known link function, g , i.e., g(µ (x)) = θ(x) = xtβ. For more details, see [20].
In this setting, the classical estimators are basedon theminimization of the deviance,which is equivalent to themaximum

likelihoodmethod. It is verywell known that these procedures can be affected by anomalous observations. To overcome this
problem, robustmethods have been developed and among others we can cite those proposed by Stefanski et al. [25], Künsch
et al. [18], Bianco and Yohai [4], Cantoni and Ronchetti [6,7], Croux and Haesbroeck [8] and Bianco et al. [3], see also, [19].
Even though developing robust methods for glm has been an active research area in recent decades, all these methods were
designed for complete data sets.
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In practice, missing data can arise and thus, standard procedures are no longer a useful tool. Indeed, missing responses
may be introduced just by design, as in the case of two-stage studies, or simply by chance. In some cases, the responders
may refuse to answer, for instance about some private issues, or the responses y’s may be an expensive measure to be
obtained. In other cases, missing data may be caused by some loss of information due to uncontrollable factors or by failure
on recording the correct information. In this paper, we will focus our attention on robust inference when the response
variable has randomly missing observations, but the covariate x is totally observed.

We introduce robust procedures to estimate the parameter β under a glm. These estimators include, when there are
no missing data, some of the estimators previously studied. The proposed robust estimators of β are consistent under mild
assumptions.

The paper is organized as follows. The robust proposals are given in Section 2 and consistency results are provided in
Section 3. To measure robustness with respect to single outliers, the influence function is studied in Section 4, where we
include some comments regarding the breakdown point. Also, a diagnostic measure to detect outliers is defined using the
influence function. The results of a Monte Carlo study are summarized in Section 5, while a real data set is analysed in
Section 6. Proofs are relegated to the Appendix.

2. Robust inference

2.1. The robust estimators

Let us consider a random sample of incomplete data

yi, xti , δi


, 1 ≤ i ≤ n, following a generalized linear model where

δi = 1 if yi is observed, δi = 0 if yi is missing. The responses and covariates (yi, xti ) ∈ Rk+1 are such that yi|xi ∼ F(·, µi, τ )

with µi = H(xti β) and Var(yi|xi) = A2(τ )V 2(µi) = A2(τ )B′′ (θ(xi)) with B′′ the second derivative of B. The parameter
τ usually lies on a subset of R, for that reason we will assume that τ ∈ T , where T ⊂ R stands for an open set. Let
(β, τ ) ∈ Rk

× T denote the true parameter values and EF the expectation under the true model, thus EF (y|x) = H(xtβ).
In a more general situation, we will think of τ as a nuisance parameter such as the tuning constant for the score function
to be considered. For instance, under a Gamma regression model τ is related to the shape parameter, while for Poisson and
logistic regression τ = 1.

Let (y, xt, δ) be a random vector with the same distribution as

yi, xti , δi


. As mentioned in the Introduction, our aim is to

define robust estimators of the regression parameter whenmissing responses occur. For that purpose, an ignorable missing
mechanism will be imposed by assuming that y is missing at random (MAR), that is, δ and y are conditionally independent
given x, i.e.,

P (δ = 1|(y, x)) = P (δ = 1|x) = p (x) . (1)

Usually, when considering propensity estimators, it is assumed that infx p (x) > 0, which means that at any values of the
covariate response variables are observed. This assumption can be avoided by introducing a weight function with bounded
support at the cost of some loss of efficiency.

Let w1 : Rk
→ R be a weight function to control leverage points on the carriers x and ρ : R2

× T → R a loss function.
Define

Sn(b, t) =
1
n

n
i=1

δiρ

yi, xti b, t


w1(xi), (2)

S(b, t) = EF

δρ


y, xtb, t


w1(x)


= EF


p(x)ρ


y, xtb, t


w1(x)


. (3)

Let us assume thatw1(·) andρ(·) are such that S(β, τ ) = minb S(b, τ ),β being the uniqueminimum(see Remark 2.1 below),
i.e., we are assuming Fisher-consistency. Then in order to estimate β one can minimize Sn(b, τ ) that provides a consistent
estimator of S(b, τ ). Moreover, note that, except from the multiplicative factor p(x), S(b, t) corresponds to the asymptotic
version of a generalM-estimator in the complete data set situation. This suggests that the presence of themissing probability
may introduce some bias in the estimation of the regression parameter when considering the finite-sample version Sn(b, t).

Letτ = τn be robust consistent estimators of τ . The robust simplified estimator,β, of the regression parameter uses the
portion of the sample with complete information and is defined asβ = argmin

b
Sn(b,τ). (4)

When ρ is continuously differentiable, if we denote by Ψ (y, u, t) = ∂ρ(y, u, t)/∂u, β and β satisfy the differentiated
equations S(1)(β, τ ) = 0 and S(1)n (b,τ) = 0, respectively, where

S(1)(b, t) = EF

Ψ


y, xtb, t


w1(x)p(x)x


and S(1)n (b, t) =

1
n

n
i=1

δiΨ

yi, xti b, t


w1(xi)xi.

When Sn(b,τ) has only one critical point, i.e., when the equation S(1)n (b,τ) = 0 has only one root, corresponding to the
minimum of Sn(b,τ), the estimatorβ can be computed using a Newton–Raphson approach.



Author's personal copy

A.M. Bianco et al. / Journal of Multivariate Analysis 114 (2013) 209–226 211

To improve the finite-sample bias caused in the estimation by themissingmechanism, robust propensity score estimators
may be considered including an estimator of the missingness probability. Denote by p(x) any estimator of p(x). For
instance, if we assume that the missingness probability is given by the logistic model, i.e., that p(x) = Gl(xtλ0) where
Gl(s) = (1 + e−s)−1 is the logistic distribution function, we only need to estimate the parameter λ to define the estimatorp(x). Let P = {q : Rk

→ R such that 0 < q(x) ≤ 1}, and define Sp,n : Rk
× T × P → R and its related functional

Sp : Rk
× T × P → R as

Sp,n(b, t, q) =
1
n

n
i=1

δi

q(xi)
ρ


yi, xti b, t


w1(xi), (5)

Sp(b, t, q) = EF


δ

q(x)
ρ


y, xtb, t


w1(x)


= EF


p(x)
q(x)

ρ

y, xtb, t


w1(x)


. (6)

The robust propensity score estimator βp is defined asβp = argmin
b

Sp,n(b,τp,p), (7)

whereτp is a robust consistent estimator of τ , possibly different than the one considered in (4). Note that τ and q(x) play now
the role of nuisance parameters. Moreover, it is worth noticing that Sp(b, t, p) = EF [ρ (y, xtb, t) w1(x)], so it corresponds
to the objective function when the sample contains no missing responses. Throughout this paper we will assume Fisher-
consistency, which means that β is the unique minimum of Sp(b, τ , p).

As above, when ρ is continuously differentiable, if we denote by Ψ (y, u, t) = ∂ρ(y, u, t)/∂u, β and βp satisfy the
differentiated equations S(1)p (β, τ , p) = 0 and S(1)p,n(b,τ ,p) = 0, respectively, where

S(1)p (b, t, q) = EF


Ψ


y, xtb, t


w1(x)

p(x)
q(x)

x


and S(1)p,n(b, t, q) =
1
n

n
i=1

δi

q(xi)
Ψ


yi, xti b, t


w1(xi)xi.

2.2. The loss functions used in the estimation procedure

In the frame of glm, two families of loss functions ρ have been considered in the literature. The first one aims to bound
the deviances, while the second one introduced by Cantoni and Ronchetti [6] bounds the Pearson residuals. For the sake of
completeness, we recall their definition.

Let φt be a bounded nondecreasing function with continuous derivative ϕt , t being the tuning constant, and denote by
f (·, s) the density of the distribution function F(·, s) with y|x ∼ F (·,H (xtβ)). For families of distributions that can be
transformed to avoid an extra parameter in the model, the first class of loss functions takes the form of

ρ(y, u, t) = φt [− ln f (y,H(u))+ D(y)] + G(H(u)). (8)

To avoid triviality, it is assumed thatφt is non–constant in a positive probability set. Typically,φt is a function performing like
the identity function in a neighbourhood of 0. The function D(y) is typically used to remove a term from the log–likelihood
that is independent of the parameter, and can be defined as D(y) = ln (f (y, y)) in order to get the deviance. The correction
term G is used to guarantee the Fisher-consistency and satisfies

G′(s) =


ϕt [− ln f (y, s)+ D(y)] f ′(y, s)dµ(y) = Es


ϕt [− ln f (y, s)+ D(y)] f ′(y, s)/f (y, s)


,

where Es indicates expectation taken under y ∼ F(·, s) and f ′(y, s) is a shorthand for ∂ f (y, s)/∂s . Note that under a
generalized linear model, the maximum likelihood estimator corresponds to the choice φ(s) = s, D(y) = ln (f (y, y)),
G(u) = 0 andw1 ≡ 1.

For the Poisson and logistic regression models, we have that τ = 1 so, τ does not need to be estimated. For the logistic
model, Bianco and Yohai [4] introduced the score function

φc(s) =


s − s2/(2c) if s ≤ c
c/2 otherwise. (9)

In order to guarantee existence of solution, Croux and Haesbroeck [8] proposed using the score function

φc(s) =


s exp(−

√
c) if s ≤ c

−2(1 +
√
s) exp(−

√
s)+


2(1 +

√
c)+ c


exp(−

√
c) otherwise.

It is worth noting that, when considering the deviance and a continuous family of distributions with strongly unimodal
density function, the correction term G is not needed, as discussed in [3]. In this case, τ may play the role of the tuning
constant and, for instance, for the Gamma distribution it depends on the shape parameter, so initial estimators need to be
considered.
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The second class of loss functions is based on the proposal given by Cantoni and Ronchetti [6] for generalized linear
models, where they consider a general class of Mallows type M-estimators, by bounding separately the influence of
deviations on y and x. Their approach is based on robustifying the quasi–likelihood, which is an alternative to the
generalizations given for the glm by Stefanski et al. [25] and Künsch et al. [18]. Let r(y, µ, τ ) = (y − µ)/(V (µ)A(τ ))
be the Pearson residuals with Var(yi|xi) = A2(τ )V 2(µi). Denote ν(y, µ, τ ) = ψc(r(y, µ, τ ))/(V (µ)A(τ )), with ψc an odd
nondecreasing score function with tuning constant c , such as the Huber function, and ρ(y, u, t) = −[

 H(u)
s0

ν(y, s, t)ds +

G(H(u))], where s0 is such that ν(y, s0, τ ) = 0. To ensure Fisher-consistency, the correction term G(s) satisfies G′(s) =

−Es (ν(y, s, τ )). For the Binomial and Poisson families, explicit forms of the correction term G(s) are given in [6], while
for the Gamma family with log link, an expression for G(s) is provided in [7]. The classical counterpart of this approach
corresponds to the choice ψc(u) = u,w1 ≡ 1.

Remark 2.1. The correction factor, denoted G(s), is included to guarantee Fisher-consistency under the true model.
Otherwise, one can only ensure that the estimatorswill be consistent to the solutionβ(F) of the related functional equations,
i.e., toβ(F) = argminbS(b, τ ), where S(b, t) is defined in (3). On the other hand, as iswell known,whenH(u) = u, i.e., under
the linear regressionmodel yi = xti β+ϵi, Fisher-consistency holds if, for instance, the errors ϵi have a symmetric distribution
and the score function ψc is odd.

Under a logistic regression model, Fisher-consistency can easily be derived for the loss function given by (8), when φ
satisfies the regularity conditions stated in [4] and

P

xtβ = α


< 1, ∀(β, α) ≠ 0. (10)

Moreover, it is easy to verify that β is the unique minimizer of S(b, τ ) in this case. The same assertion can be verified for the
robust quasi–likelihood proposal if ψc is bounded and increasing.

For a Gamma regression model with a fixed shape parameter, Fisher-consistency for the regression parameter will be
derived belowwhen (10) holds and the score functionφ is bounded and strictly increasing on the setwhere it is not constant.

2.3. The Poisson regression model

In the case of the Poisson distribution with parameter µ the density can be written as

f (y, µ) =


exp(−µ)µy/y! y ∈ N ∪ {0}
0 in other case

with Eµ(y) = µ, Varµ(y) = µ and so τ = 1. Hence, ρ(y, u, τ ) given in (8) is given by ρ(y, u, 1) = φ(−y + y ln y + H(u)−
y ln(H(u)))+ G(H(u)), where

G′(t) = −ϕ(t) exp(−t)−

∞
j=1

ϕ(j ln j − j + t − j ln t)

t − j
t


exp(−t)t j/j!.

In the particular case of the canonical link function, that is, when logµ = u, i.e. H(u) = exp(u), we have that ρ(y, u, 1) =

φ(−y + y ln y + H(u)− yu)+ G(H(u)).

2.4. The log–Gamma regression model

An important application among generalized linearmodels is the Gammadistributionwith a log-link. Thismodel is called
log–Gamma regression and is introduced in Chapter 8 of [20]. For the log–Gamma model we have that yi|xi ∼ Γ (τ , µi),
where µi = E(yi|xi) and the link function is log(E(yi)) = βtxi, where, for any τ > 0 and µ > 0, we denote by Γ (τ , µ) the
parametrization of the Gamma distribution given by the density

f (y, τ , µ) = τ τ yτ−1 exp(−(τ/µ)y){µτ Γ (τ )}−1 Iy≥0.

It is well known (see for instance, [7]) that in this case, the responses can be transformed so that they are modelled through
a linear regression model with asymmetric errors. Indeed, let zi = log(yi) be the transformed responses, then zi = xti β + ui,
where ui and xi are independent. Besides, ui ∼ log(Γ (τ , 1))with density

g(u, τ ) =
τ τ

Γ (τ )
exp(τ (u − exp(u))). (11)

This density is asymmetric and unimodalwithmaximumat u0 = 0.We refer to [3] for a description on the robust estimators
based on deviances for complete data sets and to [14] for a description onM-type estimators. For the sake of completeness,
we will describe how to adapt the estimators based on deviances to the situation with missing responses since this is one
of the models used in the simulation study considered in the technical report by Bianco et al. [2].

Denote by di(β, τ ) the deviance component of the i-th observation, i.e., di(β, τ ) = 2τ d∗(yi, xi,β), where d∗(y, x,β) =

−1 − (log(y) − xtβ) + y exp(−xtβ). Consider the transformed responses zi = log(yi). Let us now assume that we are
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dealing with the situation in which some of the responses may be missing, with δi = 1 if zi is observed, and 0 otherwise.
Moreover, (1) entails that δ1 and z1 are conditionally independent given x1, so δ1 and u1 are independent. Note that
d∗(y, x, b) =d(u, x,β − b), whered(u, x, b) = −1 − u − xtb + exp(u) exp(xtb). The maximum likelihood (ml) estimator
of β is, thus, obtained as

βml = argmin
b

n
i=1

δid∗(yi, xi, b).

As in [3], a three-step procedure can be considered to compute the estimators when missing responses are present. First
note that, since the tuning constant of the loss function depends on the unknown parameter τ , Maronna et al. [3] introduce
an adaptive sequence of tuning constantscm,n to define a sequence of M-estimators, βm,n, for data sets with no missing
observations. These estimators, which satisfyβm,n = argminb

n
i=1 φ

√
d∗(yi, xi, b)/cm,n, have as asymptotic covariance

matrix

B(φ, τ , c0)/A2(φ, τ , c0)


E (xxt)−1, wherecm,n p

−→ c0. The constants B(φ, τ , c0) and A2(φ, τ , c0) depend only on
the derivative of the score function φ and the shape parameter τ , but not on the covariates. Hence, the estimators can
be calibrated to attain a given efficiency. From now on, denote Ce(τ ) as the value of the tuning constant c0 such that the
M-estimator has efficiency e with respect to the maximum likelihood estimator.

In our modification, we consider the following three-step algorithm to compute a generalizedMM-estimator.

• Step 1. Consider the complete data subset, that is, the portion of data at hand, i.e., {(yi, xi)}i:δi=1. We first compute an
initial S-estimateβn and the corresponding scale estimate σn taking b =

1
2 supφ with the complete data subset. To be

more precise, for each value of b let σn(b) be the M-scale estimate of
√
d∗(yi, xi, b) given by

n
i=1

δiφ

√
d∗(yi, xi, b)
σn(b)


= b

n
i=1

δi,

where φ is the Tukey bisquare function, φ(u) = min

u2/2min


1 − u2

+ u4/3

, 1


.

The S-estimate ofβ for the consideredmodel is defined by βn = argminb σn(b) and the corresponding scale estimate
byσn = minb σn(b). The functional related to this S-estimator is defined byβ(F) = argminb σ(τ , b), where σ(τ , b) is
the solution of

EFδφ

√
d∗(y, x, b)
σ (τ , b)


= b Ep(x). (12)

Let u be a random variable with density (11) and write σ ∗(τ ) for the solution of

EG


φ

√
h(u)

σ ∗(τ )


= b,

where h(u) = 1−u−exp(u). Note that since u and δ are independent, we have that σ ∗(τ ) = σ(τ ,β). Similar arguments
to those considered in Theorem 5 in [3] allow one to show that under mild conditionsβn

a.s.
−→ β and thatσn a.s.

−→ σ ∗(τ ).
Moreover, as in [3], σ ∗(τ ) is a continuous and strictly decreasing function, thus an estimator of τ can be defined asτn = σ ∗−1(σn), leading to a a strongly consistent estimator for τ .

• Step 2. In the second step, we computeτn = σ ∗−1(σn) andcn = max(σn, Ce(τn)) = max(σn, Ce(σ
∗−1(σn))).

We then have thatcn p
−→ c0 = max{σ ∗(τ ), Ce(τ )}.

• Step 3. Letβn be the adaptive general M-estimator of β defined by

βn = argmin
b

n
i=1

δiφ


d∗(yi, xi, b)/cnw1(xi). (13)

Note that in this case, ρ(yi, xti b, t) = φ
√

d∗(yi, xi, b)/c(t)

, where c(t) = max{σ ∗(t), Ce(t)}, so that ρ(y, v, t) =

φ
√

−1 − log(y)+ v + y exp(−v)/c(t)

.

The following Lemma states the Fisher-consistency of the functionals related to the estimatorsβn andβn. Its proof can
be found in the Appendix.

Lemma 2.1. If the score function φ is bounded and strictly increasing on the set where it is not constant and if (10) holds, we
have that the functionals defined asβ(F) = argminb σ(τ , b) and β(F) = argminbEF


δφ

√
d∗(y, x, b)/c0


w1(x)


are Fisher-

consistent.

Propensity score estimators are defined in an analogous way.
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3. Consistency results

As mentioned in [13], under Fisher-consistency and under assumptions A1–A3 below, standard arguments allow one to
show that the simplified estimators introduced in Section 2.1 are consistent (see Huber, [16], for instance). For the sake of
completeness, we state here these results.

A1. The functionsw1(x) is bounded.
A2. ρ(y, u, v) is a continuous function. Moreover, the function S(b, t) satisfies the following equicontinuity condition: for

any ϵ > 0 there exists δ > 0 such that for any t1, t2 ∈ K , a compact set in T ,

|t1 − t2| < δ ⇒ sup
b∈Rk

|S(b, t1)− S(b, t2)| < ϵ.

A3. The class of functions F = {fb,t(y, x, δ) = δρ (y, xtb, t) w1(x), t ∈ T , b ∈ Rk
} satisfies either (a) or (b) where:

(a) The bracketing number N[ ]


ϵ,F , L1(P)


< ∞, for any 0 < ϵ < 1, where P is the distribution of (y, x).

(b) The covering number N

ϵ,F , L1(Pn)


is such that logN


ϵ,F , L1(Pn)


= oP(n), where Pn is the empirical distribu-

tion.

Proposition 3.1. Assume that A1, A2 and A3 hold, thenβ a.s.
−→ β.

Remark 3.1. Assumptions A1 and A2 are standard requirements since they state that the weight function controls large
values of the covariates and that the score function bounds large residuals, respectively. Assumption A3 is fulfilled for the
score functions described in Section 2.2 undermild conditions. For instance, ifφ andψc are functionswith bounded variation,
A3 holds for most distribution families.

Using similar arguments under the following additional conditions, we obtain the consistency of the propensity
estimators, which is stated in the next proposition.

A4. infx∈Sw1∩Sx p(x) = A > 0, where Sw1 and Sx stand for the support ofw1 and x, respectively.
A5. The estimatorp(x) of p(x) satisfies either (a) or (b)

(a) supx∈Sw1∩Sx |p(x)− p(x)| a.s.
−→ 0 or

(b) p(x) = pλ(x) = Gp(xtλ) for some continuous function Gp : R → (0, 1] with bounded variation, λ ∈ Λ ⊂ Rk andp(x) = pλ(x), whereλ a.s.
−→ λ.

A6. The function Sp(b, t, p) satisfies the following equicontinuity condition:
(a) under A5(a), for any ϵ > 0 there exists δ > 0 such that for any t1, t2 ∈ K , a compact set in T ,

|t1 − t2| < δ ⇒ sup
b∈Rk

|Sp(b, t1, p)− Sp(b, t2, p)| < ϵ.

(b) under A5(b), for any ϵ > 0 there exists δ > 0 such that for any t1, t2 ∈ K and λ1,λ2 ∈ KΛ, compact sets in T and
Rk, respectively,

|t1 − t2| < δ and ∥λ1 − λ2∥ < δ ⇒ sup
b∈Rk

|Sp(b, t1, pλ1)− Sp(b, t2, pλ2)| < ϵ.

Proposition 3.2. Assume that A1 –A6 hold, thenβp
a.s.

−→ β.

Remark 3.2. Note that A6 holds if Ψ (y, xtb, t) andw1(x)∥x∥ are bounded, which holds for the usual functions considered
in robustness. Besides, ifw1 has compact support, as is the case for the Tukey weight function, A4 holds for any continuous
missingness probability such that p(x) > 0. This includes, for instance, a logistic model for p(x). On the other hand, if
Sx = Rk and w1 ≡ 1, i.e., if high leverage points are not downweighted, A4 restricts the family of missing probabilities to
be considered.

4. Influence functions and outlier detection

Usually, in robustness, there are two popular measures of the resistance to outliers of a given estimator: the breakdown
point and the influence function of the related functional.

Loosely speaking, the breakdown point of an estimator is the smallest fraction of outliers that can take the estimate
beyond any bound. Hampel [12] defined the asymptotic breakdown point, while Donoho and Huber [9] introduced the
finite sample version. Consider a sample of n complete observations Z = {z1, . . . , zn}, where zi ∈ Rℓ, and let Tn(Z) be an
estimate of a parameter η ∈ Rd defined on all possible datasets. Let Zs be the set of all the samples Z∗

= {z∗

1, . . . , z
∗
n} such

that #{i : z∗

i = zi} = n− s. The finite sample breakdown point is defined as ϵ∗(T ,Z) = min{s/n : supZ∗∈Zs ∥T (Z∗)∥ = ∞}.
Sued and Yohai [26] extended the notion of finite sample breakdown point to the case where missing responses can

occur. Let W = {(y1, xt1, δ1), . . . , (yn, x
t
n, δn)} be the set of all the observations. If∆ = {i : 1 ≤ i ≤ n, δi = 1}, let m = #∆.

Denote by Wts the set of all samples obtained from W by replacing at most t points by outliers, with at most s of these
replacements corresponding to the non missing responses. Then, W∗

= {(y∗

1, x
∗t
1 , δ1), . . . , (y

∗
n, x

∗t
n , δn)} belongs to Wts if

#{i ∈ ∆ : (y∗

i , x
∗t
i ) ≠ (yi, xi)} + #{i ∈ ∆c

: x∗

i ≠ xi} ≤ t
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and

#{i ∈ ∆ : (y∗

i , x
∗t
i ) ≠ (yi, xi)} ≤ s.

Given the estimator Tn of η, denote Mts = supW∗∈Wts{Tn(W
∗)} and κ(t, s) = max (t/n, s/m). Sued and Yohai [26] defined

the finite breakdown point of Tn at W as ϵ∗
= min{κ(t, s) : Mts = ∞}. In this sense, ϵ∗ is the minimum fraction of outliers

in the complete sample or in the set of non missing responses that is required to take the estimate beyond any limit.
The simplified estimators, introduced in Section 2.1, depend only on the complete observations in the sample, so the

procedure preserves the finite breakdown point of the regression estimator for a sample of size m, as defined by Donoho
and Huber [9].

On the other hand, the influence function is ameasure of robustnesswith respect to single outliers that allows us to study
the local robustness and the asymptotic efficiency of the estimators, providing a rationale for choosing appropriate weight
functions and tuning parameters. It can be thought of as the first derivative of the functional version of the estimator which,
under mild conditions, enables the derivation of the asymptotic covariance matrix of the corresponding estimator. The
influence function of a functional T (F) is defined as IF(z0, T , F) = limϵ→0(T (Fz0,ϵ)−T (F))/ϵ, where Fz0,ϵ = (1−ϵ)F +ϵ∆z0
and∆z0 denotes the probability measure which puts mass 1 at the point z0 = (y0, xt0, δ0) and represents the contaminated
model. Under mild conditions, see [10], we have the expansion

√
n {T (Fn)− T (F)} =

1
√
n

n
j=1

IF (zi, T , F)+ op(1),

where Fn denotes the empirical distribution of the observations zi, 1 ≤ i ≤ n. Therefore, the asymptotic variance of the
estimates can be evaluated as

ASVar (T , F) = EF

IF (z1, T , F) IF (z1, T , F)t


. (14)

Besides being of theoretical interest and helpful to calibrate the efficiency of the robust estimates, measuring the influence
of an observation on the classical estimates can be used as a diagnostic tool to detect influential observations.

Let F1 stand for any distribution on Rk+1
× {0, 1} and denote by β(F1) and τ(F1) the functionals related to the

simplified estimators β and τ , respectively. That is, β(F1) is the solution of S(1)(b, τ (F1), F1) = 0k with S(1)(b, t, F1) =

EF1 (δΨ (y, x
tb, t) w1(x)x). Assume that β(F1) is a Fisher-consistent functional at F , i.e., β(F) = β.

Theorem 4.1 gives the influence function for the simplified functional β(F1) at F1 = F under the assumptions given
below.

H1. Ψ (y, u, v) is a continuous differentiable function of (u, v) and χ(y, u, v) = ∂Ψ (y, u, v) /∂u is a continuous function.
H2. The matrix A = EF (χ (y, xtβ, τ )w1(x)p(x)xxt) is non–singular.
H3. EF (Ψ (y, xtβ, t) |x) = 0k for any fixed t ∈ T .

Remark 4.1. Assumption H1 is a standard requirement to ensure the existence of an influence function without additional
smoothness requirements on the underlying distribution. AssumptionH2 is a standard condition in the robustness literature
to guarantee that the regression estimators will be root-n consistent. Note that H3 holds for the usual functions considered
in robustness, it is the conditional Fisher-consistency defined by Künsch et al. [18].

Theorem 4.1. Let A be the symmetric matrix defined inH2 and assume that IF(z0, τ , F) exists. Then, under H1 –H3, IF (z0,β, F)
exists and when τ(F) = τ , then IF(z0,β, F) = −Ψ


y0, xt0β, τ


w1(x0)δ0A−1x0.

It is worth noticing that the influence function depends on the indicator of the missing response δ0, so it will be 0 if no
responses arise. For that reason, a more reliable function to measure the sensitivity to outliers of a given functional T (F1)
under a missing scheme needs to be considered.

We define the expected influence function at an observed data z∗

0 = (y0, xt0)
t, denoted EIF(z∗

0, T , F), as EIF(z∗

0, T , F) =

E(IF(z0, T , F)|(y0, xt0)). There are some differences between the influence function and the expected influence function to
be pointed out. The most important one is that the former allows one, under regularity conditions, to provide a Bahadur
expansion of the statistic under study. In particular, the asymptotic variance of the estimator can be heuristically obtained
through (14). This is not true if one replaces IF by EIF in (14) since the missing indicator δi cannot be replaced by its
conditional expected value when providing the Bahadur expansion of the estimator. However, EIF provides a measure of
the conditional expected influence of a data point, regardless of the presence or not of a response. In this sense, it also gives
an idea on how the missingness probability will affect the functional and, therefore, the related estimator.

For the functional under study, we have that:

EIF(z∗

0,β, F) = −Ψ

y0, xt0β, τ


w1(x0)p(x0)A−1x0.

To derive the influence function of the propensity score estimators, let us assume a parametric model for the probability
of being missing, p(x) = G(x,λ). As above, denote by βp(F1), τp(F1) and λ(F1) the functionals related to the estimatorsβp, τp and λ, respectively, where βp is defined in (7) with p(x) = G(x,λ) the propensity score estimate and λ is a
consistent estimator of λ. Assume that βp(F1) is a Fisher-consistent functional at F , i.e., βp(F) = β. Note that βp(F1) is
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the solution of S(1)p (b, τp(F1),λ(F1), F1) = 0k with S(1)p (b, τ ,λ(F1), F1) = EF1


δΨ (y, xtb, τ )w∗

1(x, F1)x

and w∗

1(x, F1) =

w(x)/G(x,λ(F1)).
Theorem 4.2 gives the value of the influence function of the functional βp(F) under some additional assumptions.

H4. p(x) = G(x,λ) for some continuous function G : R2k
→ (0, 1) differentiable with respect to λ.

H5. The matrix Ap = EF (χ (y, xtβ, τ )w1(x)xxt) is non–singular.
H6. E


|Ψ (y, xtb, τ ) |w∗

1(x, F1)∥x∥∥∂G(x, u)/∂u|u=λ∥

< ∞.

Theorem 4.2. Let Ap be the symmetric matrix defined inH5 and assume that IF(z0, τp, F) and IF(z0, λ, F) exist. Then, under H1
and H3 –H6, we have that IF


z0,βp, F


exists and IF(z0,βp, F) = − (δ0/p(x0))Ψ


y0, xt0β, τ


w1(x0)A−1

p x0.

It is worth noting that the expected influence function of the propensity estimator EIF(z∗

0,βp, F) = −Ψ

y0, xt0β, τ


w1(x0)A−1

p x0, does not depend on the missing probability due to the fact that Ap is independent of the missing pattern.
Thus, they coincide with those of the simplified estimator for the case p ≡ 1.

4.1. Expected influence functions for the Poisson model

In this Section, we compute the expected influence functions for the Poisson regression model described in Section 2.3
for the case of the canonical link function, that is

yi|x ∼ P (µ(x)) with log(µ(x)) = β0 + β1x1, x = (1, x1)t, (15)

where x1 ∼ N(0, 1), β0 = 0 and for two values of β1, β1 = 0, 0.4.
For the weighted estimators, we used the Tukey’s bisquare weight function with tuning constant χ2

1,0.975. The weights
were computed over the robust Mahalanobis distances based on the median and the median of the absolute deviation from
the median (mad). We denote byβml,βm,βgm, the maximum likelihood estimators, the estimators obtained with w1 ≡ 1
and their weighted version with Tukey’s weights, respectively. The proposed robust estimators were computed using the
loss function introduced by Bianco and Yohai [4] and defined in (9) with tuning constant c = 4. The choice of c = 4 is
explained in Section 5.

Figs. 1 and 2 give the surface plots of the norm of the expected influence functions, ∥EIF∥, for the simplified maximum
likelihood estimators and robust estimators defined through (4), when β1 = 0 and 0.4, respectively. As mentioned above,
the EIF of the propensity estimators equals that of the simplified ones when p ≡ 1, so it is avoided. We considered three
models for themissing probability, p ≡ 1, that is, nomissing responses arise, the logisticmodel p(x) = 1/(1+exp(−2x−2))
and p(x) = 0.7 + 0.2(cos(2x + 0.4))2, which corresponds to a missing probability bounded from below. Note that when
p equals a constant, which corresponds to a missing completely at random model, the ∥EIF∥ is the same, except for a scale
factor, to that of p ≡ 1.

When considering the functional related to maximum likelihood estimator, the plots of the ∥EIF∥ reveal that it is
unbounded due to both leverage points and values of the responses with large deviances. In particular, for a logistic missing
probability, the ∥EIF∥ of the functionals related to all the simplified estimators show an asymmetric behaviour. This can be
explained by the fact that large negative values of x0 lead to values of the missing probability close to 0. On the other hand,
for a cosine missing probability model, the fluctuation effect introduced by the cosine is observed in the plot. As one can
guess, the norms of the expected influence functionals corresponding toβm and to its weighted versionβgm are comparable
to that of the classical one at the center of the distribution of the covariates under all missing schemes. Figs. 1 and 2 make
clear that the behaviour of the influence function depends on the value of the underlying regression parameters. This is
especially evident for the robust unweighted estimator, i.e., those corresponding to w1 ≡ 1, in which large values of the
EIF are attained when the score function is unable to bound the effect of the covariates. On the other hand, the plots show
that using a weight function to downweight carriers with large Mahalanobis distances, the norm of the expected influence
at points further away remains completely downweighted.

4.2. Asymptotic variances

As mentioned above, under regularity conditions, the influence function IF(z, F) at point z of functional estimator T (F)
can be seen as a derivative in a stronger sense and, thus, the asymptotic variance of the estimators can be derived from the
influence function using (14), (see also [19], pp. 71–75).

So, in terms of the mentioned approximation, the expressions obtained for influence functions of the simplified and
propensity estimators in Theorems 4.1 and 4.2, respectively, enable us to derive heuristically the asymptotic covariance
matrix of the estimatorsβ andβp. Hence, if we denote

B = EF

Ψ 2 

y, xtβ, τ

w2

1(x)p(x)xx
t and Bp = EF


Ψ 2 

y, xtβ, τ

w2

1(x)p(x)
−1xxt


, (16)

under regularity conditions and according to (14), the asymptotic covariance matrix of the simplified estimator β is
Σ = A−1BA−1, while that of the propensity estimatorsβp is Σp = A−1

p BpA−1
p .
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Fig. 1. Norm of the expected influence functions, ∥EIF∥, under the Poisson model for the functionals based on the simplified estimators for β0 = 0 and
β1 = 0.

Remark 4.2. When considering the log–Gamma regression model, the estimator βn defined in (13) has an asymptotic
covariance matrix which can be written as Σ = γ (φ, τ , c0)C, for a properly constant γ (φ, τ , c0) that depends on the score
function and the shape parameter. The matrix C is given by C = D−1E


p(x)w2

1(x)xx
t

D−1 with D = E (p(x)w1(x)xxt). So,

when a 0 − 1 weight function is considered, the asymptotic matrix C reduces to C = D−1
= [E (p(x)w1(x)xxt)]−1.

On the other hand, the asymptotic covariance matrix of the propensity score estimator for this model equals Σp =

γ (φ, τ , c0)Cp, where Cp = D−1
p E


w2

1(x)/p(x)

xxt


D−1

p and Dp = E (w1(x)xxt).
In the particular case of univariate covariates x and 0−1 weight functionw1, we have that C =


E


p(x)w1(x)x2

−1 and

Cp = E

w1(x)/p(x)x2

 
E


w1(x)x2

−2. The Cauchy–Schwartz inequality entails that

E


w1(x)x2

2
≤ E


w1(x)/p(x)x2


E


w1(x)p(x)x2


hence, the simplified estimator is more efficient than its propensity version for the log–Gamma regression

model.

4.3. Outlier detection

As mentioned above, in addition to its theoretical interest and its helpfulness in calibration purposes, measuring the
influence of an observation on the classical estimates can be used as a diagnostic tool to detect influential observations. It is
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Fig. 2. Norm of the expected influence functions, ∥EIF∥, under the Poisson model for the functionals based on the simplified estimators for β0 = 0 and
β1 = 0.4.

well known that an outlier may not be an influential observation for the estimation of the parameter of interest, however
an influential observation is usually an outlier. An influential observation can be described as an observation with high
influence on something, usually an estimate of the parameters of interest. A well known procedure to detect outlying points
for multivariate normal samples is the robustified Mahalanobis distance considered in [24], see also [23] for a review on
robust statistical methods and outlier detection. García Ben and Yohai [11] extended the popular normal Q–Q plots to
generalized linear regression models, where the distribution of deviance residuals may be far from normality, by means
of an estimate of the distribution of the deviance residuals. Even if the aim of this paper is to adapt robust estimators for
a glm to the situation in which missing responses arise rather than to focus on outlier identification, it is important to
know which points are influential for the regression parameter. The influence function serves this purpose. As described in
other multivariate and regression settings, the influence function of the functional related to a robust estimator is usually
bounded and so, when estimating the unknown parameters appearing in its expression by a robust procedure, it hardly
changeswhen contaminated data points are included in the sample. On the other hand, if we consider the influence function
of the functional related to the classical estimators, and we plug-in classical estimators of the parameters involved on it, a
masking effect may appear and so outlying observations are not detected (see, for instance, [22]. An alternative approach
is to consider the influence function for the classical estimators but plugging-in robust parameter estimates rather than
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classical ones, in order to avoid masking and to detect influential observations. So, when considering the glm with missing
responses the influence diagnostic measure (DM) related to the regression parameter can be computed, for the observed
responses, that is, for a response y such that δ = 1, as DM(y, x,β,τ), where (β,τ) are the robust simplified estimators.
Therefore, in order to get an equivariant diagnostic measure, the DM(y, x, b, t) becomes

DM(y, x,β, τ ) = IF(z,βml, F)
tB−1IF(z,βml, F) = δΨ 2

ml


y, xtβ, τ


xtB−1x,

where βml is the functional related to the classical estimators, Ψml stands for their score function and B = B(β, τ ) =

EF

Ψ 2

ml (y, x
tβ, τ )w2

1(x)p(x)xx
t

. Note that, in most cases, the term Ψ 2

ml (y, x
tb, t) equals the square of the Pearson

residuals numerator, while measures based on squared deviance residuals are considered in [11] to define Q–Q plots in
generalized linear models. The diagnostic measure defined takes also into account the effect of high leverage points on
observations with intermediate residuals.

In Section 6, we illustrate the use of the diagnostic measure DM for a real data set, while in Sections 5.2 and 5.3 the
performance of DM is tested numerically.

5. Monte Carlo study

5.1. Simulation study for the Poisson model

A simulation study for a Poisson model is conducted to compare the performance of the classical simplified and
propensity estimators, βml and βp,ml, and two robust alternatives, a simplified or propensity M-estimator denoted βm

and βp,m respectively and its weighted counterpart denoted βgm and βp,gm as introduced in Section 2.1. The M-estimator
bounds large values of the deviance, while the weighted estimator downweights also observations with large values of the
covariates.

We consider the Poisson regression model with the canonical link function, that is (yi, xti ), 1 ≤ i ≤ n, satisfy model (15)
with xi = (1, x1i)t, where x1i ∼ N(0, 1), β0 = 0 and β1 = 0.4. The sample size is n = 100 and the number of Monte Carlo
replications is NR = 500. We follow a scheme similar to that considered in [1].

In order to compare the behaviour of the estimators,we consider sampleswithout outliers, denoted C0, and contaminated
sampleswith 10% of outliers, labelled as C1 in the plots. For the contaminated data, the outlying points, (y0, x1,0), are all equal
to (y0, x1,0) = (20, 2.5), which gives an expected value of marginal expectation of the response variable y equal to 2.718.

We choose the three missingness models described in Section 4.1 and also p ≡ 0.8. In this case, the logistic model leads
to a probability of missing equal to 0.999 at x0, while the cosine one to a missing probability equal to 0.781. The propensity
estimators,βp,ml,βp,m andβp,gm, were calculated only for the logistic and cosine missing probabilities.

As in Section 4.1, the weighted estimators used the Tukey’s bisquare weight function with tuning constant χ2
1,0.975 and

the weights were computed over the robust Mahalanobis distances based on the median and the mad. Besides, the robust
estimators bound the deviances using the loss function (9)with tuning constant c = 4, that yields,when p ≡ 1 andβ1 = 0.4,
an asymptotic efficiency equal to 0.808 and 0.765 forβm andβgm, respectively.

The boxplots of the resulting estimates are shown in Figs. 3 and 4. Table 1 gives summary measures of the estimators
under the differentmissing schemeswhen no contamination is introduced. The summarymeasures computed are themean,
the standard deviation (sd) and the mean square error (mse) over replications. As it can be seen, for all considered missing
patterns, when there are no outliers, the robust estimates have a behaviour comparable with that of the classical estimator
with a larger loss of efficiency for the weighted estimators of the slope parameter β1. Besides, the simplified estimators are
more efficient than their propensity relatives. However, in the presence of outlying points the robust estimates outperform
the classical estimates in all cases, and this is more evident in the case of the slope estimators. In general, there are small
differences between propensity and simplified robust estimators.

5.2. Outlier detection for the Poisson model

To assess the performance of the detection measure DM in the Poisson regression model, we follow a similar simulation
scheme to that described in Section 5.1, but now we consider three types of contaminated samples. Each contaminated
sample contains 10% of outliers of the form (y0, x1,0). We choose x1,0 = 2.5, while y0 equals one of the following values
10, 15 and 20. The simplified robust estimatorβgm was computed as in Section 5.1. Under a Poisson regression model with
natural link, the matrix B(β) = EF


Ψ 2

ml (y, x
tβ) w2(x)p(x)xxt


= EF


exp(xtβ)w2(x)p(x)xxt


. So, when computing the

diagnostic measure and the cut–off points, we estimate B(β) using a hard rejectionweight function, that is,w(xi) = 1when
(x1i − µ)2/σ 2

≤ χ2
1,0.975 and w1(xi) = 0 otherwise, where µ = median(x1i) and σ = mad(x1i). We numerically compute

the cut-off values c1−α , so as to ensure that in non-contaminated samples the percentage of correct observationsmislabelled
as outliers is approximately equal to 100α%, with α = 0.05 and 0.01. The robust estimatorsβgm are computed and then,
each observation is classified as an outlier if DM(y, x,βgm) > c1−α . It is worth noting that whenmissing responses arise, we
computedβgm defined through (4) using the portion of the data at hand. However, when classifying an observation through
DM(y, x,βgm) > c1−α , we force δi to be equal to 1, when an outlier appears, to be have an idea of the misclassification



Author's personal copy

220 A.M. Bianco et al. / Journal of Multivariate Analysis 114 (2013) 209–226

Fig. 3. Boxplots for the simplified estimators of β0 and β1 under the Poisson model when p ≡ 1 and p ≡ 0.8.

Fig. 4. Boxplots for the simplified and propensity estimators of β0 and β1 under the Poisson model when p(x) = 1/(1 + exp(−2x − 2)) and
p(x) = 0.7 + 0.2(cos(2x + 0.4))2 .

Table 1
Summary measures for the regression estimators under a Poisson regression model with no contamination and β0 = 0 and β1 = 0.4.

β0 β1βml
βm

βgm
βp,ml

βp,m
βp,gm

βml
βm

βgm
βp,ml

βp,m
βp,gm

p ≡ 1
Mean −0.0148 −0.0179 −0.0165 0.3980 0.3991 0.3987
sd 0.1109 0.1203 0.1237 0.1025 0.1154 0.1451
mse 0.0125 0.0148 0.0150 0.0105 0.0133 0.0211

p(x) = 1/(1 + exp(−2x − 2))
Mean −0.0151 −0.0145 −0.0151 −0.0211 −0.0225 −0.0167 0.4018 0.4026 0.4014 0.4068 0.4039 0.4050
sd 0.1300 0.1438 0.1448 0.1447 0.1600 0.1505 0.1267 0.1405 0.1709 0.1501 0.1684 0.1797
mse 0.0167 0.0205 0.0207 0.0205 0.0251 0.0224 0.0161 0.0197 0.0292 0.0225 0.0283 0.0322

p(x) = 0.7 + 0.2(cos(2x + 0.4))2

Mean −0.0146 −0.0144 −0.0142 −0.0143 −0.0149 −0.0136 0.3984 0.3975 0.3980 0.3981 0.3986 0.3972
sd 0.1167 0.1287 0.1354 0.1173 0.1275 0.1352 0.1188 0.1320 0.1627 0.1192 0.1327 0.1655
mse 0.0134 0.0164 0.0181 0.0136 0.0160 0.0181 0.0141 0.0174 0.0265 0.0142 0.0176 0.0274

error obtained for the outliers. Table 2 reports the mean over replications of the proportion of outliers detected for each
contamination and missing scheme considered, while the corresponding medians are all equal to 1. The obtained means
show that on average DM successfully identifies at least 90% of the introduced outliers under all different missingness
probabilities. The reported results reveal the proposed measure DM as a promising tool for the practitioner in the diagnosis
of outlying observations when dealing with missing responses in a Poisson regression model.



Author's personal copy

A.M. Bianco et al. / Journal of Multivariate Analysis 114 (2013) 209–226 221

Table 2
Mean over replications of the proportion
of outliers detected.

y0 α = 0.05 α = 0.01

p ≡ 1

10 0.968 0.942
15 0.999 0.999
20 1 1
p(x) = 1/(1 + exp(−2x − 2))

10 0.956 0.915
15 0.999 0.999
20 1 1
p(x) = 0.7+0.2(cos(2x+0.4))2

10 0.964 0.933
15 0.998 0.997
20 1 1

5.3. Outlier detection for the Gamma model

The gamma regression model considered was

yi|x ∼ Γ (τ , µ(x)) with µ(x) = βtxi, i = 1, . . . , n, (17)

with τ = 3 and x = (zt, 1)t where z ∼ N(0, Ik−1). The sample sizewas n = 100 and the number ofMonte Carlo replications
was NR = 1000.

To study the behaviour of the detection measure, we consider samples contaminated with 5% of outliers all equal, say
(y0, x0)with x0 = (z0, 1). Since the magnitude of the effect of these outliers depends on z0 only throughout ∥z0∥2, without
loss of generality they were chosen as z0,1 = x0, z0,j = 0 for j > 1 and y0 = exp(βx0 + m0 x0). The valuem0 represents the
slope of the outliers residuals. We chose three values of x0 corresponding to low leverage outliers with x0 = 1, moderate
leverage outliers with x0 = 3 and high leverage outliers with x0 = 10. As values form0 we consideredm0 = 0.5 and 2.5.

The robust estimators were computed as described in Section 2.4, where, due to the fact that the responses have a
density, the correction term G(s) appearing in (8) is not needed. For the weighted estimators, we used the Tukey’s bisquare
weight function with tuning constant c = χ2

k−1,0.95. The weights were computed over the robust Mahalanobis distances

d(z,µz,Σz) =


(z − µz)

tΣ−1
z (z − µz)

1/2
, where (µz,Σz) stands for an S-estimator with breakdown point 0.5 using

1000 sub-samples. Form now on,β andτ will refer to the robust weighted estimators.
The results concerning the behaviour of the estimators when k = 3 can be found in [2] and lead to conclusions analogous

to those reported for the Poisson regression model. For that reason, we only report here results regarding the performance
of the diagnosticmeasure, for k = 3, 5 and 10, which are not reported there. The values of the regression parameter equal, in
each situation, β = 0 when k = 3, while for k = 5 and 10 we choose β = 1k/

√
kwith 1k the vector with all its components

equal to one. We considered three models for the missing probability, p ≡ 1, that is, no missing responses are introduced, a
logisticmodel formissingness p(x) = 1/(1+exp(−ztλ−2)) and p(x) = 0.4+0.5(cos(ztλ+0.4))2, bothwithλ = 2×1k−1.

It is worth noting that for the log–gamma regression model the matrix B(β, τ ) = EF

Ψ 2

ml (y, x
tβ, τ )w2(x)p(x)xxt


equals B(β, τ ) = (1/τ)EF


w2(x)p(x)xxt


= (1/τ)D, so that when computing the diagnostic measure and the cut-off

points, we estimate B(β, τ ) asB = (1/τ)D, where the estimatorD of thematrixEF

w2(x)p(x)xxt


is evaluated using a hard

rejection weight function, that is,w(x) = 1 when d2(z,µz,Σz) ≤ χ2
k−1,0.95 andw1(x) = 0 elsewhere, with d(z,µz,Σz) the

robust Mahalanobis distance defined above.
Once the robust estimators (β,τ) are computed, an observation is classified as an outlier if DM(y, x,β,τ) > ck,1−α . The

values of ck,1−α have been obtained from simulation experiments to ensure that, in the absence of outliers, the proportion
of correct observations mislabelled as outliers is approximately equal to 100α%. We select two values for α, α = 0.05 and
α = 0.01. To assess the quality of the detection measure, Tables 3 and 4 report the mean and median over replications of
the proportion of outliers detected for each dimension and each missing scheme, respectively. It is worth noting that when
missing responses arise, we compute the estimators using the simplified robust weighted estimators, which means that
some of the outliers may be missing by chance. However, as in Section 5.2, when computing DM(y, x,β,τ) > ck,1−α , we
force δi to be equal to 1, when an outlier appears, to have an idea of themisclassification error obtained when classifying the
outliers. From these Tables, we observe that as the dimension increases low and moderate outliers became more difficult
to detect, in particular, when missing responses arise. This behaviour can be explained by the fact that, since we have
preserved the same sample size, the effective number of observations may not be enough to estimate such a large number
of parameters. It should be taken into account that, for both the logistic and the cosine missingness probabilities, the mean
number of missing responses is 25% and 35%, respectively, when k = 3, while it reaches 36% in dimension k = 10 in both
cases.
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Table 3
Mean over replications of the proportion of outliers detected.

k α = 0.05 α = 0.01
m0 = 0.5 m0 = 2.5 m0 = 0.5 m0 = 2.5
x0 = 1 x0 = 3 x0 = 10 x0 = 1 x0 = 3 x0 = 10 x0 = 1 x0 = 3 x0 = 10 x0 = 1 x0 = 3 x0 = 10

p ≡ 1
3 0 1 1 1 1 1 0 1 1 1 1 1
5 0 0.909 1 1 1 1 0 0.621 0.999 1 1 1

10 0 0.147 1 0.999 0.999 1 0 0.147 0.999 0.999 0.999 1
p(x) = 1/(1 + exp(−ztλ − 2))

3 0 0.991 1 1 1 1 0 0.926 1 1 1 1
5 0 0.433 0.998 1 1 1 0 0.329 0.998 1 1 1

10 0 0.161 0.998 0.994 1 1 0 0.116 0.994 0.982 1 1
p(x) = 0.4 + 0.5(cos(ztλ + 0.4))2

3 0 0.981 1 1 1 1 0 0.898 1 1 1 1
5 0 0.478 0.999 1 1 1 0 0.350 0.999 1 1 1

10 0 0.198 1 1 1 1 0 0.148 1 0.983 1 1

Table 4
Median over replications of the proportion of outliers detected.

k α = 0.05 α = 0.01
m0 = 0.5 m0 = 2.5 m0 = 0.5 m0 = 2.5
x0 = 1 x0 = 3 x0 = 10 x0 = 1 x0 = 3 x0 = 10 x0 = 1 x0 = 3 x0 = 10 x0 = 1 x0 = 3 x0 = 10

p ≡ 1
3 0 1 1 1 1 1 0 1 1 1 1 1
5 0 1 1 1 1 1 0 1 1 1 1 1

10 0 0 1 1 1 1 0 0 1 1 1 1
p(x) = 1/(1 + exp(−ztλ − 2))

3 0 1 1 1 1 1 0 1 1 1 1 1
5 0 0 1 1 1 1 0 0 1 1 1 1

10 0 0 1 1 1 1 0 0 1 1 1 1
p(x) = 0.4 + 0.5(cos(ztλ + 0.4))2

3 0 1 1 1 1 1 0 1 1 1 1 1
5 0 0 1 1 1 1 0 0 1 1 1 1

10 0 0 1 1 1 1 0 0 1 1 1 1

6. Example: epilepsy data

Thall and Vail [27] reported data from a clinical trial of 59 patients with epilepsy, see also Breslow [5]. The patients were
randomized to receive either the anti-epileptic drug progabide or a placebo. This data set has been considered in the robust
literature such as [19,15] in the setting of Poisson regression taking as response the total number of epileptic attacks patients
have during the four follow-up periods. In our study, we chose as response variable Y4, which records the number of epilepsy
attacks patients have during the fourth follow-up period. We treat this response variable as a Poisson one. The explanatory
variables x are

x1 = Age10: the age of the patients in years divided by 10
x2 = Base4: number of epileptic attacks recorded during an 8 week period prior to randomization divided by 4

x3 = Trt: the binary indicators for the progabide group.

A term x4 = Base4 ∗ Trtwas introduced in order to take into account the interaction between these two factors.
The cubif estimator introduced by Künsch et al. [18] applied to the 59 observations identifies three possible outliers,

labelled as observations 15, 18 and 49. It isworth noticing that the Pearson’s fit statistic, the usualmeasure of overdispersion,
is 2.543 when computed on the whole sample. It drops to 1.982 when the fit is computed without these three outliers,
revealing only a mild overdispersion.

We compute the weighted general M-estimator,βgm, with weights based on the Tukey’s bisquare function with tuning
constant χ2

2,0.975. The weights were computed over the robust Mahalanobis distances of the continuous covariates (x1, x2),
calculated with an S-estimator with breakdown point 0.5 using 50 subsamples and 4 iterations in each one. The same loss
function as in Section 4.1 is considered to bound the deviances. Fig. 5 gives the Q–Q plots of the deviances corresponding to
the cubif estimator,βcubif, and toβgm. The left panel of Fig. 6 corresponds to the logarithm of influence diagnostic measure,
log(DM(yi, xi,βgm)), against the indexed number of the observed responses for all the data. The logarithm is a suitable scale
due to the large values obtained. Note that in this case, the term Ψ 2

ml (y, x
tβ) in DM(yi, xi,βgm) is related to the square of

the Pearson residuals, so that the matrix B(β) = EF

Ψ 2

ml (y, x
tβ) w2(x)p(x)xxt


equals B(β) = EF


H(βtx)w2(x)p(x)xxt


.



Author's personal copy

A.M. Bianco et al. / Journal of Multivariate Analysis 114 (2013) 209–226 223

Fig. 5. Epilepsy data: Q–Q plots of the deviances corresponding toβcubif on the left and toβgm on the right.

Fig. 6. Epilepsy data: Logarithm of the Diagnostic Measure, log(DM) versus the index of the observation, for p ≡ 1 on the left, for p0.3(x) in the middle
panel and for p0.5(x) on the right.

Table 5
Analysis of Epilepsy data. Original data set.βml

β−out
ml

βcubif
βgm

Age10 0.156 0.147 0.063 0.052
Base4 0.083 0.152 0.142 0.163
Trt −0.367 −0.212 −0.168 −0.217
Base4 ∗ Trt 0.007 −0.012 −0.011 −0.015
Intercept 0.791 0.308 0.606 0.580

It is evident thatβgm provides a better fit and from both the Q–Q plot and the diagnostic measure defined, we identify
observations labelled 15, 18 and 49 as possible severe outliers and observation 29 as a possible mild outlier. The atypicity
of observation 18 is more evident from the plot of the log(DM). Effectively, the deviance residual shown in the Q–Q
plot for observation 18 is much smaller than that of observation 49, while even if log(DM(y18, x18,βgm)) is smaller than
log(DM(y49, x49,βgm)), it still provides a large value for DM(y18, x18,βgm), showing that the effect of observation 18 is
enlarged due to its leverage. Table 5 gives the values of the estimated regression parameters computed with the whole
sample. The maximum likelihood estimator, βml, the cubif estimator, βcubif, and the weighted general M-estimator, βgm,
are reported. Besides, we compute the maximum likelihood estimator without the four outlying observations. It is worth
noticing that the usual measure of overdispersion computed without the four outliers drops to 1.897.

To evaluate the performance of the proposed estimators when missing data arise in the responses, we consider several
missing probability schemes to introduce artificially missing responses in the data, as in [17]. Our goal for this example
is to obtain estimates of the parameters with two missing data fractions and compare the results with the complete
data estimates. We introduce missing responses among the non outlying points following a logistic missing probability
model given by pλ(x) = 1/(1 + (exp(λ ∗ Age10 − 2.8))), with λ = 0.5 and 0.3, which results in 10 and 5 missing
responses, respectively (approximately 20% and 10% of missing responses, respectively). The results corresponding to the
maximum likelihood, βml, and weighted general M-estimates, βgm, applied to the sample with no missing responses and
to the incomplete data sets are shown in Table 6. The robust estimators allow one to compute the diagnostic measure for
the two missing responses schemes considered. In Fig. 6, we plot the indexed number of the observed responses against
the computed value of log(DM). As we can see, the measure DM can detect the more severe outlying points and also the
mild outlier labelled 29, independently of the missing probability pattern. Besides, these four observations are detected
as outlying points in the boxplots of log(DM) in the three analysed situations. This confirms the usefulness of DM as an
empirical tool for the purpose of identifying potential outliers.
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Table 6
Epilepsy data: Missing responses introduced according to p(x) = 1 and pλ(x) = 1/(1 + (exp(λ ∗ Age10 − 2.8))).

p ≡ 1 p0.3(x) p0.5(x)βml
βgm

βml
βgm

βml
βgm

Age10 0.156 0.052 0.187 −0.015 0.271 0.043
Base4 0.083 0.163 0.083 0.159 0.079 0.119
Trt −0.367 −0.217 −0.300 −0.234 −0.239 −0.643
Base4 ∗ Trt 0.007 −0.015 0.006 0.007 0.010 0.054
Intercept 0.791 0.580 0.681 0.737 0.438 0.794

7. Concluding remarks

We have introduced resistant estimators for the regression parameter under a generalized regressionmodel, when there
are missing responses and it can be suspected that anomalous observations are present in the sample. The estimators
considered are Fisher-consistent and, thus, lead to strongly consistent estimators.

The simulation study confirms the expected inadequate behaviour of the classical estimators and the possible sensitivity
of the unweighted robust estimators in the presence of mild outliers according to the parameter values. The proposed
robust weighted procedures for the regression parameter perform quite similarly under the central model or under the
contaminations studied.

As iswell known, the influence function allows one both to study the influence of a given observation on estimators of the
regression parameter and to compute heuristically the asymptotic variances. For the proposed estimators, the asymptotic
variances computed show that in some situations the simplified estimators are more efficient than the propensity ones.
Besides, the influence function shows that, even when M-estimators may have a good performance in some settings, they
may be sensitive to high leverage points for some missing probabilities such as the logistic one. In this sense, weighted
M-estimators turn out to be an alternative to be considered even if some loss of efficiency is expected.

Based on the influence function, a diagnostic measure is defined. Through simulated examples and a real data set its
usefulness to detect atypical points is illustrated.
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Appendix

Proof of Lemma 2.1. We begin by proving the Fisher consistency ofβ(F). Using (12) and the independence between δ and
u, we have that

EF


δφ

√
d∗(y,x,b)
σ (τ ,b)


E(δ)

=

EF


p(x)φ

√d(u,x,β−b)
σ (τ ,b)


E(p(x))

.

Note that σ(τ , b) is a function ofβ − b. Using Lemma 1 in [3], we get that for any fixed c

EF

p(x)φ


d(u, x,β − b)

c

 x
 = p(x)EF

φ


d(u, x,β − b)

c

 x


≥ p(x)EF

φ


d(u, x, 0)
c

 x
 . (18)

From (10), (18) and the fact that φ is strictly increasing in the set where it is not constant, we get that for any b ≠ β
EF

δφ


d(u, x, 0)
σ (τ , b)

 x
 < EF

δφ


d(u, x,β − b)

σ (τ , b)

 x
 = bE(p(x)).
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Using that EF


δφ

d(u, x, 0)/σ
is decreasing in σ and that EF


δφ

d(u, x, 0)/σ (τ ,β)
= bE(p(x)), we get

that σ(τ ,β) < σ(τ , b), which implies the Fisher-consistency of the functional. Using analogous arguments the Fisher-
consistency of β(F) can be derived. �

Proof of Proposition 3.1. We will show that Sn(β,τ) − Sn(β, τ ) a.s.
−→ 0. Note that E (Sn(b, t)) = S(b, t). Using standard

empirical process arguments, from A3, we have that

Vn = sup
b,t

1n
n

i=1

δiρ(yi, xti b, t)w1(xi)− E

δiρ(yi, xti b, t)w1(xi)

 a.s.
−→ 0.

Therefore, we get

sup
b

|Sn(b,τ)− Sn(b, τ )| ≤ sup
b

|Sn(b,τ)− S(b,τ)| + sup
b

|S(b,τ)− S(b, τ )|

+ sup
b

|Sn(b, τ )− S(b, τ )| ≤ 2Vn + sup
b

|S(b,τ)− S(b, τ )| .

The equicontinuity of S(b, τ ) and the consistency of τ , entail that, supb |Sn(b,τ)− Sn(b, τ )|
a.s.

−→ 0. Thus, Sn(β,τ) −

Sn(β, τ ) a.s.
−→ 0 so, the sequence of estimators β satisfies that infb Sn(b, τ ) − Sn(β, τ ) a.s.

−→ 0, which allows us to apply the
results from [16]. �

Proof of Proposition 3.2. As in the proof of Proposition 3.1, let us show that Sp,n(β,τ ,p)− Sp,n(β, τ , p) a.s.
−→ 0.

First assume that A5(b) holds, then, using standard empirical process arguments, from A3, we have that

Vn = sup
b,t,λ

1n
n

i=1

δi

Gp(xti λ)
ρ(yi, xti b, t)w1(xi)− E


δi

Gp(xti λ)
ρ(yi, xti b, t)w1(xi)

 a.s.
−→ 0.

Therefore, sincep(x) = pλ(x) = Gp(xtλ), we get

sup
b

Sp,n(b,τ ,p)− Sp,n(b, τ , p)
 ≤ sup

b

Sp,n(b,τ ,p)− Sp(b,τ ,p) + sup
b

|Sp(b,τ ,p)− Sp(b, τ , p)|

+ sup
b

Sp,n(b, τ , p)− Sp(b, τ , p)
 ≤ 2Vn + sup

b
|Sp(b,τ ,p)− Sp(b, τ , p)| .

Using the equicontinuity of Sp(b, τ , p) and the consistency ofτ andλ, we get that, when A5(b) holds, supb |Sp,n(b,τ ,p) −

Sp,n(b, τ , p)|
a.s.

−→ 0.
Under A5(a), we obtain easily from A1, A2 and A4 that Sp,n(β,τ ,p)− Sp,n(β,τ , p) a.s.

−→ 0. Again, using standard empirical
process arguments, from A3, we have that

Vn = sup
b,t

1n
n

i=1

δi

p(xi)
ρ(yi, xti b, t)w1(xi)− E


δi

p(xi)
ρ(yi, xti b, t)


w1(xi)

 a.s.
−→ 0,

which implies that

sup
b

Sp,n(b,τ , p)− Sp,n(b, τ , p)
 ≤ sup

b

Sp,n(b,τ , p)− Sp(b,τ , p) + sup
b

|Sp(b,τ , p)− Sp(b, τ , p)|

+ sup
b

Sp,n(b, τ , p)− Sp(b, τ , p)
 ≤ 2Vn + sup

b
|Sp(b,τ , p)− Sp(b, τ , p)|

and so, using the consistency ofτ and the equicontinuity of Sp(b, τ , p), we obtain that, whenA5(a) holds, supb |Sp,n(b,τ ,p)−
Sp,n(b, τ , p)|

a.s.
−→ 0.

Hence, Sp,n(β,τ ,p)−Sp,n(β, τ , p) a.s.
−→ 0which implies that the sequence of estimatorsβ satisfies that infb Sp,n(b, τ , p)−

Sp,n(β, τ , p) a.s.
−→ 0 and the results from [16] can be applied. �

Proof of Theorem 4.1. To get the influence function of β(F), note that EFz0,ϵ


δΨ


y, xtβ(Fz0,ϵ), τ (Fz0,ϵ)


w1(x)x


= 0k

implies

0k = (1 − ϵ)EF

δΨ


y, xtβ(Fz0,ϵ), τ (Fz0,ϵ)


w1(x)x


+ ϵ δ0Ψ


y0, xt0β(Fz0,ϵ), τ (Fz0,ϵ)


w1(x0)x0. (19)

Therefore, differentiating (19) with respect to ϵ and evaluating at ϵ = 0, we obtain that

0k = EF

δχ


y, xtβ(F), τ (F)


w1(x)xxt


IF(z0,β, F)+

∂

∂t
EF


δΨ


y, xtβ(F), t


w1(x)x

 
t=τ(F)

IF(z0, τ , F)

+ δ0Ψ

y0, xt0β(F), τ (F)


w1(x0)x0 − EF


δΨ


y, xtβ(F), τ (F)


w1(x)x


.
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Using the mar condition (1) and H3, we conclude the proof. �

Proof Theorem 4.2. Following the same steps as in the proof of Theorem 4.1, we need to compute the influence function of
βp(F). From EFz0,ϵ


Ψ


y, xtβp(Fz0,ϵ), τp(Fz0,ϵ)


w∗

1(x, Fz0,ϵ)δx


= 0k we have that

0k = (1 − ϵ)EF

δΨ


y, xtβp(Fz0,ϵ), τp


Fz0,ϵ))w

∗

1(x, Fz0,ϵ)x

+ ϵ δ0Ψ


y0, xt0βp(Fz0,ϵ), τp


Fz0,ϵ))w

∗

1(x0, Fz0,ϵ)x0. (20)

Differentiating (20) with respect to ϵ and evaluating at ϵ = 0, we obtain

0k = EF

χ


y, xtβp(F), τp(F)


w∗

1(x, F)p(x)xx
t IF(z0,βp, F)

+ EF


∂

∂t
Ψ


y, xtβp(F), t

 
t=τp(F)

w∗

1(x, F)p(x)x

IF(z0, τp, F)

+ δ0Ψ

y0, xt0βp(F), τp(F)


w∗

1(x0, F)x0 − EF

Ψ


y, xtβp(F), τp(F)


w∗

1(x, F)p(x)x


− EF


1

G(x,λ)
Ψ


y, xtβp(F), τp(F)


w∗

1(x, F)p(x)xG2(x,λ)t

IF(z0,λ, F)

where G2(x,λ) = ∂G(x,u)/∂u|u=λ and the proof follows from H5 and H6. �
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