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Computational micro-mechanics is employed in this work to evaluate effects of fiber-matrix interface
damage on the elastic properties of polymer matrix composites with continuous glass fibers. It is
assumed that damage affects local zones along the fiber and a sector on the perimeter around the fiber.
Elastic modulii are evaluated using Finite Element analysis, for a range of values in damage parameters
considered. The occurrence of bi-modular behavior, with differences in Young’s modulus under tension
and compression, has been represented by contact without friction. Based on extensive parametric
results, a Least Squares Method is employed to derive analytical expressions for each material property
as a function of damage parameters. In most cases the elastic modulus has a nonlinear relation with the
damage parameter in the length of the fiber, with the exception of the transverse elastic modulus under
tension. The analytical expressions are used to couple micro and macro scales in an off-line scheme, with-
out the need to perform in-time micro-scale computations.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of fiber-reinforced composite materials has been
traditionally performed using what is known as Classical Lamina-
tion Theory (CLT) (see for example Ref. [1]) or more refined higher
order theories (such as in Ref. [2]), in which the heterogeneous
fiber-matrix material is reduced to an equivalent homogeneous
material for a lamina at the macro level. Thanks to increasing hard-
ware and software capabilities, it is now possible to model this
problem at the micro level to represent localized effects, such as
defects and damage. However, to recover the complete picture it
is necessary to couple the micro and macro levels, and this may
be a costly procedure when both levels are modeled by means of
Finite Elements in a non-linear analysis. This paper discusses an
off-line procedure to couple the micro and macro levels, in which
results of the micro level are previously computed.

The occurrence of damage at the fiber-matrix interface in glass
fiber reinforced polymers (GFRP) has been identified for structures
built in moisture and temperature environments. Evidence of such
damage has been provided by laboratory testing [3] in which cou-
pons were immersed in water at temperatures of 60–80 �C for sev-
eral months, then were tested to evaluate their mechanical
properties and damage was observed by scanning electron micro-
scopy (SEM). The work reported by Kajorncheappunngam et al. [3]
considered coupons at ambient and 60 �C temperatures in various
water solutions for five months. These authors concluded that the
elastic modulus in GFRP was not affected by hygro-thermal pro-
cess, but significant reductions in strength were identified due to
matrix cracking and fiber-matrix interface debonding. Interface
damage was observed with the aid of SEM. In a study of resin
and composite degradation in off-shore wind turbines, Faguaga
et al. [4] found significant levels of matrix and interface
degradation at 80 �C. For randomly oriented long fibers, some
20% reduction in modulus of elasticity was obtained, together with
observations of fracture surfaces at the interface. For long, glass
fibers in vinylester matrix, moisture absorption under short time
exposure was studied by De la Osa et al. [5]. The influence of fiber
orientation (either unidirectional, bidirectional, or randomly ori-
ented) was investigated by means of bending tests on the material
with hygro-thermal degradation.

Kotani et al. [6] tested a single fiber in matrix to measure con-
sequences of hygro-thermal degradation in de-ionized water at
80 �C during 1000 h. The authors proposed a model and showed
that there was a loss of strength arising from the degradation at
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the fiber-matrix interface. The elastic modulus did not change,
most likely because testing was performed in the direction of the
fiber.

More advanced experimental techniques have also been
employed to identify damage at the micro level: X-ray Computed
Tomography (XCT) was used in Refs. [7,8] to carry out a 3D scan-
ning of the microstructure in short-fiber and 3D textiles compos-
ites, respectively. The XCT technique captures details such as
fiber length and orientation.

Observations and testing such as those described above are not
sufficient to describe the actual mechanisms leading to damage.
The mechanisms may be dominated by physical or chemical
sources, but no attempt has been made to model that part of the
problem. Instead, damage models start from the assumption that
damage has already occurred at the micro-structural level, and
interest focuses on the changes occurred with respect to the
undamaged configuration. Damage models of this kind were
reported by Kamiński [9] as semi-circular voids at the interface,
in which the radius and number of voids were variables of the
model. A similar approach was carried out by Godoy et al. [10] to
identify stress redistributions caused by interface damage at Unit
Cell (UC) level.

Teng [11] evaluated axial and longitudinal shear modulus (G12

and G13) of a composite having symmetric arrangements of cracks
at the top and bottom of a fiber. The damage parameter in this case
is the angle of debonding between matrix and fiber, with angle val-
ues ranging from 0 to 2p. The results show that there is a loss of the
initial transverse isotropy of the material. The shear modulus in the
axial direction in a fiber reinforced composite having interface
debonding has been investigated in Ref. [12] using a statistical dis-
tribution of damage size and taking into account that fibers may or
may not have interface damage. It was found that the largest
reductions in elastic shear modulus occur for a fiber volume frac-
tion of 80%.

Kim et al. [13] investigated a configuration with interface cracks
having random size and orientation to evaluate the transverse
modulus of elasticity and transverse shear modulus. For a 30% fiber
volume fraction, a reduction in modulii higher than 50% was
reported. Studies performed by Kushch et al. [14] at a UC level
including interface damage allowed evaluation of the elastic con-
stitutive tensor at macroscopic level. The results were based on a
previous work by the authors [15] for a periodic composite having
open cracks, but contact between surfaces was not taken into
account.

For a unidirectional composite with metal matrix the influence
of complete debonding on the transverse elastic properties was
studied in Ref. [16]. By means of simplified analytical expressions,
the authors evaluated tensile and compressive modulus; such
materials having different properties in tension and compression
are referred to as bimodular or bimodulus materials in the litera-
ture. The transverse modulus, transverse shear modulus, and
transverse Poisson’s ratio were modeled by Shan and Chou [17]
for composites by accounting for separation and contact at the
interface.

Teng [18] represented complete detachment at the interface in
a fiber-reinforced composite at a Representative Volume Element
(RVE) including 100 fibers in a square configuration. The number
of fibers having damage was increased until all fibers exhibited
interface damage, and tensile and compressive Young’s modulus
and Poisson’s ratio were obtained in terms of fiber volume fraction.

Another way to model interface damage is by means of a layer
surrounding the fiber, with properties based on assumed load-
transfer mechanisms between matrix and fiber. This model is cap-
able of representing strong or weak interfaces [19–21]; as a limit
case it can account for complete interface separation but cannot
represent a bimodular behavior.
Current needs in modeling a pre-existing damage (without
explicit reference to the source of damage) require using micro-
level parameters, such as phase fractions, size and position of dam-
age, to obtain macro-level properties. The models reviewed above
have features that are not observed in tests, such as continuous
damage in the direction of the fiber (in a 2D representation) versus
damage being limited to a sector along the fiber (in a 3D
representation).

This paper focuses on the computational modeling of microme-
chanics in GFRP materials having localized damage at the fiber-
matrix interface. Through the use of a 3Dmodel, the aim is not only
to understand the influence of damage on macro properties, but
also to derive the elastic macroscopic properties of an orthotropic
unidirectional lamina by means of analytical functions written in
terms of damage parameters at the micro level. Interest in such
analytical formulation arises because these expressions can be
easily incorporated at the macro level by means of CLT or in a
Finite Element discretization of the structure by means of an off-
line scheme, i.e. without the need to perform calculations at the
micro-level during the solution of the structural problem at the
macro-level.

2. Methodology

The domain at the micro-level is modeled in this work by
means of computational micromechanics, CMM [22,23], in which
two scales are considered: microstructural details are taken into
account at a UC (a part of the heterogeneous material that includes
the necessary information to represent the macroscopic behavior
of interest); at the macro-level the material properties are assumed
to be homogeneous with a mechanical behavior which is equiva-
lent to the material modeled at the microscale. The analysis is per-
formed by imposing strains to the UC in order to obtain the
macroscopic variables that represent the material at the macro
level by means of a post-process. Notice that XFEM, the Extended
Finite Element Method, is also capable of solving this RVE problem
including internal cracks [24].

Periodic Boundary Conditions (PBC) were used in this work to
represent a periodic composite under finite strains. PBC have been
described in the literature on computational micro-mechanics,
such as in Refs. [25–27], among others.

Evaluation of elastic properties at macro-level requires that
non-linearity of the contact problem should be taken into account,
i.e. stresses and strains at the macro level are evaluated by taking
into account crack opening and eventual load transfer caused by
contact between crack surfaces. With stress and strain at the macro
level, elastic properties can be obtained from them. For example,
the elastic modulus E2 in the direction 2 results in

E2 ¼ r22

e22
ð1Þ

and the shear modulus G13 is

G13 ¼ r13

2e13
ð2Þ

Poisson’s coefficients are next computed as

mij ¼ � ejj
eii

ð3Þ

where eii is the imposed strain, and ejj is the resulting strain (Eq.
(4.32) in Ref. [1]).

At the UC, contact without friction was assumed to model inter-
face cracking, and it was implemented using a penalty approach.
The surface of an interface crack is divided into a master surface
and a slave surface, which are associated to fiber and matrix,
respectively. The model employed to represent the behavior in
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direction normal to the contact surfaces (known as ‘‘hard contact”)
may be written as

p ¼ 0 for h < 0 ðopenÞ; and
h ¼ 0 for p > 0 ðclosedÞ ð4Þ

in which h (over-closure) is the penetration length of a slave node
on the master surface, and p is the contact pressure associated to
that node. Thus, contact between crack surfaces includes only nor-
mal compressive stresses between them.

The general purpose Finite Element program ABAQUS [28] was
used in the unit cell computations, with quadratic, 15-node and
10-node elements identified as C3D15 and C3D10 in the ABAQUS
nomenclature (see Fig. 1). Convergence studies were performed,
reaching up to 82,000 elements and augmenting the penalty stiff-
ness up to six orders of magnitude from the default value, which is
10 times the highest element stiffness in the model. Mesh densifi-
cation was used at the ends of the damaged zones around the
fibers; this, however, did not significantly change results (less than
0.1%) because a singularity in stress is limited to a small area and
does not have a great impact on the stresses at the macro level.

To evaluate the quality of results obtained by the penalty tech-
nique, results were compared with those from amixed formulation
including Lagrange multipliers for specific UC with interface dam-
age. In the mixed formulation the contribution of the contact con-
straint to the virtual work is given by

dP ¼ dphþ pdh ð5Þ
Considering small relative displacements between contact sur-

faces, the first variation of h becomes

dh ¼ �n � duNþ1 � dx0 � n1dv1 � n2dv2ð Þ ð6Þ
where n is the normal to the master surface; duN+1 is the displace-
ment variation of the slave node; dx0 is the variation of the position
of the point on the master surface corresponding to the intersection
of the normal that contains the slave point; n1 and n2 are used as
parameters of the master contact surface; and the variations of
the tangent vectors to the master surface are denoted by dv1 and
dv2. Excellent agreement was obtained using both (penalty and
mixed) implementations.

2.1. Geometry of unit cells

Two geometries were employed in this work to model the UC,
as shown in Fig. 2: First a prismatic UC with a base given by a par-
allelogram of equal sides; second, a truncated octahedron. Both UC
shapes were employed to model a composite with unidirectional
(a)

Fig. 1. Examples of Finite Element meshes: (a
fibers aligned in direction 1. Damage at the interface was included
to be able to model problems such as hygro-thermal damage.

To model the microstructure in a periodic material it is possible
to employ the concept of periodicity vectors (Oller et al. [29]).
Three vectors of periodicity for each UC were used in this work;
for the prismatic UC one has

P1 ¼ bRf i
P2 ¼ 2b j
P3 ¼ 2b cosðhÞjþ 2b sinðhÞk

ð7Þ

where Rf and lf are the fiber radius and length having an aspect ratio
b = lf/Rf; h and b are shown in Fig. 2b.

The value of b may be related to Vf, fiber volume fraction, as

b ¼ Rf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
4Vf sinðhÞ

r
ð8Þ

For the truncated octahedron domain, the periodicity vectors
are

P1 ¼ lf i

P2 ¼ lf
3

iþ lf

ffiffiffi
2
3

r
jþ

ffiffiffi
2

p

3
lf k

P3 ¼ 2
3
lf iþ 2

ffiffiffi
2

p

3
lf k

ð9Þ

in which the fiber length lf can be expressed as

lf ¼
ffiffiffi
6

p
le with le ¼ Rf

ffiffiffiffiffiffiffiffiffiffiffi
p

ffiffiffi
3

p

8Vf

s
ð10Þ

le is the edge length of the truncated octahedron, as shown in
Fig. 2a. The input data in this case is given by Rf and Vf.

For the prismatic domain, input data is given by Rf, Vf, b, and h,
from which values of lf and b are evaluated. Angle h takes values of
h = 60� to obtain hexagonal (Hx) fiber configurations, or h = 90� in
square (Sq) configurations. In theory, upper boundaries to Vf are
established when the fiber diameter is in contact with the UC
boundary. For the prismatic UC domain, VfMax = p/4�sin(h) leading
to VfMax = 0.785 for the Sq configuration, and VfMax = 0.68 for the
Hx configuration.

For the truncated octahedron,

VfMax ¼ 3
ffiffiffi
3

p

32
p ¼ 0:51 ð11Þ

A hygro-thermal damage is represented in this work as a crack
or separation at the fiber-matrix interface, and as such it always
has a cylindrical shape. The location of damage is shown in
Fig. 2, where the two planes of symmetry of the damage are
(b)

) Prismatic UC, (b) Truncated octahedron.



Fig. 2. Position and dimensions of damage in unit cells: (a) Prismatic; (b) Truncated octahedron.
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parallel to planes identified as 1–2 and 2–3 for the prismatic UC,
and to planes 2–3 and 1–3 in the octahedral UC. Two non-
dimensional parameters are used to represent damage: pd is the
damage parameter in the perimeter of the cross section of the
fiber; and ld is the damage parameter along the length of the fiber.
With reference to Fig. 2, both parameters can be evaluated as

ld ¼ /
lf
; pd ¼ x

2p
ð12Þ

where x is given in radians. Both, ld and pd, take values between 0
and 1, where 0 refers to an undamaged configuration, and 1 is for
maximum damage level. Notice that for h = 60�, both types of UC
represent the same fiber arrangement but are associated with dif-
ferent damage configurations, as shown in Fig. 3 for the same b
value. To compare UC properties the orientation should be provided
as shown in Fig. 3, so that damage in both cases is located in a sim-
ilar way. Due to the position and orientation given to damage in
Fig. 3. Damage configurations consi
both UC employed in this work, the properties along axis 2 in the
prismatic UC are comparable to properties along axis 3 in the trun-
cated octahedron.

2.2. Analytical form of numerical results

With the elastic properties given in terms of parameters ld and
pd, Least Squares Method (LSM) was used to derive explicit rela-
tions between material elastic parameters and damage variables.
Such analytical relations were subsequently used to model damage
at the macro scale as pre-defined modified properties. The tech-
nique has been used for almost the same purpose by Kamiński [30].

Polynomial equations linear in the coefficients were used in all
cases. In a few cases it was necessary to use nonlinear equations in
the coefficients to obtain an improved representation. Equations
were fitted by use of Levenberg-Marquardt method, as described
in Ref. [31] (pp. 624–625).
dered in this work in unit cells.



Fig. 5. Results for transverse shear modulus G23 for 3D model and 2D model with
values of damage parameter pd = 1 and Sq configuration.

Fig. 6. Results for transverse shear modulus G23 for 3D model and 2D model with
values of damage parameter pd = 0.5 and Sq configuration.
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3. Results

3.1. Validation for extreme cases

In a 2D model with interface damage, an assumption is made
that damage affects the fiber in a continuous way in the direction
of the fiber [18]; in a 3D model, this would be given by the condi-
tion ld = 1. Another extreme case occurs for ld = 0, in which the 2D
model coincides with a 3D model without damage. Thus, 2D mod-
els may be seen as bounds to 3D models having more localized
damage, as reflected by 0 6 ld 6 1. These extreme cases are next
used to confirm 3D models.

Specifically, a square fiber configuration (Sq) is assumed with
0 6 pd 6 1 and Periodic Boundary Conditions. Because of space
limitation, only the case pd < 1 is discussed next to compare results
with values of elastic constants in the macro constitutive tensor
with those given in Ref. [14].

Kushch et al. [14] considered fiber and matrix as linearly elastic
and isotropic with Ef = 107.848 GPa, mf = 0.22, Em = 6.453 GPa y
mm = 0.35. The imposed strain is limited to a single tensile e22 com-
ponent. The constitutive equation at macro level is

rij ¼ Cijkl ekl ð13Þ
Considering the imposed strain and the stress, yields

C2222 ¼ r22

e22
ð14Þ

Two-dimensional results are compared in Fig. 4 with those
given in Ref. [14] for C2222, showing excellent agreement.

2D and 3D models are next compared for a Sq arrangement
using a prismatic UC with h = 90�, for various Vf, ld, and pd values.
Values of b = 5, Ef = 80 GPa, mf = 0.2, Em = 4 GPa y mm = 0.35 were
assumed. Results for transverse shear modulus G23 are plotted in
Figs. 5 and 6, whereas transverse elastic modulus in compression
E3C are given in Figs. 7 and 8. As ld approaches extreme values, it
is seen that the 3D model tends to the 2D model.

3.2. Parametric studies

A specific composite having Ef = 80 GPa, mf = 0.2, Em = 4 GPa y
mm = 0.35 was considered, in which fiber and matrix were assumed
as linearly elastic and isotropic. Fig. 9 shows the transverse elastic
modulus E2T with a Hx fiber configuration but having two different
3D damage distributions along the fibers. Such damage distribu-
tions were already shown in Fig. 3, for the prismatic and truncated
octahedron UC geometries. Both UC have the same values of b, for
Vf = 50%.
Fig. 4. Results for 2D model and Ref. [14] with Sq configuration and various values
for the damage parameter pd.

Fig. 7. Results for transverse Young modulus E3C for 3D model and 2D model with
values of damage parameter pd = 1 and Sq configuration.
For small values of pd, both configuration predict almost the
same values; however, some differences are found for pd = 1 and
for 0.4 6 ld 6 0.8. For ld approaching 1, both damage cases yield
similar E2T values, which is consistent with the 3D model
approaching the 2D model.

Regarding influence of the aspect ratio, b, results for E2T are
shown in Fig. 10 for composites having 1 6 b 6 100, for Vf = 70%,



Fig. 8. Results for transverse Young modulus E3C for 3D model and 2D model with
values of damage parameter pd = 0.5 and Sq configuration.

Fig. 9. Influence of damage distribution in the normalized transverse Young
modulus with Hx fiber configuration and Vf = 50%.

Fig. 10. Influence of aspect ratio b in the normalized transverse Young modulus
with Sq fiber configuration, Vf = 70%, and ld = 0.99.

Fig. 11. Influence of fiber configuration in the normalized transverse Young
modulus. Results for Sq and Hx fiber configuration, Vf = 60%, and b = 5.

Fig. 12. Influence of fiber volume fraction in the normalized transverse Young
modulus. Results for Sq fiber configuration, pd = 1, and b = 5.
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Sq fiber configuration, ld = 0.99, and various values of pd. Results
for each pd are almost constant with b, except for small values of
b < 5.

The influence of fiber configuration (either Sq or Hx) with dam-
age is shown in Fig. 11 for E2T normalized with respect to
E20 = 13.87 GPa without damage for Hx; and E20 = 17.4 GPa for Sq;
values of Vf = 60% and b = 5 were considered. There is an almost
linear reduction in modulus E2T with ld. For the same damage con-
dition, the Sq configuration is the most affected one.

The influence of Vf on the E2 modulus has been studied for Sq
configuration, b = 5, and pd = 1. Results are plotted in Fig. 12, in
which tensile and compressive E2 modulii are identified for
ld = 0.3, 0.6, and 0.99, together with a configuration without dam-
age. The tensile modulus shows higher changes than the compres-
sive modulus; Teng [18] reported similar conclusions for models
having damage parameters ld = pd = 1, so that the problem was
classified as behaving like a bi-modular material (different modu-
lus in tension and in compression). The transverse modulus pre-
sents reductions for all Vf considered, but effects are more severe
for high Vf values; such trend has also been reported for shear
modulus in axial direction in Ref. [12] for ld = 1.

4. Analytic forms of elastic constants in terms of damage
parameters

The parametric studies reported in the last section illustrate the
behavior of a damaged UC; however, the purpose of this study is
not just to provide qualitative aspects of the response, but the
results are next used to obtain modified elastic properties as used
in CLT, to account for effects due to interface damage. To achieve
this, the studies are approximated by analytical functions of elastic
constants in terms of damage parameters.



Fig. 14. Results for the normalized transverse Young modulus E2T, from 3D model
and analytic equation, as a function of ld and pd with Sq configuration, Vf = 70% and
b = 5.

Fig. 15. Results for the normalized transverse shear modulus G23, from 3D model
and analytic equation, as a function of ld and pd with Sq configuration, Vf = 70% and
b = 5.
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Least Squares Methods have been used to build the analytical
functions based on 3D modeling. The functions are limited to
Vf = 70%, square Sq configurations and damage parameters cover-
ing the full range 0 6 ld 6 1 y 0 6 pd 6 1. To perform the approxi-
mations, specific values of the constituent components were used
as follows: Ef = 80 GPa, mf = 0.2, Em = 4 GPa y mm = 0.35, with
Rf = 3.5 � 10�6 m and b = 5. Plots of numerical and analytical
results are shown in Figs. 13–18 for elastic modulii normalized
with respect to the undamaged value. Because of space restrictions,
not all plots of equations can be shown in this paper; however, the
results are given in the form of analytical expression in Appendix
A, and can be represented or employed from them.

The E1 (along the fiber) modulus is not significantly affected by
the damage parameters considered, leading to 57.23 GPa in com-
pression and 57.19 GPa in tension for maximum damage as
expressed by pd = 1 and ld = 0.99. This property could also be esti-
mated by the rule of mixtures to obtain 57.2 GPa.

Modulus E3C (under compression) showed the least reductions
(see Fig. 13). E2C has a similar trend, not shown here because of
space restrictions. These properties show a slight nonlinearity with
respect to ld. The E2T modulus (Fig. 14) and E3T have a more severe
change under damage, and their change with ld is close to linear.

Regarding damage influence on G23, G12, and E2T, there are sig-
nificant reductions with pd for small pd values (i.e. pd = 0.25). For
the same range in pd, modulii G13 and E3T did not present a compa-
rable change. This effect depends on the location of debonding and
the direction of load and has been reported for ld = 1 in Ref. [11].

Poisson’s ratio m23C refers to strains in direction 3 caused by a
compression in direction 2; results for this Poisson value are given
in Fig. 17: There is an increase with increasing damage levels.
Because there is debonding at interface, the fiber cannot transfer
tensile load to the matrix in zones in which the normal to the inter-
face is almost parallel to the direction 3. The crack opens in these
zones thus increasing the macroscopic strain in direction 3 with
respect to the undamaged value.

The m23T Poisson coefficient has been studied with results
shown in Fig. 18 as a function of pd. A tensile strain in direction
2 in this case increases the strain in this direction because the crack
opens in zones close to the direction 2. However, for pd = 1 there is
a small increase in m23T caused by an increase in macroscopic strain
in direction 3 in comparison with the constraint given by the fiber
for pd = 0.75.

Poisson ratios m21C, m21T, m31C, and m31T have similar trends as
modulii E2C, E2T, E3C, and E3T, respectively. Reductions are com-
puted respect to the undamaged case because the crack at the
interface does not allow an effective force transfer in direction 1.
Fig. 13. Results for the normalized transverse Young modulus E3C, from 3D model
and analytic equation, as a function of ld and pd with Sq configuration, Vf = 70% and
b = 5.

Fig. 16. Results for the normalized axial shear modulus G12, from 3D model and
analytic equation, as a function of ld and pd with Sq configuration, Vf = 70% and
b = 5.
5. Application to Classical Lamination Theory

The explicit equations to obtain elastic properties at UC based
on interface damage characteristics can next be used as a part of
a macro-level analysis. This section reports an application to obtain



Fig. 17. Results for the normalized Poisson ratio m23C, from 3D model and analytic
equation, as a function of ld and pd with Sq configuration, Vf = 70% and b = 5.

Fig. 18. Results for the normalized Poisson ratio m23T, from 3D model and analytic
equation, as a function of ld and pd with Sq configuration, Vf = 70% and b = 5.

Table 1
Displacement at the center of the plate (normalized with respect to the undamaged
value, w0 = 2.11 mm), for different damaged regions and sizes for ld = pd = 1. Plate
dimensions: side a = 2 m. Finite Element mesh has 16 � 16 elements.

Damaged lamina Size of damaged region Position of damaged
region

Corner Center

90� a/4 � a/4 1.107 1.205
90� a/2 � a/2 1.267 1.415
0� and 90� a/4 � a/4 1.130 1.292
0� and 90� a/2 � a/2 1.399 1.684

Table 2
Displacement at the center of the plate (normalized with respect to the undamaged
value, w0 = 2.11 mm), for different damaged regions and sizes for ld = 0.4 and pd = 0.7.
Plate dimensions: side a = 2 m. Finite Element mesh has 16 � 16 elements.

Damaged lamina Size of damaged region Position of damaged
region

Corner Center

90� a/4 � a/4 1.080 1.093
90� a/2 � a/2 1.107 1.130
0� and 90� a/4 � a/4 1.090 1.089
0� and 90� a/2 � a/2 1.120 1.127

Fig. 19. Displacement at the center of the plate (normalized with respect to the
undamaged value, w0 = 2.11 mm), for different damaged parameters ld and pd. Plate
dimensions: side a = 2 m; both lamina damaged. Finite Element mesh has 16 � 16
elements.
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the maximum displacement in a laminated plate using CLT [1] in a
Finite Element model; this allows performing a macro analysis in
terms of micro and macro variables.

Consider a laminated [0/90] square plate having a bimodular
material behavior (see Ref. [32]), with the origin of the (x, y) axis
placed at a corner. Simply supported boundary conditions are
given by

w ¼ 0 in y ¼ 0; y ¼ a; x ¼ 0; and x ¼ a ð15Þ

v ¼ 0 in x ¼ 0 and x ¼ a ð16Þ

u ¼ 0 in y ¼ 0 and y ¼ a ð17Þ
The pressure q is given by

q ¼ �1 kPa� sin
p
a
x

� �
sin

p
a
y

� �
ð18Þ

A Finite Element model was employed to solve this plate using
ABAQUS, with a 16 � 16 mesh of linear shell elements (element
S4R in the ABAQUS nomenclature). On account of the different
material properties in tension and compression, the laminate in
compression in direction 2 (0� orientation) has a modulus E2C,
whereas the laminate at 90� has a modulus E2T. Because the pre-
sent [0/90] laminate is under bending, an influence will be
reflected in transverse elastic modulus rather than in shear
modulus.
To investigate the behavior under damage, several macro sce-
narios were investigated. The plate was assumed to be damaged
in a square region, which was placed at the center or at a corner
of the plate. Damage was assumed to affect the top layer (90� lam-
ina) or both, top and bottom layers. Material properties were eval-
uated using the formulation presented in this paper, for values of
damage parameters ld = 0.4, pd = 0.7 and ld = pd = 1. Results are
presented in Tables 1 and 2 in terms of displacement at the center
of the plate. As expected, the most severe increase in displace-
ments occurs with damage affecting the central region, with dam-
age in all layers and for the values ld = pd = 1, with an increase of
68% with respect to the undamaged configuration.

A second investigation included the influence of damage
parameters ld and pd on the response, for a plate having a central
damage zone of dimensions a/2 � a/2 in both layers. Results are
plotted in Fig. 19, and show a nonlinear response with an increase
in damage parameters.
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6. Conclusions

Computational micro-mechanics has been used in this work to
evaluate changes in elastic properties of GFRP composites with
fiber-matrix localized detachment. It is assumed that damage
causes a crack-like behavior at the interface with the possibility
of contact due to deformations of the matrix. Contact without fric-
tion has been introduced in the model.

Different damage scenarios have been taken into account by
changing the zone affected by damage in the direction of the fiber
(ld) and on the perimeter of the fiber (pd) in the cross section.
Space distributions are also considered in 3Dmodeling, thus affect-
ing the zone of damage with respect to neighboring fibers. The
end-product of the study is a set of analytical expressions for elas-
tic parameters in terms of damage parameters.

The elastic modulus in the fiber direction is not sensitive to this
form of damage because this behavior is controlled by the fiber;
this conclusion had previously been drawn from experiments in
Ref. [3]. But there is a severe consequence of damage on the other
properties with increasing damage values; this is consistent with
numerical results presented in Refs. [14,18]. The present studies
are capable of capturing a bi-modular behavior in the transverse
direction. Transverse moduli under tension have an almost linear
reduction with respect to ld, whereas shear and compression trans-
verse modulii show a nonlinear relation with damage parameters.

The present results have been presented in such a way that they
can be used as off-line, pre-defined lamina properties with damage
in coupling micro and macro scales, without the need to perform
in-time micro scale computations. This coupling may be performed
using either Classical Lamination Theory, or else in Finite Element
computations at macro level.
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Appendix A

The analytical expressions of elastic properties, as they are used
in CLT at the macro scale, have been obtained for damage param-
eters ld and pd. To simplify the expressions the nomenclature
x = ld, and y = pd is used in this Appendix. Due to their simplicity,
polynomials have been used to derive Eqs. (21)–(33), and their
final form was obtained by trial and error as explained in below.
Table A1
Coefficients of equations for elastic shear modulii and Poisson’s ratios.

m23T m23C m21T m21C m

a0 0.2188 0.2187 0.102 0.102 0
a1 �0.5318 12.46 �0.3912 �0.2327 �
a2 1.0515 �1.288 0.6027 0.4535 �
a3 �0.5952 59.53 �0.5756 �0.2587 �
a4 �1.6723 �67.02 0.2891 �0.023 0
a5 2.643 �16.26 �0.1572 – 0
a6 �0.985 �114.1 0.1982 – �
a7 1.1808 41.07 0.2894 – 0
a8 �1.1436 �34.57 �0.0898 – �
a9 �1.5203 278.9 �0.6349 – �
a10 1.4287 �84.37 0.4429 – 2
a11 – �80.33 0.1729 – –
a12 – �15.56 �0.244 – –
a13 – – – – –
For each property considered, the procedure begins with a trial
polynomial in the form

pðx; yÞ ¼
XN
i¼0

cixiyi ð19Þ

The ci coefficients are next evaluated by means of LSM and the
relative error is evaluated for each property at the macro level as
obtained by the Finite Element method pFEM

eðx; yÞ ¼ absðpðx; yÞ � pFEMðx; yÞÞ
maxðpFEMÞ

100% ð20Þ

where max(pFEM) is the maximum value for the elastic property
obtained from the Finite Element model. If the relative difference
is higher than 2%, then the value of N is increased until an accept-
able error is reached. For the reverse procedure of reducing the
number of terms, a term is eliminated in the polynomial and the
error in the new equation is studied next.

In cases in which there are oscillations in the results of polyno-
mials, an alternative form is considered as a division between two
polynomials. A second order polynomial is first considered and the
coefficients are evaluated; if the error is higher than 2% then a new
term is added to both dividend and divisor. Thus, all equations
presented in this work have an error defined by Eq. (20) and less
than 2%.

Values of the coefficients are given in Tables A1 and A2. Notice
that coefficients take a different value in each equation. Shear and
transverse modulii are expressed in GPa units.

m23T ¼ a0þ a1xyþ a2xy2 þ a3xy3 þ a4x2y2 þ a5x2y3

þ a6x2y4 þ a7x3y2 þ a8x3y3 þ a9x4y3 þ a10x4y4 ð21Þ

m23C ¼ a0þ ða1þ a2xyþ a3x2yþ a4yþ a5xÞxy
b0þ a9xyþ a10yþ a11y2 þ a12y3

with b0 ¼ a6þ a7x2 þ a8x3
ð22Þ

m21T ¼ a0þ a1xyþ a2xy2 þ a3xy4 þ a4xy5 þ a5x2yþ a6x3y

þ a7x3y6 þ a8x4yþ a9x4y7 þ a10x5y8 þ a11x7y7

þ a12x7y8 ð23Þ

m21C ¼ a0þ a1xy2 þ a2xy3 þ a3xy4 þ a4x4y3 ð24Þ

m31T ¼ a0þ ða1þ a2xþ a3y2 þ a4x2Þxy
a5þ a6xþ a7x2 þ a8x3 þ a9yþ a10y2

ð25Þ
31T m31C G12 G13 G23

.102 0.102 7.984 7.996 5.442
0.00293 �0.00191 �18.67 �1.568 �14.29
0.0099 �0.0252 45.37 1.559 0.522
0.0826 0.01727 �30.55 0.5858 �9.801
.0107 0.5762 �110.9 �3.691 �3.254
.9542 �0.1516 101.6 �40.53 9.834
0.0641 0.5885 �22.1 2.556 2.915
.0482 �0.4068 177.8 0.4392 �8.064
0.0565 0.01988 �183.4 �0.2514 12.41
2.478 �2.22 41.5 �7.471 �5.749
.465 3.399 15.81 6.243 2.27

�1.648 �85.4 4.389 1.138
– 105 – �1.475
– �43.81 – –



Table A2
Coefficients for transverse elastic modulii.

E2T E2C E3T E3C

a0 25.02 25.02 25.11 25.12
a1 �106.5 �64.92 �2579 5.56
a2 236.2 133.2 1098 �34.17
a3 �224.3 �77.88 �218.2 21.02
a4 74.63 �4.881 �2.59E4 �73.41
a5 �66.49 – �1784 16.2
a6 51 – 1560 4.426
a7 73.32 – �225.2 2.87
a8 �30.91 – 279.5 �2.246
a9 �22.04 – �122.5 �18.14
a10 �28.1 – �4667 20.5
a11 19 – 4349 �2.996
a12 – – 34.77 –
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m31C ¼ a0þ ða1þ a2xyþ a3y2xÞxy
b1þ a7x3 þ a8xy2 þ a9yþ a10y2 þ a11y3

with b1 ¼ a4þ a5xþ a6x2
ð26Þ

G12 ¼ a0þ a1xyþ a2xy2 þ a3xy3 þ a4x2yþ a5x2y2 þ a6x2y3

þ a7x3yþ a8x3y2 þ a9x3y3 þ a10x3y4 þ a11x4y

þ a12x4y2 þ a13x4y3 ð27Þ

G13 ¼ a0þ ða1þ a2xþ a3x2 þ a4y3 þ a5xy3Þxy
a6þ a7xþ a8x2 þ a9yþ a10y2 þ a11y4x2

ð28Þ

G23 ¼ a0þ ða1þ a2xþ a3x2 þ a4y3 þ a5x2y2Þxy
b2þ a9x3 þ a10yþ a11y2 þ a12y3x3

with b2 ¼ a6þ a7xþ a8x2
ð29Þ

E2T ¼ a0þ a1xyþ a2xy2 þ a3xy3 þ a4xy4 þ a5x2yþ a6x2y2

þ a7x3yþ a8x3y2 þ a9x3y3 þ a10x4yþ a11x4y3 ð30Þ

E2C ¼ a0þ a1xy2 þ a2xy3 þ a3xy4 þ a4x4y3 ð31Þ

E3T ¼ a0þ ða1þ a2xþ a3x2 þ a4y3 þ a5x2y2Þxy
b3þ a9x3 þ a10yþ a11y2 þ a12y3x3

with b3 ¼ a6þ a7xþ a8x2
ð32Þ

E3C ¼ a0þ ða1þ a2xþ a3x2 þ a4y3 þ a5xy3Þxy
a6þ a7xþ a8x2 þ a9yþ a10y2 þ a11y4x2

ð33Þ
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