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bility of the ACO metaheuristic for MWT and MWPT problems considering greedy and Simulated
Annealing algorithms.

Keywords: Triangulation, Pseudo-Triangulation, Minimum Weight, Computational Geometry, ACO
Metaheuristic.
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1. Introduction

In Computational Geometry there are many optimization problems that either are NP-hard or no poly-
nomial algorithms are known to solve them. Examples of these optimization problems are those related
to special geometric configurations, such as triangulations and pseudo-triangulations. These problems
consider planar partitions, which received considerable attention mainly due to their applicability in real
world problems, e.g., visibility, ray-shooting, kinetic collision detection, rigidity, guarding.

Minimizing the total length has been one of the main optimality criteria for triangulations and pseudo-
triangulations. Indeed, the Minimum Weight Triangulation (MWT) and Minimum Weight Pseudo-
Triangulation (MWPT) problems minimize the sum of the edge lengths, providing a quality measure
for determining how good is a structure. The complexity of computing a minimum weight triangulation
has been one of the most longstanding open problems in Computational Geometry, introduced by Garey
and Johnson [23] in their open problems list, and various approximation algorithms were proposed over
time. Mulzer and Rote [42] recently showed that MWT problem is NP-hard. The complexity of MWPT
problem is unknown, but Levcopoulos and Gudmundsson [27] show that a 12-approximation of an min-
imum weight pseudo-triangulation can be computed in O(n3) time. They give an O(log n · fw(MST ))
approximation of an minimum weight pseudo-triangulation, in O(n log n) time, where fw(MST ) is the
weight of the Minimum Euclidean Spanning Tree, which is a subset of the obtained structure.

Considering the inherent difficulty of the above mentioned problems, the approximate algorithms
arise as alternative candidates for MWT and MWPT problems. These algorithms can obtain approximate
solutions to the optimal ones, and they can be specific for a particular problem or they can be part of a
general applicable strategy in the resolution of different problems. The metaheuristic methods satisfy
these properties.

A metaheuristic is an iterative generation process that guides the search of solutions intelligently
combining different concepts of diverse fields as artificial intelligence [44], biological evolution [3],
swarm intelligence [30], among others. These algorithms have a simple implementation and they can ef-
ficiently find good solutions for NP-hard optimization problems [41]. In this work we use the Ant Colony
Optimization (ACO) metaheuristic. The family of algorithms derived from the ACO metaheuristic em-
bodies a set of simple agents that compose a complex system capable of timely building solutions of high
quality. The agents obey simple rules and act independently. However, they cooperate sporadically in a
indirect form to conform a distributed process in which all the agents work to carry out a common aim.

According to the current state-of-the-art about the problems considered in this investigation, we
adopted to solve them with metaheuristic techniques as the more appropriate approach to find nearly
optimal solutions.

Previous works about approximations on MWT and MWPT problems using metaheuristic, were pre-
sented in [14] and [19], where we described the design of the ACO algorithms. It is also worth noticing
that to the best knowledge of the authors, there are no reports in literature of extensive experimental
evaluations using exact algorithms or metaheuristic techniques to solve MWT and MWPT problems.
More precisely, there are only some limited experiments using metaheuristics techniques such as Simu-
lated Annealing or Genetic Algorithms for MWT problem, but the instances used do not represent a real
challenge and the complete experimentation frame is not available [9][35][48][52][57].

This paper is organized as follows. In the next two sections, we present the theoretical aspects of
MWT and MWPT problems. In Section 4, we present the general overview of the ACO metaheuris-
tic and the proposed ACO algorithms for the MWT and MWPT problems, namely ACO-MWT and
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ACO-MWPT. In Section 5, the experimental evaluation and statistical analysis are shown. We describe
instances used, and the details and results of the experimental study. We analyze the sensitivity of the
relevant parameters related to the performance of the proposed ACO algorithms. Further we show the
statistical analysis for observing the behavior of the ACO-MWT and ACO-MWPT algorithms. Through
the experimental evaluation and statistical analysis, the greedy and Simulated Annealing algorithms were
considered to assess the applicability of the ACO metaheuristic. Also the computational effort of the al-
gorithms applied to both problems were compared and analyzed. Last section addresses the conclusions
and future vision.

2. Minimum Weight Triangulation

Let S be a set of points in the plane. A triangulation of S is a partition of the convex hull of S into
triangles whose set of vertices is exactly S. The weight of a triangulation T, fw(T ), is the sum of the
Euclidean lengths of all the edges of T. The triangulation that minimizes this sum is named a Minimum
Weight Triangulation of S and it is denoted by MWT (S).

Triangulation is one of the main topics in Computational Geometry and it is commonly used in a
large set of applications, such as computer graphics, scientific visualization, robotics, computer vision,
and image synthesis, as well as in mathematical and natural science.

MWT problem has a long and rich history, dating back to the 1970s. As far as the knowledge of
the authors, the MWT problem was first considered by Düppe and Gottschalk [21] who proposed a
greedy algorithm which always adds the shortest edge to the triangulation. Later, Shamos and Hoey [53]
suggested using the Delaunay triangulation as a minimum weight triangulation. However, Lloyd [38]
provided examples which show that both proposed algorithms usually do not solve the MWT problem.
Similarly, Gilbert [25] and Klincsek [34], independently, showed how to compute a minimum weight
triangulation of a simple polygon in O(n3) time by dynamic programming. The Delaunay triangulation
is not a good candidate, since it may be longer by a factor of Ω(n) (see Figure 1) [31] [39]. The greedy
triangulation approximates the MWT(S) by a factor of Ω(n) (see Figure 2) [39] [36] [37].

Approaching the problem from other direction, the researchers were looking for triangulations that
approximate the MWT(S). Plaisted and Hong [45] showed how to approximate the MWT(S) up to a
factor of O(logn) in O(n2logn) time. Levcopoulos and Krznaric [37] introduced quasi-greedy triangu-
lations, which approximate the MWT(S) within a constant factor. Remy and Steger [49] discovered an
approximation scheme for MWT problem that runs in quasi-polynomial time: for every fixed ε, it finds
a (1 + ε)-approximation in nO(log8n) time. However, the details about the experimental study were not
reported.

From the point of view of metaheuristics, many papers present solutions to problems in the field of
Computer Graphics. In 1992, Sen and Zheng [52] proposed an algorithm to approximate the MWT(S)
using Simulated Annealing obtaining solutions “near” to the ideal ones. The neighborhood is obtained
with a flip in a random edge of the current triangulation. In 1993, Wu and Wainwright [57] approximated
the MWT(S) using a genetic algorithm where the recombination and mutation operators are the same,
such as both of them make a flip to obtain the neighbors. Qin et al. [48] also use a genetic algorithm
and they proposed new operators for recombination and mutation. Capp and Julstrom [9] present a
new weight codification of the triangulations to use it in a genetic algorithm. In 2001, Kolingerova and
Ferko [35] presented a genetic optimization, where the recombination operator is named DeWall and the
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(a) Delaunay triangulation (b) Minimum weight triangulation

Figure 1. Two examples of possible triangulations for the same set of points

(a) Greedy triangulation (b) Minimum weight triangulation

Figure 2. Two examples of possible triangulations for the same set of points

mutation operator makes a flip in the selected individual. In the previous mentioned works, the parameter
settings used in the experimental evaluation are ambiguous or are not available. Besides, the quality of
the obtained solutions are not described.

The complexity of the computation was one of the more interesting opened problems in Computa-
tional Geometry until Mulzer and Rote demonstrated in 2006 that MWT(S) construction is a NP-hard
problem [42].

3. Minimum Weight Pseudo-Triangulation

Let S be a set of points in the plane. A pseudo-triangulation PT of S is a partition of the convex hull of
S into pseudo-triangles whose set of vertices is exactly S. A pseudo-triangle is a planar polygon that has
exactly three convex vertices (see Figure 3). The weight of a pseudo-triangulation PT, fw(PT ), is the
sum of the Euclidean lengths of all the edges of PT.

The pseudo-triangulation that minimizes this sum is named a Minimum Weight Pseudo-Triangulation
of S and it is denoted by MWPT (S).

The concept of pseudo-triangulation was introduced by Pocchiola and Vegter in [46] on the analogy
of the arrangements of pseudo-lines; see [50] for an interesting survey about different combinatorial
properties, representations, algorithms, and applications of pseudo-triangulations.

The problem of computing a pseudo-triangulation of minimum weight was posed as an open prob-
lem by Rote et al. [51]. An interesting observation that makes the pseudo-triangulation very favorable
compared to a standard triangulation is the fact that there exist sets of points where any triangulation, and
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(a) (b)

Figure 3. Examples of (a) a pseudo-triangle and (b) a pseudo-triangulation.

also any convex partition (without Steiner points), has weight Ω(n · fw(MST (S))), while there always
exists a pseudo-triangulation of weight O(logn.fw(MST (S))), where fw(MST (S)) is the weight of
a minimum spanning tree [27]. Also, they presented a constant factor approximation algorithm running
in cubic time, and they gave an algorithm that produces a minimum weight pseudo-triangulation of a
simple polygon. It is also worth noticing that to the best knowledge of the authors, no reported results
were found in literature regarding the application of metaheuristic techniques to MWPT problem.

4. Ant Colony Optimization Metaheuristic

The ACO metaheuristic involves a family of algorithms in which a colony of artificial ants cooperate
in finding good solutions to difficult discrete optimization problems [13]. Cooperation is a key design
component of ACO algorithms: The choice is to allocate the computational resources to a set of relatively
simple agents (artificial ants) that communicate indirectly by stigmergy. Thus, good quality solutions are
an emergent property of the agents cooperative interaction. An artificial ant in an ACO algorithm is
a stochastic constructive procedure that incrementally builds a solution by adding opportunely defined
solution components to a partial solution under construction. Therefore, the ACO metaheuristic can be
applied to any combinatorial optimization problem for which a constructive graph can be defined. Each
edge (i, j) in the graph represents a posible path and it has associated two information sources that guide
the ant moves: pheromone trails and heuristic information. The pheromone trail, denoted by τij , encodes
a long-term memory about the entire ant search process, and is updated by the ants themselves. The
heuristic information, denoted by ηij , represents a priori information about the problem instance or run-
time information provided by a source different from the ants. In many cases η is the cost, or an estimate
of the cost, of adding the component or connection to the solution under construction.

These values are used by the ants to make probabilistic decisions on how to move on the graph. The
ants act concurrently and independently and although each ant is complex enough to find a solution to the
problem, which is probably poor, good-quality solutions can only emerge as the result of the collective
interaction among the ants. This is obtained via indirect communication mediated by the information
that ants read or write in the variables storing pheromone trail values. It is a distributed learning process
in which the single agents, the ants, are not adaptive themselves but, on the contrary, adaptively modify
the way the problem is represented and perceived by other ants.

There are two additional process for updating pheromone and the daemon actions. The pheromone
updating is the process by which the pheromone trails are modified. The trail values can either increase,
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as ants deposit pheromone on the components or connections they use, or decrease, due to pheromone
evaporation. The daemon procedure is used to implement centralized actions which cannot be performed
by a single ant. Examples of daemon actions are the activation of a local optimization procedure, or
the collection of global information that can be used to decide whether it is useful or not to deposit
additional pheromone to bias the search process from a nonlocal perspective. The daemon can observe
the path found by each ant in the colony and select one or a few ants (high quality paths) to deposit
additional pheromone on the connections they used.

4.1. The general ACO algorithm

In this section we present a general ACO algorithm (Algorithm 1) and a description of its main compo-
nents [13]. The algorithm parameters are:

• τ0 is the initial trail of pheromone associated to each edge.

• K is the colony size.

• C is the number of iterations.

• α and β represent the relative influence of the pheromone values and the problem-dependent
heuristic values.

Algorithm 1 General-ACO
Initialize the pheromone information
for c ∈ {1, . . . , C} do

for k ∈ {1, . . . ,K} do
BuildSolutionk
EvaluateSolution

end for
SaveBestSolutionSoFar
UpdateTrails

end for
ReturnBestSolution

The main process of Algorithm 1 are:

• BuildSolutionk: begins with an empty solution which is extended at each step by adding a feasible solution
component chosen from the current solution neighbors; i.e., to find a route on the construction graph guided
by the mechanism that defines the set of feasible neighbors with respect to the partial solution. The choice
of a feasible neighbor is done in a probabilistic way in every step of the construction, depending on the
used ACO variant. In this work, the selection rule for the solutions construction is based on the following
probabilistic model considered in [13]:

Pij =


τα
ij .η

β
ij∑

h∈F (i)

τα
ih.η

β
ih

, j ∈ F (i);

0, otherwise.
(1)

– F (i) is the set of feasible points for the point i.
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– τij is the pheromone value associated to the edge (i, j).

– ηij is the heuristic value associated to the edge (i, j).

– α and β are positives parameters previously defined.

• EvaluateSolution: evaluates and saves the best solution found by the ant k in the current iteration.

• UpdateTrails: increases the pheromone level in the promising paths, and decreases otherwise. The following
equation, considered in [13], is used:

τij = (1− ρ)τij +∆τij (2)

– ρ ∈ (0, 1] is the pheromone evaporation rate of the trail. ρ is used to avoid unlimited accumulation of
the pheromone trails and it enables the algorithm to “forget” bad decisions previously taken.

– ∆τij =
K∑

k=1

∆kτij is the trail accumulation, proportional to the solutions quality.

– ∆kτij =

{
1/Lk, when the the edge (i,j) is used by the ant k;
0, otherwise.

– Lk is the objective value of the solution k.

Pheromone evaporation process avoids a fast convergence of the algorithm and allows the exploration of new
areas of the search space. In this work the update of the pheromone trail can be done according to one of the
following criteria: elitist and not elitist. The best found solution is used to give an additional reinforcement
to the pheromone levels when the elitist criterion is used. Otherwise, the process uses the solutions found by
all the ants to give an additional reinforcement to the pheromone levels. Besides the heuristic information is
chosen as ηij = 1/dij , that is, the heuristic desirability of going from point i directly to point j is inversely
proportional to the distance between the two points. dij is the Euclidean distance between i and j [13].

4.2. The proposed ACO algorithm for MWT (ACO-MWT)

Considering the Algorithm 1 and the MWT problem, it is required to describe the BuildSolutionk proce-
dure because the other processes remain the same for ACO-MWT algorithm.

BuildSolutionk works as follows. Each ant builds a triangulation for the set of points S, starting at
an initial random point. At each step, a new edge (i, j) is added if there is no intersection between (i, j)
and the edges of the (partial) solution Sk. In this case, i is a feasible (visible) point for j and vice versa.
If the current point has no feasible points, the next reference point is selected according to one of the
following criteria: i) random selection; ii) select the point with the largest quantity of feasible points; or,
iii) select the point with the lowest quantity of feasible points.

The main components are described in the following:

• SelectInitialPoint(S): returns a point p ∈ S, randomly selected.

• FeasiblePoints(i, Sk): returns a set of feasible points p ∈ S, such that the edge (i, p) could not intersect
with the edges of the solution Sk.

• SelectPoint(S, Sk): returns a point p ∈ S, such that Fp is not empty. p is selected according to one of the
criteria mentioned previously.

• SelectPointProb(Fi): returns a point j ∈ Fi chosen according to Equation 1.
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Algorithm 2 BuildSolutionk
Sk ← ∅
i← SelectInitialPoint(S)
while S is not triangulated do

Fi ← FeasiblePoints(i, Sk)
if Fi = ∅ then

i← SelectPoint(S, Sk)
Fi ← FeasiblePoints(i, Sk)

end if
j ← SelectPointProb(Fi)
if not IntersectSolution(i, j, Sk) then

Sk ← Sk ∪ (i, j)
i← j

end if
UpdateFeasiblePoints(i, j)

end while

• IntersectSolution(i, j, Sk): returns true if at least one edge of the solution Sk is intersected by the edge
(i, j); returns false otherwise.

• UpdateFeasiblePoints(i, j): updates the set of feasible points for the points i and j.

4.3. The proposed ACO algorithm for MWPT (ACO-MWPT)

For ACO-MWPT algorithm, each ant in BuildSolutionk procedure builds a pseudo-triangulation, starting
with a face composed by the edges in the convex hull of the set of points S, named CH(S). For the
solution construction, each ant performs a process of partitioning of the current face F , where F ∈
Facesk. Facesk represents the set of no treated faces. This process finishes when all faces are pseudo-
triangles without interior points. A face is divided into two faces when it has interior points or is not a
pseudo-triangle. Thus, the partition can be done if i) there are at least one interior point and two points
in the border; or ii) there is not any interior point, so we use two border points.

Algorithm 3 BuildSolutionk
Sk ← ∅
Facesk ← {CH(S)}
while (Facesk ̸= ∅) do

Let F be a face in Facesk
if F is pseudo-triangle without interior points then

Sk ← Sk ∪ F /* F is a new pseudo-triangle */
Facesk ← Facesk − {F}

else
PartitionFace(F )

end if
end while

PartitionFace(F) selects the points from F to build the new faces. An interior random point and two
probabilistic selected border points, or only two probabilistic selected border points, are chosen. The
set of feasible points for a point i consists of the visible and not adjacent points to i. The probabilistic
selection is done according to Equation 1.
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5. Experimental Evaluation and Statistical Analysis

Each ACO algorithm proposed is represented by an Ant System (AS). The experimental study tries to
find an acceptable combination of parameter values for the ACO-MWT and ACO-MWPT algorithms in
order to obtain triangulations and pseudo-triangulations with the smallest possible weight.

To the best knowledge of the authors, there not exist collections of instances in the literature for
MWT and MWPT problems. Consequently, no benchmarking data are publicly available that allow to
compare these proposals, then we designed an instance generator. A collection of 10 instances of size
40/80/120/160/200 was generated respectively; i.e., a total of 50 problem instances. Each instance is
called LDn-i where n denotes the size the instance i, with 1 ≤ i ≤ 10. Different functions of CGAL
Library [1] are used by the instance generator. Each point (x, y) is randomly generated, uniformly
distributed and the coordinates x, y ∈ [0, 1000]. For implementation purposes, there are non collinear
points.

The ACO-MWT and ACO-MWPT algorithms were implemented in C language and run on BACO
parallel cluster under CONDOR batch queuing system.

The following parameter values were used: α = 1; β = 1, 5; and ρ = 0.10, 0.25, 0.50. elit = 1 (elitist
criterion) and 0 (not elitist criterion). criterion = 1, 2, 3, is used for selecting a point in the SelectPoint(S,
Sk) procedure in ACO-MWT algorithm. For criterion = 1 the point is chosen randomly; for criterion =
2, the chosen point has the largest quantity of feasible points; and for criterion = 3, the chosen point has
the lowest quantity of feasible points. The parameters C, K, and τ0 are set to 1000, 50, and 1 respectively.
Twelve parameter settings were obtained by combining the previous parameter values and 30 runs were
performed for each parameter setting using different random seeds.

The average, median, best, and standard deviation values were obtained considering the objective
function fw. For pseudo-triangulations, the pseudo-triangles quantity was also obtained. The considered
results correspond to the four best parameter settings according to the smallest objective values.

Each parameter setting is denoted by (instance-β-ρ-elit). α and criterion are not shown because
they are the same for all the cases (α = 1 and criterion = 1). For ACO-MWT algorithm, the results for
criterion = 1 were only shown because better results were obtained randomly choosing the next reference
point for most of the instances (upper than 80%). The decimal numbers are not showed because they
are not significant. This experimental study is devoted to analyze the performance of the algorithms
with respect to the quality of the solutions found considering different parameter settings, rather than
runtimes.

Through the experimental evaluation, we assess the applicability of the ACO metaheuristic for MWT
and MWPT problems by considering a simple version of Simulated Annealing technique, Kirkpatrick et
al. [33] and Černý [10]. The algorithms proposed are denoted SA-MWT and SA-MWPT for MWT and
MWPT respectively.

The parameter values for the SA algorithms are the following:

• Solution Space : given a set P of n points in the plane, the solution space for MWT problem is repre-
sented by triangulations and for MWPT problem by pseudo-triangulations. We use adjacency matrix as
data structure.

• Initial solution S0: a random solution.

• Initial temperature T0: the initial temperature depends on the number m of edges in the initial solution and
the objective function fw. T0 = m× l, where l is the average length of the edges of solution S0.
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• Temperature decrement rule R: Geometric Decrease (Tk+1 = αTk with α = 0.95).

• Number of moves at each temperature N(Tk): N(Tk) = Tk to ensure that the amount of moves is directly
proportional to the actual temperature.

• Termination condition: the search process is finished when the temperature is less than or equal to 0.005,
i.e., Tf = 0, 005.

• Neighborhood of a solution N (x): at each iteration the neighborhood for MWT and MWPT problems is
obtained applying the edge flip operator.

These results were compared with those obtained from the application of deterministic algorithms
for these problems (Delaunay Triangulation for MWT and a greedy algorithm for MWPT).

Statistical analysis was done in order to observe the effect of each parameter on the behavior of the
ACO-MWT and ACO-MWPT algorithms. The parameter settings (twelve combinations) are listed and
identified in Table 1. The values for α and criterion are one (α = 1 and criterion = 1).

Table 1. Parameter settings and their identifiers (ID).

ID β ρ elit

1 1 0.10 0
2 1 0.25 0
3 1 0.50 0
4 5 0.10 0
5 5 0.25 0
6 5 0.50 0
7 1 0.10 1
8 1 0.25 1
9 1 0.50 1
10 5 0.10 1
11 5 0.25 1
12 5 0.50 1

The Kolmogorov-Smirnov test showed that the samples do not follow a normal distribution. There-
fore a non-parametric statistical test was used to evaluate the algorithms.

The Kruskal-Wallis test was applied to perform the median comparison in order to determine the sen-
sitivity of the parameters, using the parameter settings given in Table 1. The considered null hypothesis
was there is not a significative difference among the found results and if there are differences, they are
due to random effects. The Tukey method was applied to determine the experimental conditions where
exist significative differences. The boxplot method was carried out to visualize the weight distribution
for each setting.

Finally, the proposed ACO algorithms were compared statistically against SA algorithms. As the
values do not not follow a normal distribution, the Wilcoxon ranksum test (a nonparametric statistical
test that is used for comparing two samples) was apply to perform the median comparison in order to
determine if there is significant difference between ACO and SA algorithms.
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5.1. Results for the ACO-MWT algorithm

In this subsection the performance of the ACO-MWT algorithm was analyzed over four instances of
40, 80, and 120 points. The Table 2 summarizes the parameter influence in the performance of the
algorithm and shows the occurrence percentage of the parameters over the four best parameter settings
with respect to the smallest objective values. The best results were obtained using configurations with
β = 5, elit = 1, and ρ between 0.1 and 0.5, i.e., giving more relevance to the heuristic information and
updating the trails with the elitist criterion.

See Appendix for further information where the results according to the four best parameter settings
are showed (Tables 8, 9, and 10).

Table 2. ACO-MWT: Summary of the parameter influence for four instances of 40, 80, and 120 points with
respect to the best objective values.

β ρ elit

1: 37.73% 0.10: 33.96% 0: 1.89%
5: 62.27% 0.25: 32.07% 1: 98.11%

0.50: 33.97%

Through the Tukey method we can infer that the algorithm is sensitive to the elit parameter because
there are significative difference in the results for the two possible settings. The algorithm is not sensitive
to the parameter ρ when the parameters α, β, and elit are fixed, since there are not significative difference
between the results. The parameter β has influence only when elit = 0.

See Appendix for further information where the results obtained by the Tukey method are showed
(Figures 4, 5, and 6, y-axis represents the parameter setting identifier ID).

The boxplot method showed that the median values are similar for ρ between 0.10 and 0.50. The
algorithm is more robust when elit = 1 since the 50% of the values (values between the first and third
quartile) are very closed around the median value. Better results were obtained with β = 5 and elit = 1.
See Appendix for further information where the boxplots of the weights obtained for the 30 seeds for
four instances for 40, 80, and 120 points for the 12 parameter settings are showed (Figures 7, 8, and 9,
x-axis represents the parameter setting identifier ID and y-axis represents the objective function fw).

Table 3 shows the smallest objective values found of each strategy. In addition, the fourth column
shows the percentage differences between Delaunay Triangulation (DT) and ACO-MWT algorithm. In
the displayed results it can seen that the ACO-MWT algorithm found the smaller weights for all cases.
ACO-MWT algorithm achieved to reduce (as seen in column “diff.%”) the weights between 1% and 5%
with regard to the DT strategy, and for LD40-4 instance achieved a reduction larger than 8%. According
to Table 2 the better objective values are obtained with α = 1, β = 5, ρ = 0.50, and elit = 1. Therefore
ACO-MWT algorithm with such parameter setting was compared statistically against SA-MWT algo-
rithm. The p-values allow us to assert that ACO-MWT algorithm is better than SA-MWT algorithm and
shows a high superiority in performance with respect to the considered instances.

5.2. Results for the ACO-MWPT algorithm

In this subsection, we analyze the performance of the ACO-MWPT algorithm over four instances of 40,
80, and 120 points respectively.
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Table 3. ACO-MWT: Comparing results between DT, ACO-MWT, and SA-MWT algorithms.

Instance DT ACO-MWT diff.% SA-MWT p-value
LD40-1 5666348 5493047 -3,06 5574806 2,74E-11
LD40-2 4722381 4661242 -1,29 4744527 2,81E-11
LD40-3 5663032 5502567 -2,83 5647779 2,83E-11
LD40-4 6289829 5745772 -8,65 5922922 2,70E-11

LD80-1 6462038 6242505 -3,40 6396188 2,87E-11
LD80-2 8081573 7605383 -5,89 7857355 5,32E-10
LD80-3 6143637 5836037 -5,01 6035719 2,87E-11
LD80-4 6460311 6217040 -3,77 6334093 2,87E-11

LD120-1 9581142 9325984 -2,66 9668181 2,87E-11
LD120-2 6149825 5962099 -3,05 6340960 2,87E-11
LD120-3 8948084 8632306 -3,53 9041650 2,87E-11
LD120-4 8111182 7762612 -4,30 8062164 2,87E-11

Similarly previous section, Table 4 is a summary of the parameter influence in the performance of the
algorithm. The occurrence percentage of the parameters over the four best parameter settings with respect
to the smallest objective values are showed. The best objective values were obtained using configurations
with β = 5, elit = 0 or 1, and ρ = 0.1, i.e., better results are obtained giving more relevance to the
heuristic information with a persistence factor equal 0.10. See Appendix for further information where
the results for this experimental study are showed (Tables 11 to 13).

Table 4. ACO-MWPT: Summary of parameter influence for four instances of 40, 80, and 12 points with respect
to the best objective values.

β ρ elit

1: 6.25% 0.10: 39.58% 0: 50%
5: 93.75% 0.25: 35.42% 1: 50%

0.50: 25%

The Tukey test revealed that the relative importance of the heuristic information (β = 1) and the
elitist update of the pheromone (elit = 1) have significative differences with respect to the remaining
ones for all instances of 40 points (ID = 1, 2, and 3). (see Appendix, Figure 10). However, for the
instances of 80 and 120 points, the ACO-MWPT algorithm behaves similarly for the parameter settings
with ID = 1, 2, 3, 7, 8, and 9 (see Appendix, Figures 11 and 12). The parameter elit has not influence
in the results. Considering the solutions quality, the ACO-MWPT algorithm obtained the worst results
by using the parameter settings with ID = 1, 2, and 3 for the instances of 40 points. The best results
for instances of 80 and 120 points (either in terms of median and best values) are achieved using the
parameter settings with ID = 4, 5, 6, 10, 11, and 12; i.e., the ACO-MWPT algorithm obtains the best
results with β = 5, independently of parameters ρ and elit. See Appendix, for detail information (Figures
13, 14, and 15). The x-axis represents the identifier ID for each parameter setting shown in Table 1 and
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the y-axis represents the objective function fw.
Considering there is not any greedy strategy for building a pseudo-triangulation of small weight,

a greedy algorithm was designed based on ACO-MWPT algorithm, except that it uses a deterministic
selection criterion. This greedy algorithm is denoted by Greedy Pseudo-Triangulation (GPT). A face is
divided into two faces when it has interior points or is not a pseudo-triangle. The partition can be done
selecting: i) one interior point p and two border points, q and r, where q and r are the closest to p, or ii)
two border points, which are the closest each other, when there is not an interior point.

To better assess our proposal, the ACO-MWPT algorithm was compared against SA-MWPT and
GPT algorithms. According to Table 4 the better weights are obtained with β = 5, elit = 0 or 1, and
ρ = 0.1. The ACO-MWPT algorithm obtains smaller objective values using elit = 1. Therefore ACO-
MWPT algorithm with such parameter setting was compared statistically against SA-MWPT algorithm.
The p-values allow us to assert that ACO-MWT algorithm is better than SA-MWT algorithm and shows
a high superiority in performance with respect to the considered instances. Table 5 shows the lowest
objective values found and the respective #Pts. It can be seen there not exist a clear correlation between
the weight and #Pts.

Table 5. ACO-MWPT: Comparing results between SA-MWPT, ACO-MWPT, and GPT algorithms.

Instance SA-MWPT ACO-MWPT p-value #Pts ACO GPT-MWPT #Pts GPT
LD40-1 6252359 6115636 8,40E-05 51 5312131 56
LD40-2 5197488 4442710 2,87E-11 49 4292347 52
LD40-3 6017744 5684342 1,27E-10 49 5794018 58
LD40-4 6133612 5627098 2,79E-09 48 6245196 57

LD80-1 8428879 7898497 6,37E-11 105 7458787 113
LD80-2 10197976 9584718 6,41E-10 104 8931272 106
LD80-3 8265748 8918853 6,37E-04 106 6516103 107
LD80-4 8768465 8004652 2,87E-11 110 7393297 112

LD120-1 13639368 12842149 6,26E-08 163 14097967 163
LD120-2 11512428 9247582 2,87E-11 154 7106543 174
LD120-3 11859844 12326883 1,62E-08 167 11519206 160
LD120-4 11497327 10647886 7,03E-11 170 8341281 175

5.3. Analysis of runtimes

In this subsection the computational effort of the algorithms applied to the MWT problem (i.e., ACO-
MWT, SA-MWT, and DT) and the MWPT problem (i.e., ACO-MWPT, SA-MWPT, and GPT) are com-
pared and analyzed.

Note that the ACO and SA algorithms are iterative and stochastic algorithms. Instead the DT and
GPT are two deterministic algorithms which build only one solution on a time bounded by O(nlogn) and
almost O(n3) respectively. Therefore the runtimes differences between the iterative and the deterministic
algorithms are meaningful. Although more computational resources (mainly time) are consumed by
the metaheuristic algorithms, they found higher quality solutions. In addition, some applications in
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Computational Geometry related to the detailed problems necessarily require high quality solutions [26]
[59] [38] [12] [46] [50]. Nevertheless, we are aware that for some Computational Geometry applications
the Delaunay Triangulation or Greedy methods could be a simple and direct alternative when solutions
of medium or low quality are acceptable.

The parameter settings used are those considered in the previous section (α = 1, β = 5, ρ = 0.50, and
elit = 1 for ACO-MWT algorithm and α = 1, β = 5, ρ = 0.10, and elit = 1 for ACO-MWPT algorithm).
Tables 6 and 7 show the runtimes of the mentioned algorithms. The runtimes of SA algorithms are
significantly lower than the ACO ones, but better results are found by the ACO algorithms.

Table 6. MWT: Average runtimes for ACO-MWT and SA-MWT algorithms (for 30 seeds) and the runtime for
Delaunay Triangulation (in milliseconds).

# points ACO-MWT SA-MWT DT
40 417463 10064 13
80 2672815 24005 18
120 7416141 44775 29

Table 7. MWPT: Average runtimes for ACO-MWPT and SA-MWPT algorithms (for 30 seeds) and the runtime
for Greedy Pseudo-Triangulation (in milliseconds).

# points ACO-MWPT SA-MWPT GPT
40 120431 11679 69
80 328451 25376 83
120 478487 48342 94

6. Conclusions and future work

The design of approximation algorithms for solving the Minimum Weight Triangulation and the Mini-
mum Weight Pseudo-Triangulation problems for sets of points in the plane and respective experimental
evaluation and statistical analysis were presented.

In this paper we showed how the Ant Colony Optimization (ACO) metaheuristic can be used to
find high quality triangulations and pseudo-triangulations of minimum weight. We have created a set of
instances for the experimental study since no reference to benchmarks for these problems were found in
the literature. They are available at http://www.dirinfo.unsl.edu.ar/bd2/GeometriaComp/

The applicability of the ACO metaheuristic for MWT and MWPT problems was assessed considering
greedy and Simulated Annealing algorithms for comparison.

The experimental evaluation showed that the ACO algorithms achieve the best results. The statistical
analysis between ACO and SA algorithms ensured these conclusions.

The algorithms runtimes are significantly different but the best results are found by the ACO algo-
rithms.

The results have shown that solutions of higher quality can be found by applying a metaheuristic
technique with a higher cost. We are currently working in improved versions of the proposed algorithms
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and other metaheuristics to deal with the presented problems.
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Appendix

Table 8. MWT: Results for four instances of 40 points.

Par. Setting Average Median Best Std. Dev.
LD401-1-0.25-1 5497920 5499201 5493047 3093
LD401-1-0.50-1 5500288 5501497 5493047 4543
LD401-5-0.10-1 5501427 5502009 5493047 4890
LD401-5-0.25-1 5502441 5502009 5493047 4547
LD401-5-0.50-1 5500754 5501988 5493047 5518

LD402-1-0.25-1 4666083 4666261 4661242 2511
LD402-1-0.10-1 4665869 4665657 4660495 2830
LD402-5-0.50-1 4664708 4664817 4659553 2927
LD402-1-0.50-1 4666420 4666984 4659553 3191
LD402-5-0.25-1 4665475 4664817 4659553 3693
LD402-5-0.10-1 4665988 4665789 4659553 3812

LD403-5-0.25-1 5519150 5519777 5502567 6516
LD403-1-0.10-1 5520802 5521320 5503301 6966
LD403-5-0.10-1 5519544 5519625 5510241 5353
LD403-5-0.50-1 5517745 5519181 5510241 5657

LD404-1-0.25-1 5748259 5747745 5745772 2316
LD404-1-0.50-1 5748852 5748473 5745772 1946
LD404-5-0.50-1 5751695 5750729 5745772 4002
LD404-1-0.10-1 5749372 5748757 5747725 1950
LD404-5-0.10-1 5751877 5750729 5747725 3170
LD404-5-0.25-1 5751976 5750729 5747725 5157
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Table 9. MWT: Results for four instances of 80 points.

Par. Setting Average Median Best Std. Dev.
LD801-5-0.50-1 6271586 6273781 6242505 14337
LD801-5-0.25-1 6271507 6275369 6249124 13911
LD801-1-0.25-1 6287660 6289344 6256190 14223
LD801-5-0.25-0 6312084 6313977 6257491 15609

LD802-5-0.25-1 7640159 7643473 7605383 13945
LD802-5-0.50-1 7637904 7638408 7607462 15751
LD802-5-0.10-1 7640725 7642497 7610007 16196
LD802-1-0.10-1 7648258 7645077 7611405 22608

LD803-5-0.10-1 5863919 5865538 5836037 13482
LD803-5-0.50-1 5867149 5866309 5843634 14250
LD803-1-0.50-1 5880349 5884690 5845840 15361
LD803-1-0.25-1 5879002 5882230 5848638 16061

LD804-5-0.50-1 6277069 6283664 6217040 23328
LD804-1-0.50-1 6273397 6271736 6221908 23681
LD804-1-0.10-1 6274697 6275648 6225424 23752
LD804-1-0.25-1 6268067 6270581 6228084 17899

Table 10. MWT: Results for four instances of 120 points.

Par. Setting Average Median Best Std. Dev.
LD1201-5-0.25-1 9361401 9361368 9325984 18424
LD1201-5-0.50-1 9364442 9361221 9331139 22122
LD1201-5-0.10-1 9366316 9361576 9333488 20569
LD1201-1-0.50-1 9393130 9398060 9345181 22710

LD1202-5-0.10-1 6019316 6020394 5962099 23256
LD1202-5-0.25-1 6022598 6027282 5979832 20284
LD1202-5-0.50-1 6026150 6030549 5995484 21177
LD1202-1-0.10-1 6052288 6059251 5996347 25249

LD1203-5-0.10-1 8661456 8661549 8632306 16552
LD1203-5-0.25-1 8658617 8659753 8632574 11813
LD1203-5-0.50-1 8663020 8668620 8633526 17104
LD1203-1-0.10-1 8704510 8706670 8658672 21258

LD1204-5-0.50-1 7802093 7804348 7762612 18435
LD1204-5-0.10-1 7797742 7798414 7766328 14877
LD1204-1-0.10-1 7831163 7832325 7774480 23019
LD1204-5-0.25-1 7798003 7794526 7776160 13279
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Table 11. MWPT: Results for four instances of 40 points.

Par. Setting Average Median Best Std. Dev. # Pts
LD401-5-0.10-1 6557443 6607908 6115636 166770 51
LD401-5-0.25-1 6644026 6658654 6286985 166104 48
LD401-5-0.50-1 6669542 6713656 6320652 159069 49
LD401-5-0.50-0 6777518 6847951 6322956 158225 52

LD402-5-0.25-1 4748353 4757694 4442710 114885 49
LD402-5-0.10-0 4681136 4685804 4470550 69468 48
LD402-5-0.10-1 4707699 4747199 4490214 83905 50
LD402-5-0.25-0 4729018 4749318 4524206 77542 43

LD403-5-0.25-1 6069210 6071705 5684342 143063 49
LD403-5-0.10-1 5980440 6021063 5699513 136174 50
LD403-5-0.25-0 6075029 6118394 5744775 110439 45
LD403-5-0.50-0 6073308 6104511 5746463 121285 51

LD404-1-0.50-1 6236883 6258985 5627098 218860 48
LD404-5-0.10-1 6162888 6154961 5668910 166455 49
LD404-5-0.50-1 6229822 6237045 5869145 202030 50
LD404-5-0.50-0 6237883 6252135 5903381 139767 47

Table 12. MWPT: Results for four instances of 80 points.

Par. Setting Average Median Best Std. Dev. # Pts
LD801-5-0.50-0 8281137 8300956 7898497 160360 105
LD801-5-0.10-0 8325983 8331038 7923788 149888 109
LD801-5-0.25-0 8304994 8339204 7928177 163459 109
LD801-5-0.10-1 8332003 8363583 7988963 127377 105

LD802-5-0.25-1 10512726 10604489 9584718 362414 104
LD802-5-0.25-0 10427016 10476297 9673011 270506 111
LD802-5-0.10-1 10345444 10363546 9677902 259106 110
LD802-5-0.50-0 10490142 10551129 9950921 228493 110

LD803-5-0.10-1 9538288 9565227 8918853 275070 106
LD803-5-0.25-1 9743314 9815785 8999055 275216 104
LD803-5-0.25-0 9748326 9763289 9274975 256875 111
LD803-5-0.10-0 9696436 9720730 9290951 215221 107

LD804-5-0.10-0 8440937 8464053 8004652 184115 110
LD804-5-0.50-0 8479098 8502467 8075482 168527 102
LD804-5-0.25-0 8444159 8476240 8181376 114853 107
LD804-1-0.25-1 8898841 8965159 8181936 316304 111
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Table 13. MWPT: Results for four instances of 120 points.

Par. Setting Average Median Best Std. Dev. # Pts
LD1201-5-0.10-1 13941438 14024447 12842149 386460 163
LD1201-5-0.25-0 14119597 14168102 13059200 397667 159
LD1201-5-0.25-1 14364494 14376191 13343235 405153 157
LD1201-5-0.10-0 14078301 14131013 13509895 284575 158

LD1202-5-0.25-0 10092545 10166051 9247582 303468 154
LD1202-5-0.10-0 10143516 10155656 9488995 229203 153
LD1202-5-0.10-1 10109354 10149822 9555352 223387 156
LD1202-5-0.50-0 10213997 10234101 9650748 264040 156

LD1203-5-0.10-1 13024222 13027319 12326883 270411 167
LD1203-5-0.25-1 13197334 13226142 12376353 388390 159
LD1203-1-0.25-1 13958025 14022061 12518659 557306 158
LD1203-5-0.10-0 13366048 13453313 12566722 314829 161

LD1204-5-0.10-0 11211772 11288840 10647886 243568 170
LD1204-5-0.10-1 11333409 11377566 10648542 286156 153
LD1204-5-0.50-0 11328537 11345607 10690162 175935 155
LD1204-5-0.50-1 11676292 11705953 10698947 327513 161
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Figure 4. MWT: Multi-comparison Tukey test: (a) LD40-1, (b) LD40-2, (c) LD40-3, and (d) LD40-4.
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Figure 5. MWT: Multi-comparison Tukey test: (a) LD80-1, (b) LD80-2, (c) LD80-3, and (d) LD80-4.
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Figure 6. MWT: Multi-comparison Tukey test: (a) LD120-1, (b) LD120-2, (c) LD120-3, and (d) LD120-4.
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Figure 7. MWT: Boxplots for (a) LD40-1, (b) LD40-2, (c) LD40-3, and (d) LD40-4.
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Figure 8. MWT: Boxplots for (a) LD80-1, (b) LD80-2, (c) LD80-3, and (d) LD80-4.
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Figure 9. MWT: Boxplots for (a) LD120-1, (b) LD120-2, (c) LD120-3, and (d) LD120-4.
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Figure 10. MWPT: Multi-comparison Tukey test: (a) LD40-1, (b) LD40-2, (c) LD40-3, and (d) LD40-4.
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Figure 11. MWPT: Multi-comparison Tukey test: (a) LD80-1, (b) LD80-2, (c) LD80-3, and (d) LD80-4.
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Figure 12. MWPT: Multi-comparison Tukey test: (a) LD120-1, (b) LD120-2, (c) LD120-3, and (d) LD120-4.
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Figure 13. MWPT: Boxplots for (a) LD40-1, (b) LD40-2, (c) LD40-3, and (d) LD40-4.
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Figure 14. MWPT: Boxplots for (a) LD80-1, (b) LD80-2, (c) LD80-3, and (d) LD80-4.
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Figure 15. MWPT: Boxplots for (a) LD120-1, (b) LD120-2, (c) LD120-3, and (d) LD120-4.


