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Abstract. We study strong hyperbolicity of first-order partial differential equations
for systems with differential constraints. In these cases, the number of equations is larger
than the unknown fields, therefore, the standard Kreiss necessary and sufficient condi-
tions of strong hyperbolicity do not directly apply. To deal with this problem, one intro-
duces a new tensor, called a reduction, which selects a subset of equations with the aim
of using them as evolution equations for the unknown. If that tensor leads to a strongly
hyperbolic system we call it a hyperbolizer. There might exist many of them or none. A
question arises on whether a given system admits any hyperbolization at all. To sort-out
this issue, we look for a condition on the system, such that, if it is satisfied, there is no
hyperbolic reduction. To that purpose we look at the singular value decomposition of
the whole system and study certain one parameter families (ε) of perturbations of the
principal symbol. We look for the perturbed singular values around the vanishing ones
and show that if they behave as O(εl), with l ≥ 2, then there does not exist any hyper-
bolizer. In addition, we further notice that the validity or failure of this condition can be
established in a simple and invariant way. Finally, we apply the theory to examples in
physics, such as Force-Free Electrodynamics in Euler potentials form and charged fluids
with finite conductivity. We find that they do not admit any hyperbolization.

Keywords: Strong hyperbolicity; evolution equation; constraint equation; singular value
decomposition; force-free electrodynamics; charged fluids.
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1. Introduction

One of the most important characteristic of partial derivative equations (PDE)
describing physical processes is that they should have a well-posed formulation. This
property is fundamental since it guarantees the predictability of the theory. This
condition asserts that the solutions exist, are unique and are continuous with respect
to the initial values [13, 19]. We shall consider quasilinear first-order system of
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equations, since most equations in physics can be put in that form. Beside evolution
equations, these usually contain constraint equations, i.e. the system has typically
more equations than variables. We shall request that these systems are well-posed
and stable with respect to any lower-order perturbation.

Within this class of well-posed PDEs, we find the so-called strongly hyperbolic
systems which are the ones we are going to study in this paper. In particular, we will
answer to the question as to when a general first-order system fails to be strongly
hyperbolic? This question was studied and answered for the case when there is no
constraints [13, 19] and the corresponding condition was found to be necessary and
sufficient. Here, we provide a necessary condition for the general case. In addition,
we shall apply our machinery to some physical examples, which are currently under
study, and we shall show that they do not have a well-posed initial value formulation,
resulting they being only weakly hyperbolic.

It is important to note that while most of the physical systems are symmetric
hyperbolic, e.g. in general relativity [6, 7, 9], Maxwell electrodynamics [10, 25],
nonlinear Maxwell versions [1], etc., they constitute a subclass wihin the class of
strongly hyperbolic systems, therefore if our condition is not fulfilled then the system
will not admit a symmetric hyperbolic formulation.

Following [10], we consider a first-order system of partial differential equations
on a fiber bundle b (real or complex) with base manifold M (real) of dimension n

NAa
α (x, φ)∇aφα = JA(x, φ). (1.1)

Here, M is the space-time and x are points of it. We call Xx the fiber of b at point
x and its dimension u. A cross-section φ is a map from open sets of M to b, i.e.
φ : U → b, they are the unknown fields. Here NAa

α and JA are giving fields on
b, called the principal symbol and the current of the theory, respectively. That is,
they do not depend on the derivative of φ, but can depend on φ and x. The multi-
tensorial index A belongs to a new vector space Ex that indicates the space of
equations. We call the dimension of this space e, and from now on we shall assume
it is equal or greater than the dimension of Xx i.e. e = dim “A” ≥ dim “α” = u.

In many examples of physical interest, system (1.1) can be splitted into evolution
and constraint equations. The first ones define an initial value problem, namely, they
are a set of equations, such that, given data φα

0 = φα|S over a specific hypersurface
S of dimension n−1, they determine a unique solution in a neighborhood of S. The
second ones restrict the initial data and have to be fulfilled during evolution. For a
detailed discussion see Reula’s work [27].

The choice of a coherent set of evolution equations is made in terms of a new
map, hα

A(x, φ) : Ex → Xx called a reduction. It takes a linear combination of the
whole set of Eq. (1.1) and reduces them to a set of dimension u, which will be used
for the initial value problem,

hα
ANAa

γ ∇aφγ = hα
AJA(x, φ). (1.2)

We would like the above system to be well posed and stable under arbitrary
lower order terms (see [10, 13–15, 19, 20, 26, 27, 29]), for that, we shall need for
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the tensors NAa
γ and hα

ANAa
γ to satisfy certain properties which we display in the

following definitions.
Given ωa ∈ TxM∗ consider the set of complex planes SC

ωa
= {n(λ)a := −λωa+βa

for each fixed βa ∈ TxM∗ not proportional to ωa and λ ∈ C}. This set turns into a
set of real lines when λ run over R and we call it Sωa .a So, following the covariant
formulation of Reula [27] and Geroch [10], we need to study the kernel of NAa

γ n(λ)a

with n(λ)a ∈ SC
ωa

.

Definition 1.1. System (1.1) is hyperbolic at the point (x, φ), if there exists ωa ∈
TxM∗ such that for each plane n(λ)a in SC

ωa
, the principal symbol NAa

γ n(λ)a can
only have a non-trivial kernel when λ is real.

An important concept for hyperbolic systems are their characteristic structure,
it is the set of all covectors na ∈ TxM∗ such that NAa

γ na has non-trivial kernel. In
addition, we call characteristic covectors to these na. The hyperbolicity condition
is not sufficient for well-posedness, and we now strengthen it.

Definition 1.2. b System (1.1) is strongly hyperbolic at (x, φ) (some background
solution) if there exist a covector ωa and a reduction hα

A(x, φ), such that:

(i) Aαa
γ ωa := hα

ANAa
γ ωa is invertible, and

(ii) For each n(λ)a ∈ Sωa ,

dim

(
span

{⋃
λ∈R

Ker{Aαa
γ n(λ)a}

})
= u. (1.3)

In order to guarantee the well-posedness for Eq. (1.2), it is necessary to impose
some other smoothness conditions in x, φ, βa associated with the reductionc (see
[29]). However, smoothness property shall not play any role in what follows, but it
is an issue that should be addressed at some point of the development of the theory.
We are only considering the algebraic part (Eq. (1.3)) of the usual definitions of
strong hyperbolicity. Since, in general, it is the part that fail in physical systems
and it is enough to obtain the necessary condition for systems with constrains in
Theorem 2.2.

When this definition holds we refer to reduction hγ
A as a hyperbolizer. In general

the hyperbolizer can also depend on βa, so Eq. (1.2) becomes a pseudo-differential
expression. Notice that when the system is strongly hyperbolic, it is hyperbolic too.

Note that from i, hα
A is surjective and there exists ωa such that NAa

γ ωa has
no kernel. And because Aαa

γ ωa is invertible, the set {λi}, such that Aαa
γ n(λi)a =

Aαa
γ βa − λiA

αa
γ ωa has kernel, are the eigenvalues of (Aαa

β ωa)−1Aβa
γ βa and they

aNotice that these planes or lines do not cross the origin for any λ.
bThat the well-posedness property follows from studying the hyperbolicity can be seen by consider-

ing a high frequency limit perturbation of a background solution of (1.2) as φ̃α = φα +εδφαei
f(x)

ε

with ε approaching zero, and resulting in a equation for δφα and na := ∇af (see [8]).
cUnlike the usual terminology, we exclude the smoothness condition from Definition 1.2.
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are functions of ωa and βa. Condition (ii) request that these must be real and
(Aαa

β ωa)−1Aβa
γ βa diagonalizable for any βa. These eigenvalues are given by the

roots of the polynomial equation det(hα
ANAa

β n(λ)a) = 0 and the solution na(λ) are
called characteristic structure of the evolution equations.

Therefore, an important question is: What are necessary and sufficient conditions
for the principal symbol NAa

γ na : Xx → Ex to admit a hyperbolizer? We find a
partial answer, namely an algebraic necessary condition (and sufficient condition
for the case without constraints), which is of practical importance for ruling out
theories as unphysical, when they do not satisfy it.

To find this condition we shall use the Singular Value Decomposition (SVD) (we
give a covariant formalism of SVD in Appendix A) of NAa

γ na in the neighborhood
of a characteristic covector, and conclude that the way in which the singular values
approach to this covector gives information about the size of the kernel.

2. Main Results

In this section, we introduce our main results. Consider any fixed θ ∈ [0, 2π] and
a line n(λ)a ∈ Sωa for some ωa. So we define the extended two-parameter line
nε,θ(λ)a = −εeiθωa + n(λ)a with ε real and 0 ≤ |ε| � 1. Then the perturbed
principal symbol results in

NAa
β nε,θ(λ)a = (−λNAa

β ωa + NAa
β βa) − ε(eiθNAa

β ωa). (2.1)

Moro et al. [21] and Soderstrom [30] proved that the singular values of this
perturbed operator admit a Taylor expansion at least up to second order in |ε|, also
they showed explicit formulas to calculate them (see Theorem B.2 in Appendix B).
We use their results to prove a necessary condition for strong hyperbolicity.

Consider first the case that no constraints are present. This is dim “A” =
dim “α”, and all equations should be considered as evolution equations. We call
it, the “Square” case, since the principal symbol NAa

γ na, maps between spaces of
equal dimensions, and hence it is a square matrix.

In this case, any invertible reduction tensor hα
A that we use, would keep the

same kernels. Thus strong hyperbolicity is a sole property of the principal symbol.
For this type of systems the Kreiss’s Matrix Theorem (in Theorem 3.5 we show

the so-called resolving condition) lists several necessary and sufficient conditions for
well posedness of constant coefficient systems [13, 18, 19]. In Sec. 3.1, we shall prove
the theorem below, which incorporates to the Kreiss’s Matrix Theorem a further
necessary condition. This becomes in a sufficient conditions if the eigen-projectors
of (Aαa

β ωa)−1Aβa
γ βa are uniformly bounded for all βa, with |β| = 1.

Theorem 2.1. System (1.1) with dim “A” = dim “α” is strongly hyperbolic if and
only if the following conditions are valid:

(1) There exists ωa such that the system is hyperbolic and NAa
γ ωa has no kernel.
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(2) For each line n(λ)a in Sωa consider any extended one nε,θ(λ)a then the principal
symbol NAa

β nε,θ(λ)a has only singular values of orders O(|ε|0) and O(|ε|1).
In general we consider systems that fulfill 1, and we refer to 2 as “the condition

for strong hyperbolicity”.
We shall also give a couple of examples on how to apply these results: A sim-

ple matrix case of 2 × 2, in Sec. 4.1, and a physical example, charged fluids with
finite conductivity in Sec. 4.3. We shall show that conductivity case is only weakly
hyperbolic.

Consider now dim “A” > dim “α”. In this case, we want to find a suitable
subset of evolution equations. In general if we consider n(λ)b ∈ Sωa and count the
dimension of the kernel of NBb

γ n(λ)b (the physical propagation directions), over
λ ∈ R, we find that this number is less than u. As a consequence we need to
introduce a hyperbolizer in order to increase the kernel and fulfill condition (1.3).

We call it the “rectangular case” and we find only a necessary condition for
strong hyperbolicity.

Theorem 2.2. When dim “A” > dim “α” in system 1.1, conditions in Theorem 2.1
are still necessary.

As we said before, this condition has practical importance since it can be checked
with a simple calculation (see Theorem 4.1), thus discarding as unphysical those
systems that do not satisfy it. We prove this theorem in Sec. 3.2, and present its
application to a physically motivated example, namely Force Free electrodynamics
in Euler potentials description, in Sec. 4.2. We shall show that this system does not
admit a hyperbolizer (it is weakly hyperbolic) for any choice of reduction, and we
emphasize how simple it is to show that one of their singular values is order O(|ε|l)
with l ≥ 2, using Theorem 4.1 in Sec. 4.

3. Singular Value Decomposition, Perturbation Theory
and Diagonalization of Linear Operator

In this section, we shall use the SVD to find conditions for Jordan diagonalization.
Those will be used to prove Theorems 2.1 and 2.2, obtaining conditions for strong
hyperbolicity. In Appendix A we describe the SVD theory in detail. We included
it because our approach to the topic is a bit different than the standard one, as
presented in the literature.

In order to prove our main results we shall study the principal symbol
NAa

γ (x, φ)n(z)a = −zNBa
α ωa + NBa

α βa with n(z)a ∈ SC
ωa

d for some ωa ∈ T ∗
xM , and

perturbations as in Eq. (2.1). We shall assume that there exists ωa such that NBb
α ωb

has no kernel and show a necessary (and sufficient in the square case) condition for
the existence of a reduction hα

A such that (Aαa
µ ωa)−1Aµa

γ βa is diagonalizable, even

dNotice that we changed λ for z to remember that z belong to C.
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with complex eigenvalues; recall that Aαa
γ = hα

ANAa
γ . In addition, if we also request

that the system is hyperbolic with this ωa, we would have completed the above
theorems.

In what follows, we present the notation that we will use through the paper.
We shall name square and rectangular operators to those that map spaces of
equal or different dimensions respectively. We call KA

α(x, φ, βa) := NBa
α βa and

BA
α(x, φ, ωa) := NBb

α ωb. Notice that these operators change with x, φ, βa and
x, φ, ωa, respectively. However, the condition we are looking for are algebraic, so
they hold at each particular point, which we shall assert from now on. In addition,
we define

T A
α(z) := KA

α − zBA
α = (NBb

β βa) − z(NBb
β ωb) : X → E. (3.1)

Note that we have suppressed subindex x in vectorial spaces Xx and Ex.

These operators KA
α, BA

α : X → E take elements φα in the vector space X,

with dim(X) = u, and give elements lA in the vector space E, with dim(E) = e.
Because we are interested in systems with constraints, we shall consider operators
with dim(E) ≥ dim(X). From now on Greek indices go to 1, . . . , u and capital Latin
to 1, . . . , e. We call X ′ and E′ to the dual spaces of X and E and φα and lA to
their elements, respectively. We call right kernel of T A

α to the vectors φα such that
T A

αφα = 0; and we call left kernel to the covector lA such that lAT A
α = 0. We refer

to T A
1, T A

2, . . . , T A
u as the columns of T A

α and T 1
α, T 2

α, . . . , T 3
α as the rows of T A

α.
We call σi[T A

α(z)] to the singular values of T A
α(z) for any choice of the Hermitian

forms G1AB and G2αβ . Finally we use a bar T̄ A
α to denote the complex conjugate

of T A
α.

The key idea of this section is to perturb the operator (3.1) with another appro-
priate operator (as in Eq. (2.1)), linear in a real, small, parameter factor ε, and
study how the singular values change. For that, we follow [16, 21, 30, 32]. In partic-
ular Söderström [30] and Moro et al. [21] show that the singular values have Taylor
expansion in |ε|, at least up to order two and this will be crucial for the following
results. They also give closed form expressions for the first-order term, using left
and right eigenvectors.

Roughly speaking our first two results are for square operators. We shall show
that an operator is Jordan diagonalizable if and only if, each of their perturbed
singular values are order O(|ε|0) or O(|ε|1). In addition, we shall extend this result
and show that: a perturb singular value is order O(|ε|l) if and only if the operator
has an l-Jordan block,e associated to some eigenvalue, in the Jordan decomposition.

These results lead us to obtain a necessary condition for strong hyperbolicity on
rectangular operators. This is a necessary condition for the existence of a reduction
from rectangular to square operators, such that, the reduced one is diagonalizable.

eWe called l-Jordan block to the matrix Jl(λ) =

0
B@

λ 1 0 0
0 · · · · · · 0
0 0 λ 1
0 0 0 λ

1
CA ∈ Cl×l with eigenvalue λ.
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The conclusion is analogous to the square case, if any singular value of the per-
turbed operator is order O(|ε|l) with l ≥ 2, then the system cannot be reduced to
a diagonalizable operator i.e. strong hyperbolicity only admits orders O(|ε|0) and
O(|ε|1). Moreover, if the singular values are order O(|ε|l) then any reduction leads
to operators with l-Jordan blocks or larger.

3.1. Square operators

We consider first the space of equations such that dim(E) = dim(X). For simplicity
we shall identify E with X , but in general there is no natural identification between
them. We also consider a square operator T α

β(z) = Kα
β −zBα

β : X → X with z ∈ C

and Bα
β invertible (without right kernel). We call λi i = 1, . . . , k the different eigen-

values of (B−1)γ
αKα

β ; qi, ri their respective geometric and algebraic multiplicities,
and Dλ := {λi with i = 1, . . . , k}.

In the following lemma, we shall use the SVD of T α
β(z) and show for which z

the operator T α
β(z) has vanishing singular values and how many there are.

Lemma 3.1. (1) T α
β(λi) has exactly qi null singular values. The rest of u − qi

singular values of T α
β(λi) are positive.

(2) σi[T α
β(z)] > 0 for all singular values of T α

β(z) if and only if z /∈ Dλ.
(3) Consider any given subset L ⊂ C, then

σi[T α
β(z)] > 0 ∀ z ∈ L and ∀ i = 1, . . . , u

if and only if Dλ ∩ L = φ.

Proof. (1) Notice that

T α
β(z) = Bα

η(B−1)η
γT γ

β(z) = Bα
η((B−1)η

γKγ
β − zδη

β).

It is clear from this expression that right ker(T (z)) = right ker(B−1K−zδ). There-
fore T α

β(z) has kernel only when z is equal to one eigenvalue of B−1 ◦ K.
On the other hand, the singular value decomposition of T is

T α
β(z) = Uα

i′(z)Σi′
j′(z)(V −1)j′

β(z).

Now U, Σ, V −1 are operators that depend on z, and from the orthogonality
conditions (A.1), (A.2) in Appendix A, U(z) and V −1(z) are always invertible
∀ z ∈ C. Thus Σ(z) is diagonal and controls the kernel of T (this argument is
valid for the rectangular case too). Consider now the case z = λi we know that
dim(right kerT (λi)) = qi but from Corollary A.2 in Appendix A, it is the number
of vanishing singular values.

(2) and (3) are particular cases of (1).

The operator (B−1)γ
αKα

β is Jordan diagonalizable when qi = ri ∀ i and from
the previous Lemma, this is only possible if the dimension of the right kernelf of

fOr left kernel, since for square operators the dimension of right and left kernels are equal.
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T α
β(λi)∀ i is maximum. We shall see under which conditions this becomes true. But

first we need a previous lemma.
Point (1) in the following Lemma is valid for rectangular operators too. We shall

use it also in Sec. 4 to give a condition for hyperbolicity in the general case.

Lemma 3.2. (1) Given P : X → E a linear rectangular operator with dim(E) ≥
dim(X). Then √

det(P ∗ ◦ P ) =
u∏

i=1

σi[P ]. (3.2)

(2) Consider the square operator T α
β(z) = Kα

β − zBα
β : X → X. Then√

det(T ∗ ◦ T ) =
u∏

i=1

σi[Bα
β ]|λ1 − z|r1 · · · |λk − z|rk =

u∏
i=1

σi[T α
β(z)]. (3.3)

Proof. (1) Consider the SVD of PA
α = (UP )A

i(ΣP )i
i′ (V

−1
P )i′

α. Here (UP )A
i ∈ Ce×e,

(ΣP )i
i′ ∈ Re×u and (V −1

P )i′
α ∈ Cu×u (see Theorem A.1). Then

(P ∗ ◦ P )β
α = Gβα2

2 (V̄ −1
P )i′2

α2(ΣP )j2
i′2

(ŪP )A2
j2

G1A2A1(UP )A1
j1

(ΣP )j1
i′1

(V −1
P )i′1

α

= V β
i′1

δ
i′1i′2
2 (ΣP )j2

i′2
δ1j2j1(ΣP )j1

i′1
(V −1

P )i′1
α,

where we have used the orthogonality conditions (ŪP )A2
i2

G1A2A1(UP )A1
i1

= δi2i1 and

Gβα2
2 (V̄ −1

P )i′2
α2 = V β

j′2
δ

j′2i′2
2 .

Taking determinant and square root√
det((P ∗ ◦ P )β

α) =
√

det(V β
i′2

δ
i′2j′2
2 (ΣP )i2

j′2
δ1i2i1(ΣP )i1

j′1
(V −1

P )j′1
α)

=
√

det(δi′2j′2
2 (ΣP )i2

j2′
δi2i1(ΣP )i1

j′1
)

=
u∏

i=1

σi[PA
α].

(2) Similarly, taking the determinant of T ∗ ◦ T we get,√
det(T ∗ ◦ T ) =

√
det(Gηβ

2 T̄ α
β(z)G1αγT γ

β(z))

=
√

det(Gαρ
2 ((B̄−1)µ

γK̄γ
ρ − z̄δµ

ρ)B̄υ
µG1υγBγ

η((B−1)η
γKγ

β − zδη
β))

=
√

det(Gαµ
2 B̄υ

µG1υγBγ
η)

×
√

det((B̄−1)µ
γK̄γ

α − z̄ δµ
α)det((B−1)η

γKγ
β − zδη

β)

=
√

det(Gαµ
2 B̄υ

µG1υγBγ
η)|λ1 − z|r1 · · · |λk − z|rk

= σ1[B] · · ·σu[B]|λ1 − z|r1 · · · |λk − z|rk .
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In the fourth line we have used

det((B−1)η
γKγ

β − zδη
β) = (λ1 − z)r1 · · · (λk − z)rk

and on the last line we have used the first point of the lemma for B. Therefore,
using it again for T, we conclude(

u∏
i=1

σi[B]

)
|λ1 − z|r1 · · · |λk − z|rk =

√
det(T ∗ ◦ T ) = σ1[T ] · · ·σu[T ].

Notice that if in Eq. (3.3) we set z = λ1 + ε (with ε real and small), then the
product of the singular values are order O(|ε|r1 ). Since these singular values have
Taylor expansions in |ε|, if all singular values are O(|ε|l) with l < 2, then we need
r1 of them to vanish (that is O(|ε|1)). Therefore by the previous lemma q1 = r1.

If this happens for all λi then qi = ri ∀ i and the operator (B−1)γ
αKα

β is Jordan
diagonalizable.

A formalization of this idea is given in the next theorem. Notice that the orders of
the singular values are invariant under different choices of Hermitian forms, although
the singular values are not. We show this in Appendix B.

Theorem 3.3. The following conditions are equivalent :

(1) (B−1)γ
αKα

β is Jordan diagonalizable.
(2) T α

β(λi) = Kα
β − λiB

α
β has ri vanishing singular values for each λi.

(3) For at least one fixed θ ∈ [0, 2π] and 0 ≤ |ε| � 1 with ε real, the singular values
of the perturbed operators T α

β(λi + εeiθ) = T α
β(λi) − εeiθBα

β are either of two
forms

σj [T α
β(λi + εeiθ)] = σj [T α

β(λi)] + ξjε + O(ε2) with σj [T α
β(λi)] �= 0 or

σj [T α
β(λi + εeiθ)] = ξj |ε| + O(|ε|2) with ξj �= 0 (3.4)

gfor all λi ∈ Dλ i.e. none of them is σ[T α
β(λi + εeiθ)] = O(|ε|l) with l ≥ 2.

Proof. (1) ⇔ (2) Since the geometric and algebraic multiplicities are equal for all
eigenvalues, i.e. qi = ri ∀ i = 1, . . . , k.

(3) ⇔ (1) Using Lemma 3.2 we have(
u∏

i=1

σi[B]

)
|λ1 − z|r1 · · · |λk − z|rk = σ1[K − zB] · · ·σu[K − zB]. (3.5)

Set z = λi + εeiα with ε less than any distance between the eigenvalues to λi

ε < min{|λi − λj | with j = 1, . . . , u and i �= j}. (3.6)

By Lemma 3.1, we know that qi singular values have to vanish for z = λi.
Suppose they are the first qi, we call them (σλi)j [K − zB], with j = 1, . . . , qi then

gThe orders in ε are independent of θ.
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we rewrite Eq. (3.5)

εri = (σλi )1[(K − λiB) + ε(−eiθB)]

· · · (σλi)qi [(K − λiB) + ε(−eiθB)]p(z)|z=λi+εeiθ , (3.7)

where

p(z)|z=λi+εeiα =
σqi+1(K − zB) · · ·σu(K − zB)|z=λi+εeiθ

(
∏u

i=1 σi[B])|λ1 − λi − εeiα|r1 · · · |λi−1 − λi − εeiα|ri−1

|λi+1 − λi − εeiα|ri+1 · · · |λk − λi − εeiα|rk

.

Note that p(z)|z=λi+εeiα does not vanish for Lemma 3.1 and does not blow up
for an ε small enough because of Eq. (3.6).

We know for (2) in Theorem B.2, in Appendix B, that for |ε| � 1 the σ′s can
be expanded as

(σλi)j [K − (λi + εeiθ)B] = (σλi )j [(K − λiB) + ε(−eiθB)]

= |ε|ξj + O(ε2).

For some ξj as in Eq. (B.4).
If we replace the last expression in (3.7) we obtain

|ε|ri−qi = ξ1 · · · ξqip(z)|z=λi+εeiα + O(ε). (3.8)

Therefore:

� (3) ⇒ (1) By hypothesis ξj �= 0 for j = 1, . . . , qi; then Eq. (3.8) can only
be valid if qi = ri ∀ i = 1, . . . , k (taking small enough ε). Therefore (B−1)γ

αKα
β is

diagonalizable.
� (1) ⇒ (3) If (B−1)γ

αKα
β is diagonalizable then ri = qi and taking ε → 0

we obtain 1 = ξ1 · · · ξqip(z)|z=λ1 . Which implies ξj �= 0 for j = 1, . . . , qi. Because
ri = qi for all i, we conclude the proof.

An interpretation of condition (3) in the above theorem is the following, for any
non-Jordan diagonalizable square operator, you can always find a right eigenvector,
such that, the contraction of it with all left eigenvectors vanishes. This is clearly
impossible if the operator is diagonalizable. We show this in the next example,
consider the matrix

Kα
β = Pα

i′


λ1 0 0 0

0 λ1 1 0

0 0 λ1 1

0 0 0 λ1


i′

j′

(P−1)j′
β
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and Bα
β = δα

β the identity matrix. We call v1,2 to the right eigenvectors and u1,2

to the left eigenvectors

(v1)α = Pα
i′


1

0

0

0


i′

, (v2)α = Pα
i′


0

1

0

0


i′

,

(u1)α = (1 0 0 0)j′(P−1)j′
α, (u2)α = (0 0 0 1)j′(P−1)j′

α

then

(u1,2)α(v2)α = 0. (3.9)

Theorem B.2, in Appendix B, tells us how to calculate the coefficients of first-
order perturbation of the singular values of T α

β(λ1+εeiθ) = (Kα
β −λ1δ

α
β)−εeiθδα

β .
They are given by ξi = σi[L

j
k] with

Lj
k :=

(
(u1)α

(u2)α

)
δα

β((v1)β , (v2)β).

But because of Eq. (3.9), Lj
k has kernel

( 0
1

)
and so ξ2 = 0. Thus T α

β(λ1 + εeiθ) has
a singular value of order O(ε2) and it is not diagonalizable.

Let us go back to the general case. When the eigenvalues of (B−1)γ
αKα

β are
real, then the below corollary follows. This is equivalent to Theorem 2.1.

Corollary 3.4. The next conditions are equivalent

(1) (B−1)γ
αKα

β is Jordan diagonalizable with real eigenvalues.
(2) All singular values satisfy

σj [T α
β(x + iy)] > 0 with x, y ∈ R and y �= 0. (3.10)

For at least one fixed θ ∈ [0, 2π] and 0 ≤ |ε| � 1 with ε real,

σj [T α
β(x + iεeiθ)] = σj [T α

β(x)] + ξjε + O(ε2) with σj [T α
β(x)] �= 0 or

σj [T α
β(x + iεeiθ)] = ξj |ε| + O(ε2) with ξj �= 0 (3.11)

for any x ∈ R i.e. none of them is σ[T α
β(x + iεeiθ)] = O(|ε|l) with l ≥ 2.

Proof. (1) ⇒ (2). It follows directly from Theorem 3.3.
(2) ⇒ (1). Because σi[T α

β(z)] > 0 ∀ i and ∀ z ∈ S = {z ∈ C/Im(z) �= 0}, then
from Lemma 3.1, S ∩ Dλ = φ. Therefore the eigenvalues are real. The second part
also follows from Theorem 3.3.

An alternative proof to Theorem 3.3 can be obtained directly showing that
condition (2) in Corollary 3.4, with θ = π

2 , is equivalent to one of the conditions in
Kreiss’s Matrix Theorem. Indeed, an alternative formulation is given by
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Theorem 3.5 (Part of Kreiss matrix Theorem). The square operator K :
V → V is Jordan uniformlyh diagonalizable with real eigenvalues if and only if for
any x, y ∈ R with y �= 0 there exists a constant C > 0 such that

‖(Kα
β − (x + iy)δα

β)−1‖2 ≤ C

|y| . (3.12)

We recall that we are considering this theorem point to point, then the uniformly
part is trivial. It means that considering Kα

γ := (Aαa
µ ωa)−1Aµa

γ βa, for each βa it is
diagonalizable with real eigenvalues if and only if there exists C(β) > 0 such that,
for each βa equation (3.12) holds.i In this sense, we now show that (3.12) implies
(3.13) and this is equivalent to (3.11). From [33]

‖T ‖2 = max{σi[T ]},
where max{σi[T ]} is the maximum of all singular values of T.

In addition

‖T−1‖2 = max{σi[T−1]} = max
{

1
σi[T ]

}
=

1
min{σi[T ]} ,

where we have used that the singular values of T are the inversej of the singular
values of T−1.

Now, from inequality (3.12)

1
min{σi[Kα

β − (x + iy)δα
β ]} = ‖(Kα

β − (x + iy)δα
β)−1‖2 ≤ C

|y|
let C̃ := 1

C , then the Kreiss’s Matrix Theorem asserts that K is Jordan diagonaliz-
able if and only if we can find C̃ such that

C̃|y| ≤ min{σi[Kα
β − (x + iy)δα

β]}. (3.13)

This equation is equivalent to condition (3.11). Since C̃|y| ≤ |y|l with l ≥ 2 in
0 ≤ |y| << 1 implies that C̃ = 0, therefore min{σi[Kα

β −(x+iy)δα
β ]} must be order

O(|y|0) or O(|y|1). In addition, notice that Kα
β − (x+ iy)δα

β , in (3.12), is invertible
when x+ iy is not an eigenvalue of Kα

β . Since condition (3.12) applies for all x+ iy

with y �= 0 then the eigenvalues of Kα
β are real, as Eq. (3.10) implies.

As a side remark, we prove the following theorem.

Theorem 3.6. T α
β(λi + εeiθ) : X → X has a singular value of order O(εl) if

and only if (B−1)γ
αKα

β has a l-Jordan block, with eigenvalue λi in its Jordan
decomposition.

hWhen Kα
γ := (Aαa

µ ωa)−1Aµa
γ βa depends on β, the matrix S(β), which diagonalizes it, depends

on β too. We said that K(β) is Jordan uniformly diagonalizable if it is diagonalizable and
|S(β)||S−1(β)| ≤ C.
iIt is not sufficient for well posedness. In the case of constant coefficient systems, in order to
obtain well posedness a uniform lower bound C(β) > Ĉ > 0 with Ĉ constant and for all βa not
proportional to na with |β| = 1 is necessary.
jNotice that if the SVD of T is T = UΣV −1 then T−1 = V Σ−1U−1 because V and U−1 are
orthogonal and Σ−1 is diagonal, that is the SVD of T−1. Therefore σi[T

−1] = 1
σi[T ]

.
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Proof. We consider a basis in which (B−1)γ
αKα

β stays in its Jordan form. In
this basis we choose the following two Hermitian forms G1AB = diag(1, . . . , 1) and
G2αβ = diag(1, . . . , 1). Then, the calculation of σi[T α

β(λ)] i = 1, . . . , u decouples in
Jordan blocks. Therefore we only need to study the singular values of an l-Jordan
block Jl(λ). It is easy to see from Eq. (3.3), with z = λ+eiθε, that Jl(λ) has a unique
singular value of order O(|ε|l) and the others are order O(|ε|0). This concludes the
proof.

3.2. Rectangular operators

In this subsection, we consider the case dim E ≥ dimX. Theorem 3.8 provides a
necessary condition for reducing a rectangular operator to a square one, in such
a way that the resulting operator is Jordan diagonalizable. The proof of condition
(2) in Theorem 2.2 is a corollary of this theorem. A reduction is given explicitly by
another linear operator hα

A : E → X (see Sec. 1). It selects some evolution equations
from the space of equations in a physical theory. The theorem asserts under which
conditions it will be impossible to find a hyperbolizer, namely, a reduction satisfying
condition (1.3) for strong hyperbolicity.

The proof of this theorem is based in the following Lemma (for a proof see [33]).

Lemma 3.7. Consider the linear operators T A
α : X → E, ha

A : E → X and
Hα

β := hα
AT A

β : X → X then

0 ≤ σi[Hα
β] ≤ σi[T A

β ] max{σj [hα
A]}. (3.14)

kWhere the singular values have been ordered from larger to smaller for each oper-
ator.

Consider for contradiction, that there exists a hyperbolizer. Namely a surjective
reduction hα

A : E → X, that does not depend on z, of the operator T A
α(z) =

KA
α − zBA

α : X → E, in which BA
α has no right kernel,l and such that hα

ABA
β is

invertible.
Then the next theorem follows.

Theorem 3.8. Suppose that for at least one singular value of T A
α(λ + εeiθ), with

λ ∈ C, satisfies

σ[T A
α(λ + εeiθ)] = O(εl) with l ≥ 2

kThe singular values are σi[Hα
β ] =

q
λi[G

−1
2 ◦ H̄′ ◦ G2 ◦ H], σi[T A

β ] =
q

λi[G
−1
2 ◦ T̄ ′ ◦ G1 ◦ T ]

and σi[ha
A] =

q
λi[G

−1
1 ◦ h̄′ ◦ G2 ◦ h]. Where λi[K] mean eigenvalues of K.

lNotice that as in the square case, a rectangular operator T A
α has right kernel when at least one of

their singular values vanishes (see proof of Lemma 3.1). But this is equivalent to the vanishing of
Eq. (3.2). Therefore, BA

α has no right kernel if and only if det(B∗ ◦B) = σ1[BA
β ] · · · σu[BA

β ] �= 0.
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then there exists at least one singular value of hα
AT A

α(λ + εeiθ) such that

σ[hα
AT A

β(λ + εeiθ)] = O(εm) with m ≥ l ≥ 2.

Thus ((hα
CBC

γ)−1)α
γhγ

AKA
β is non-diagonalizable, in particular there does not

exists any hyperbolizer and system (1.1) is not strongly hyperbolic.

Proof. We use Lemma 3.7 for T A
β(λ + εeiθ) and hα

AT A
β(λ + εeiθ), and let 1

C :=
max{σj [hα

A]} (It does not vanish since hα
A �= 0 and does not depend on λ), then

for Eq. (3.14)

0 ≤ σi[hα
AT A

β(λ + εeiθ)] ≤ σi[T A
β(λ + εeiθ)]

1
C

.

But for some i, σi[T A
β(λ+εeiθ)] = O(εl) with l ≥ 2. Therefore, σi[hα

AT A
β(λ+εeiθ)] =

O(εm) with m ≥ l ≥ 2. Since Cεm ≤ εl for 0 ≤ ε � 1 is only possible if m ≥ l.

Applying Theorem 3.3 to

T̃ α
β = hα

AKA
β − z(hα

ABA
β)

and recalling that hα
ABA

β is invertible by hypothesis, we conclude that
((hα

CBC
γ)−1)hγ

AKA
β is not diagonalizable. Therefore it is not a hyperbolizer and

we reach a contradiction.
This result considers perturbation of the singular values around their vanishing

values. As it has been shown in Appendix B, the orders of perturbations are invariant
under any choice of these Hermitian forms. Thus the result does not depend on the
particularities of the SVD.

4. Applications and Examples

In this section, we shall show how to check conditions (1) and (2) in Theorems 2.1
and 2.2. They are very simple to verify in examples.

Condition (1): We shall assume that there exists ωa such that NBb
γ ωb has no

right kernel.
As we mentioned before, NBb

γ n(λ)b with n(λ)b ∈ SC
ωa

, has right kernel when
at least one of its singular values vanishes. This happens if and only if, given any
positive definite Hermitian forms G1 and G2,√

det(Gαγ
2 NAa

γ n(λ)aG1ABNBb
β n(λ)b) = 0, (4.1)

as it has been proved in Lemma 3.2. Therefore, the system is hyperbolic if and
only if all roots λk of this equation are real. In addition, for any line n(λ)b we call
characteristic eigenvalues to their corresponding {λk}.

Condition (2): In general it is not an easy task to calculate the singular values
and their orders in parameter ε. Fortunately Theorem 4.1 below allows for a simpler
calculation, showing when the coefficient of zero and first order of the singular values
vanish.
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Assuming that condition (1) has been checked for ωa. Consider the line
n(λ)a = −λωa + βa belonging to Sωa , with βa not proportional to ωa and λ

real. Let {λk} be the characteristic eigenvalues of n(λ)a. Then, the principal
symbol NAa

γ n(λk)a has right and left kernels. We call W γ
i(λk) and U j

A(λk) with
i = 1, . . . , dim(left ker(NAa

γ n(λk)a)) and j = 1, . . . , dim(right ker(NAa
γ n(λk)a)) to

any basis of these spaces, respectively, namely they are linearly independent sets of
vectors such that NAa

γ n(λk)aW γ
i(λk) = 0 and U j

A(λk)NAa
γ n(λk)a = 0.

Now consider a perturbation of these covectors nε,θ(λi)a = −εeiθωa + n(λi)a

with 0 ≤ |ε| � 1 and ε real, and any fixed θ ∈ [0, 2π].

Theorem 4.1. A necessary condition for system (1.1) to be strongly hyperbolic is:
The following operator

Lj
i(λk) := U j

A(λk)(NAa
γ ωa)W

γ
i(λk) (4.2)

has no right kernel.m

Definition of Lj
i(λk) is equivalent to L̃j

i = δjj
1 (0, Ū1, Ū3)C

jδ1CDBD
α(0, V1)α

i, in
Eq. (B.4) in Appendix B, under a basis transformation. If L̃j

i has right kernel then
it has a singular value which vanishes, and then at least one perturbed singular
value σ(NAa

γ nε,θ(λi)a) is order O(|ε|l) with l ≥ 2.
As we have shown in Theorem 2.1 for the square case, this is also a sufficient

condition.
Now, using the tools developed, we show how to apply these results in some

examples.

4.1. Matrix example 1

Consider the matrix

T (x) = K − zB :=

(
λ1 κ

0 λ2

)
− z

(
1 0

0 1

)
∈ C

2×2 (4.3)

in which λ1, λ2, κ are constants. Consider the scalar products G1,2 = δ1,2 =
diag(1, 1), then the singular values of T (z) are

σ1[T (z)] =
√

ω(z) +
√

ω2(x) − |z − λ1|2|z − λ2|2,

σ2[T (z)] =
√

ω(z) −
√

ω2(x) − |z − λ1|2|z − λ2|2
with

ω(z) =
1
2
(|z − λ1|2 + |z − λ2|2 + |κ|2)

mLj
i has no kernel if and only if given any positive define Hermitian forms G3 and G4 then

det
`
Gji1

3 Lj1
i1

G4j1j2Lj2
i

´ �= 0.
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a non-negative function of z. Notice that σ1[T (z)] can be vanished only when λ1 =
λ2 and κ = 0.

The Taylor expansion of σ2 centered in λ1,2 isn:

σ2(λ1,2 + ε) ≈ 0 +
|λ1 − λ2|√|λ1 − λ2|2 + |κ|2 |ε| + O(ε2).

As in Theorem 2.1

• K is not diagonalizable when λ1 = λ2 and κ �= 0. In that case σ2(λ1,2 + ε) =
O(|ε|2).

• K is diagonalizable for any other case and the singular values remain of order
O(|ε|) or O(ε0).

4.2. Force-free electrodynamics in Euler potential description

In this subsection, we study a description of the Force-Free Electrodynamics system
based on Euler’s potentials [4, 34]. When it is written as a first-order system, this
is a constrained system and we shall show that it is only weakly hyperbolic. It is
important to mention that Reula and Rubio [28] reached the same conclusion by
another method. They used the potentials as fields obtaining a second-order system
in derivatives, which then led to a pseudodifferential first-order system without con-
straints and finally tested the failure of strong hyperbolicity using Kreiss criteria
[19]. The advantage of our technique is that we use the gradients of the potentials
as fields, obtaining directly a first-order system in partial derivatives but with con-
straints. Then, proving that condition (2) in Theorem 2.2 fails, we conclude that
there does not exist any hyperbolizer.

In this system the electromagnetic tensor Fab is degenerated Fabj
b = 0 and

magnetic dominated F := FabF
ab > 0. These conditions allows us to decompose

Fab = l1[al2b], (see, [12, 24]) in terms of space-like 1-forms lia with i = 1, 2. For more
detailed works on Force-Free electrodynamics see [2, 3, 12, 17].

In addition, Carter 1979 [4] and Uchida 1997 [34] proved that there exist two
Euler potentials φ1 and φ2 such that lia = ∇aφi.

With this ansatz, the Force Free equations in the (gradient) Euler’s potentials
version are

lka∇b(lai lbjε
ij) = 0

∇[al|i|b] = 0

nFor calculate the Taylor expansion we use the identity X−√
X2 − Y 2 = 1

2
(
√

X + Y −√
X − Y )2

with real X, Y and X + Y, X − Y > 0.
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with background metric gab. Taking a linearized version at a given point and back-
ground solution, we get the following principal symbol

NAa
α (x, φ)naδφα =


(l1a(l2.n) − (l1.l2)na) ((l1.l1)na − l1a(l1.n))

(l2a(l2.n) − (l2.l2)na) ((l1.l2)na − l2a(l1.n))

n[bδ
c]
a 0

0 n[bδ
c]
a


(

δla1

δla2

)
.

The solution space δφα =
(δla1
δla2

)
is 8-dimensional and the associated space of

equations is 14-dimensional δXA = (δW, δX, δYbc, δZbc) where δYbc = δY[bc] and
δZbc = δZ[bc].

(1) We shall check that the system is hyperbolic: Consider ωa timelike and
normalized ωaωa = −1, since lia can be chosen orthogonal (via a gauge transfor-
mation), we define an orthonormal frame {eia i = 0, 1, 2, 3} with e0a = ωa and
lia = lieia with i = 1, 2 such that gab = (−1, 1, 1, 1). Consider now the plane
n(λ)a = −n0ωa + βa ∈ SC

ωa
with n0 ∈ C, βa = nieia for i = 1, 2, 3, ni real and let

G1AB = diag(1, . . . , 1) and Gαβ
2 = diag(1, . . . , 1), then by (4.1) the characteristic

equation of the principal symbol is (notice that NAb
α is real)

0 =
√

det(Gαγ
2 NAa

γ n̄(λ)aG1ABNBb
β n(λ)b)

= (|n0|2 + n2
1 + n2

2 + n2
3)

2|(−n2
0 + n2

3)||nagabnb|l21l22. (4.4)

It means that the characteristic structure is given in terms of two symmetric
tensors, the background metric, and gab

1 = diag(−1, 0, 0, 1) i.e.

0 = nagabnb and 0 = nagab
1 nb. (4.5)

The first one corresponds to the electromagnetic waves and the second one to the
Alfven waves. Because the characteristic eigenvalues are real, thus the system is
hyperbolic.

Note that the introduction of two unnatural scalar products lead us to a preferred
Euclidean metric gab

2 nanb = |n0|2 + n2
1 + n2

2 + n2
3.

(2) We shall check that condition (2) in Theorem 2.2 fails: For this system, it
is possible to calculate the singular values. We only show the relevant one (with n0

real)

σ[NBb
β nb] :=

1√
2

∣∣∣∣√N + 2(n2
0 − n2

3)l22 −
√

N − 2(n2
0 − n2

3)l22

∣∣∣∣ ,
N := n2

1 + n2
2 + (n2

0 + n2
3)(1 + l42).

Notice that it vanishes when n2
0 − n2

3 = 0.
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Consider now the line n(λ)a = −λωa +βa ∈ Sωa with λ real, βa = n1e1a and the
characteristic eigenvalue λ = 0, i.e. n(λ)agab

1 n(λ)b|λ=0 = 0. Perturbing this singular
value in a neighborhood of this point

nε,θ(λ = 0)a = −εeiθωa − λωa + βa|λ=0
θ=0

we obtain

σ1(ε) ≈ 1√
2
ε2

(
(1 + 3l42)√

n2
1 + ε2(1 + 3l42)

− (1 − l42)√
n2

1 + ε2(1 − l42)

)

It is order O(|ε|2) and by Theorem 2.2 there does not exist any hyperbolizer
and the system is weakly hyperbolic.

In general, explicit calculations of the singular values cannot be done. Because
of that, we shall show how to reach the same conclusion using Theorem 4.1.

Consider the line n(λ)a as before, then we get the following principal symbol

NAa
α n(λ)a = −λNAa

α ωa + NAa
α βa

= −λ


0 l21e0a

−l22e0a 0

e
[b
0 δ

c]
a 0

0 e
[b
0 δ

c]
a

+


0 0

l22n1e1a −l1l2n1e2a

n1e
[b
1 δ

c]
a 0

0 n1e
[b
1 δ

c]
a

.

To define Lj
i as (4.2), we need to calculate left and right kernel basis of

NAa
α n(λ = 0)a. They are


δW

δX

δYbc

δZbc

 =

〈1

0

0

0

,


0

0

e0[be2a]

0

,


0

0

e0[be3a]

0

,


0

0

e2[be3a]

0

,


0

0

0

e0[be2a]

,


0

0

0

e0[be3a]

,


0

0

0

e2[be3a]

 ,

〉
,

(
δla1

δla2

)
=

〈(
0

ea
1

)〉
.
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We conclude that

Lj
i =



0

0

0

0

0

0

0


(4.6)

which trivially vanishes and then it has right kernel. Thus, as we discussed before,
there is a singular value that goes to zero at least quadratically in the perturbation
and the system cannot be strongly hyperbolic.

If we take ωa outside the light cone, then there will be complex characteristic
eigenvalues (so the system would not be hyperbolic along those lines), so those cases
are trivially not strongly hyperbolic.

4.3. Charged fluids with finite conductivity

In this subsection, we present the charged fluid with finite conductivity in a first
order in derivative formulation, in which the relevant block of the principal part
has no constraints. We shall prove that the system is weakly hyperbolic while it has
finite conductivity and, of course, strongly hyperbolic with vanishing conductivity.
This result is in concordance with [5, chap. IX].

The system is

um∇mn + n∇mum = 0

ua∇aρ + (ρ + p)∇aua = ubJ
aF b

a

(ρ + p)ua∇aub + Dbp = −hb
cJ

aF c
a

um∇mq + q∇mum + σF m
a ∇mua = σuaJa

∇aF ab = Jb

∇aF ∗ab = 0

Ja = qua + σubF
ba

with background metric gab, hb
c := (δb

c + ubuc), uaua = −1, Db := hbc∇a and
p = p(n, ρ). Here ρ is the proper total energy density, n the proper mass density,
ua the four-velocity, q the proper charge density, p the pressure of the fluid and σ

the conductivity. For examples of this type of systems see [22, 23, 36].
The variables are (n, ρ, ua, q, F ab). As before, taking the linearized version at

a given point and background solution of these equations, the principal symbol is
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given by

(Nfluid)Aa
α (x, φ)naδφα

=


u.n 0 n nb 0

0 u.n (p + ρ)nb 0

pnhamnm pρh
amnm (ρ + p)δa

b(u.n) 0

0 0 (qδm
b + σF m

b )nm u.n





δn

δρ

δub

δq

δF ab


= 0,

(NElectro)Aa
α (x, φ)naδφα =

(
na

ncε
c
dab

)
δF ab = 0

with uaδua = 0. Notice that the fluid-current part decouples of the electrodynamics
part. We shall only study this fluid-current part because there is where the lack of
strong hyperbolicity appears. This part of the system has no constraints.

The solution space δφα =

(
δn
δρ

δub

δq

)
is 6-dimensional and the equation space δXA =

(δW δX δYa δZ), with δYaua = 0, is 6-dimensional too.
The characteristic structure of the fluids-current part is

det(NAa
fluid αna) = −(ρ + p)4(naua)4gab

1 nanb = 0. (4.7)

This means that

(naua) = 0 and gab
1 nanb = 0

with gab
1 := ( n

(ρ+p)pn +pρ)hab −uaub (It is a Lorentzian metric if n
(ρ+p)pn +pρ > 0).

In addition the characteristic structure of the electrodynamics part is

gabnanb = 0.

The naua = 0 correspond to the material waves, gab
1 nanb = 0 to the acoustic

waves and gabnanb = 0 to the electromagnetic waves.
(1) We shall check condition (1) in Theorem 2.1: Consider now the line n(λ)a =

−λωa + βa ∈ Sωa with ωa = ua and βa spacelike and such that βaua = 0. We
notice from (4.7) that NAa

fluid αωa has no right kernel if (ρ+p) �= 0 and the system is
hyperbolic for this ωa if n

(ρ+p)pn +pρ ≥ 0. It means that the velocity of the acoustic

wave v :=
√

n
(ρ+p)pn + pρ is real.

(2) Condition (2) in Theorem 2.1 fails: This line has the characteristic eigenvalue
λ = 0, since uan(λ)a|λ=0 = 0. We choose an orthonormal frame {eia i = 0, 1, 2, 3}
such that e0a = ua, e1a = 1√

βaβa
βa with e2a and e3a space-like. In this frame the

background metric looks like gab = diag(−1, 1, 1, 1).
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The principal symbol along this line is

NAa
α n(λ)a = −λNAa

α ωa + NAa
α βa

= −λ


−1 0 nub 0

0 −1 (p + ρ)ub 0

0 0 −(ρ + p)ga
b 0

0 0 qub + σF m
b um −1



+
√

β · β


0 0 ne1b 0

0 0 (p + ρ)e1b 0

pnea
1 pρe

a
1 0 0

0 0 qe1b + σF m
b e1m 0

.

In order to find Lj
i the basis of the left and right kernel of NAa

α n(λ = 0)a are
δW

δX

δYa

δZ

 =

〈 0

0

e2a

0

,


0

0

e3a

0

,


−(p + ρ)

n

0

0


〉

,


δn

δρ

δub

δq

 =

〈0

0

0

1

,


−pρ

pn

0

0

,


0

0

δub

0


〉

with e1bδu
b = 0 and δubF m

b e1m = 0. Thus following Eq. (4.2)

Lj
i =


0 0 −(ρ + p)δuae2a

0 0 −(ρ + p)δuae3a

0 −(rpρ + npn) 0

.

Clearly Lj
i

(
1
0
0

)
= 0. Therefore, the system is weakly hyperbolic and there is no

hyperbolizer.
Notice that we chose a particular ωa = ua. It is easy to show that condition (2)

still fails for any timelike ωa in both metrics gabωaωa < 0 and gab
1 ωaωa < 0. In addi-

tion, when choosing ωa outside of these cones, complex characteristic eigenvalues
appear. Thus, in both cases no hyperbolizer exists.

4.3.1. Vanish conductivity σ = 0

Finally, we notice that if the conductivity goes to zero σ = 0 the kernels change
and the system becomes strongly hyperbolic.
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Consider the above line n(λ)a in λ = 0, thus we shall prove that the new Lj
i

has no right kernel. The new left and right kernel basis are
δW

δX

δYa

δZ

 =

〈 0

0

e2a

0

,


0

0

e3a

0

,


−(p + ρ)

n

0

0

,


0

q

0

−(p + ρ)


〉

,


δn

δρ

δub

δq

 =

〈0

0

0

1

,


−pρ

pn

0

0

,


0

0

ea
2

0

,


0

0

ea
3

0


〉

.

Thus

Lj
i =


0 0 −(ρ + p) 0

0 0 0 −(ρ + p)

0 −((p + ρ)pρ + npn) 0 0

−(p + ρ) −pnq 0 0

.

This operator has no kernel if the determinant is different from zero

detLj
i = −(p + ρ)4

(
n

(ρ + p)
pn + pρ

)
�= 0.

Therefore p+ρ �= 0 and n
(ρ+p)pn +pρ �= 0. As we explained, the first condition is

necessary in order for NAa
fluid αωa not to have right kernel and the second condition

limits the possibility of the velocity of the acoustic waves to vanish. We conclude
that the system with σ = 0 is strongly hyperbolic.

5. Conclusions

In this paper, we studied the covariant theory of strong hyperbolicity for systems
with constraints and found a necessary condition for the systems to admit a hyper-
bolizer. If this condition, which is easy to check, is not satisfied, then there is no
subset of evolution equations of the strongly hyperbolic type in the usual sense.

To find this condition we introduce the singular value decomposition of one
parameter families (pencils) of principal symbols and study perturbations around
the points where they have kernel. We proved that if the perturbations of a singular
value, which vanishes at that point, are order 2 or larger then the system is not
strongly hyperbolic, Theorem 2.2.

For systems with constraints, the rectangular case, is only a necessary condition,
but in the case without constraints, namely square case, this condition becomes also
a sufficient condition too, Theorem 2.1. In this case, the condition is equivalent to
the ones in Kreiss’s Matrix Theorem.
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As an extra result, we showed that a perturbed Matrix has an l-Jordan Block
if and only if it has a singular value of order O(εl).

Although the SVD depends on the scalar products used to define the adjoint
operators, we found that the asymptotic orders of the singular values are indepen-
dent of them.

When the systems have constraints, their principal symbols are rectangular oper-
ators and there is not a simple way to find their characteristic structure. We pro-
posed a way to calculate its, by connecting the kernel of an operator with the
vanishing of any of their singular values (see Eq. (4.1)).

We applied these theorems to some examples of physical interest.
A simple matrix example of 2 × 2 in which we study its Jordan form using the

perturbed SVD.
The second example is Force Free electrodynamic in the Euler potentials form,

that when written in first-order form has constraints. Using our result we checked
that there is no hyperbolizer, being the system only weakly hyperbolic. We did this
in two alternative ways. First by computing the singular values and showing that at
some point one of them is order O(ε2). Second by computing the first-order leading
term using right and left kernels as in Theorem 4.1. In general, it is not an easy
task to calculate the singular values, therefore, the second way simplifies the study
of strong hyperbolicity.

The last example is a charged fluid with finite conductivity. For this case, it is
enough to consider the fluid-current part that decouples (at the level of the principal
symbol) from the electromagnetic part. We showed how the introduction of finite
conductivity, hampers the possibility of a hyperbolizer.
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Appendix A. Singular Value Decomposition

In this Appendix, the SVD is defined for linear operators that map between two
vector spaces of finite dimension. For introduction on topic see [11, 31, 33, 35]. One
of the most significant properties of the SVD is that it allows us to characterize
the image and the kernel of the operator through real quantities called singular
values. They, as we showed in Sec. 3, provide data about the Jordan form of square
matrices.

One problem about singular values decomposition, is that, it is necessary to
introduce extra structure to the problem, namely, scalar products. When they are
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used in vector spaces over a manifold, they might introduce non-covariant expres-
sions. These scalar products are two positive definite, tensorial Hermitian forms,o

in the input and output spaces of the operator, respectively.
In this appendix, we use the notation of Sec. 3 with KA

α : X → E and assume
that e = dimE ≥ dimX = u.

Consider the two positive definite Hermitian forms G1AB and G2αβ in the spaces
E and X , respectively. This allows us to define the adjoint operator

K∗ = G−1
2 ◦ K̄ ′ ◦ G1 : E → X,

(K∗)α
C = (G−1

2 ◦ K̄ ′ ◦ G1)α
C = Gαβ

2 K̄B
βG1BC ,

where GAB
1 G1BC = δA

1C and Gαγ
2 G2γν = δα

ν are the identity operators in E and X

respectively, and K̄ ′ is the dual complex operator of K.

With this operator, we can define

K∗ ◦ K = G−1
2 ◦ K ′ ◦ G1 ◦ K : X → X,

φα → Gαβ
2 K̄B

βG1BCKC
γφγ ,

K ◦ K∗ = K ◦ G−1
2 ◦ K ′ ◦ G1 : E → E,

lA → KA
αGαβ

2 K̄B
βG1BC lC .

Since G2 ◦ K∗ ◦ K and G1 ◦ K ◦ K∗ are semi-positive define Hermitian forms,
K∗ ◦K and K ◦K∗ are diagonalizable with real and semi-positive eigenvalues. Also,
the square roots of these eigenvalues are the singular values of K and K∗.

With these definitions, we assert the singular value decomposition in the form of
a theorem. From now on Latin indices i, j, k go from 1 to e and primes Latin indices
i′, j′, k′ from 1 to u, unless explicitly stated. These indices indicate the different
eigenvectors.

Theorem A.1. Consider K, K∗, G1 and G2 as previously defined and e ≥ u. Sup-
pose that rank(K) = r and dim(ker right(K)) = u− r, then K can be decomposed as

KA
α = UA

iΣ
i
j′ (V

−1)j′
α,

where Σi
j′ =

(
Σ+ 0
0 0
0 0

)i

j′
of size e×u, with Σ+ = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σl > 0

l = 1, . . . , r real, and σr+1 = · · · = σu = 0. The σl are called singular values of K

and they are the square root of the eigenvalues of K∗ ◦ K.

oConsider the C-vectorial space V of finite dimension. A Hermitian form on V is a map G :
V × V → C such that G(av, bu) = ābG(v, u) = āb(v̄aGabu

b) and Gab = Ḡab (the bar means
conjugation). In addition there exists a symmetric real bilinear form g1ab and an antisymmetric
bilinear form g2ab such that Gab = g1ab + ig2ab. When the hermite form is positive definite (g1ab

is positive define), G defines a complex inner dot product of V .
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In addition, the columns of UA
i and V γ

i′ are eigenbasis of K ◦ K∗ and K∗ ◦ K

respectively, such that they are orthogonal

ŪC
iG1CDUD

j = δ1ij := diag(1, . . . , 1, 1, . . . , 1) (A.1)

V̄ γ
i′G2γηV η

j′ = δ2i′j′ := diag(1, . . . , 1) (A.2)

with C, D, i, j = 1, . . . , e and α, β i′, j′ = 1, . . . , u.
We are going to discriminate V α

i′ = (V2, V1)α
i′ and UA

i = (U2, U1, U3)A
i, where

V2 are the first r columns and V1 the u− r left of V ; U2 are the first r columns, U1

the following u − r and U3 the remaining e − u of U .

Recalling that the eigenbasis that are chosen in the Jordan decomposition are
not unique we realize that they are the orthogonal factors in the SVD. For fixed
G1,2 we can select different orthogonal basis of the eigenspaces, associated to some
singular value, and obtain different U, V . Nevertheless the singular values remain
invariant as long as G1,2 remain fixed.

This decomposition allows us to control right and left kernels and images of any
linear operator, as we show in the next corollary.

Corollary A.2. Consider V = (V2, V1)α
i′ and U = (U2, U1, U3)A

i as in the previous
theorem, then the orthogonal conditions (A.1) and (A.2) are

(V̄i)γ
sG2γη(Vj)η

r = 0 with i, j = 1, 2 and i �= j (A.3)

(Ūi)C
sG1CD(Uj)D

r = 0 with i, j = 1, 2, 3 and i �= j. (A.4)

In addition

dim(right ker(K)) = u − r

dim(left ker(K)) = e − r

dim(rank Columns(K)) = dim(rank Rows(K)) = r.

And the explicit right and left kernels of K are

KA
βV β

1s = 0 with s = 1, . . . , u − r, (A.5)

(δlm
1 ŪC

1mG1CB)KB
β = 0 with m, l = 1, . . . , u − r, (A.6)

(δlm
1 ŪC

3mG1CB)KB
β = 0 with m, l = 1, . . . , e − u, (A.7)

where δlm
1 is the inverse of δ1lm.

SVD is similar to Jordan decomposition for square operators. In particular,
they coincide when the operators are diagonalizable with real and semipositive
eigenvalues and particular G1,2 are used.

Suppose Aα
β : X → X can be decomposed as Aα

β = Pα
i′Λ

i′
j′(P

−1)j′
β with

Λi′
j′ = diag(λ1, . . . , λu) and λi real and semipositive. If we choose G1αβ = G2αβ =
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(P−1)i′
αδi′j′ (P−1)j′

β then

(A∗ ◦ A)α
β = Gαγ

2 Aη
γG1ηϕAϕ

β

= (Pα
i′1

δi′1j′1 P̄ γ
j′1

)(P̄ η
i′2

Λ̄i′2
j′2

(P̄−1)j′2
γ)((P̄−1)i′3

ηδi′3j′3(P
−1)j′3

ϕ)

× (Pϕ
i′Λ

i′
j′(P

−1)j′
β)

= Pα
i′(δ

i′j′Λk′
j′δk′i′1Λ

i′1
j′2

)(P−1)j′2
β

= Pα
i′(Λ

2)i′
j′(P

−1)j′
β.

Therefore the eigenvalues of (A∗ ◦A) are λ2
i , thus the singular values of A are λi.

In addition Uα
i′ = V α

i′ = Pα
i′ and the orthogonal condition is P γ

i′G1,2γηP η
j′ = δi′j′ .p

Notice that, in the deduction, we used (δi′j′Λk′
j′δk′i′1Λ

i′1
j′2

) = (Λ2)i′
j′ because Aα

β

is diagonalizable, with real eigenvalues. But if Λi′
j′ is a non-trivial Jordan form, then

the singular values are the square roots of the eigenvalues of δi′j′Λk′
j′δk′i′1Λ

i′1
j′2

, the
explicit calculation becomes hard even for simple examples. In Chap. 4, we present
an analysis of the 2 × 2 matrix case.

Appendix B. Invariant Orders of Singular Values

In this paper, we study perturbed singular values in terms of some parameter ε. We
use the orders in this parameter, to decide when a system is strongly hyperbolic or
not. But as we showed in Appendix A, the singular values depend on two Hermitian
forms, therefore we need to show that these orders remain invariant when we select
different Hermitian forms. Thus we shall prove it in Lemma B.1. Also, in Theorem
B.2, we shall show explicit expressions for the first order, when particular bases are
chosen.

Consider two pairs of positive definite Hermitian forms G1AB , G2αβ and Ĝ1CD,
Ĝ2αβ in the spaces E and X . Since they are positive define, they are equivalent, i.e.

ŪC
AĜ1CDUD

B = G1AB, (B.1)

V̄ γ
αĜ2γηV η

β = G2αβ (B.2)

with some U : E → E and V : X → X invertible.
Consider now the linear operator T A

α : X → E with dim(X) ≤ dim(E). We
call σ̂i[T A

α] the singular values of T A
α defined using Ĝ1CD, Ĝ2αβ and σi[T A

α] using
G1AB, G2αβ .

Lemma B.1. The operator T A
α(ε) = KA

α + εeiθBA
α : X → E, has singular values

σi[T A
α] = O(εli) with i = 1, . . . , dim(X) for some li if and only if σ̂i[T A

α] = O(εli).

pThe standard result in textbook is when G1αβ = G2αβ = δαβ = (P−1)i′
αδi′j′ (P

−1)j′
β it means

that (P )α
i′ is orthogonal, and the matrix Aα

β is “symmetric”.
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Proof. If we call λi[T ∗ ◦ T ] to the eigenvalues of T ∗ ◦ T then

σ̂i[T ] =
√

λi[T ∗ ◦ T ] =
√

λi[V −1 ◦ T ∗ ◦ T ◦ V ] = σi[U−1 ◦ T ◦ V ]. (B.3)

The last equality is easy to prove.
Considering T A

α : X → E with rank r, we recall that from definition of SVD

σ1[T A
α] ≥ σ2[T A

α] ≥ · · · ≥ σr [T A
α] > 0 = σr+1[T A

α] = · · · = σdim(X)[T A
α].

In [33] it is proved that

σe[U−1]σu[V ]σi[T ] ≤ σi[U−1 ◦ T ◦ V ] ≤ σi[T ]σ1[U−1]σ1[V ] ∀ i = 1, . . . , u

with dim X = u, dimE = e and σe[U−1]σu[V ] �= 0 since U and V are invertible.
By this expression, we see that if σi[T ] = O(εli) then σi[U−1 ◦ T ◦ V ] = O(εli) ∀ i.

Thus, due to Eq. (B.3) σ̂i[T ] this is exactly σi[U−1 ◦ T ◦ V ] and we conclude the
proof.

Theorem B.2. Let the operator be T A
α = KA

α + εeiθBA
α : X → E where εeiθBA

α

represents a perturbation of K with any θ ∈ [0, 2π], ε real, 0 ≤ |ε| � 1 and K

has rank r. Consider T A
α in basis in which G1AB = diag(1, . . . , 1) and G2αβ =

diag(1, . . . , 1) and the SVD of K is

KA
β = (U2, U1, U3)A

i

Σ+ 0

0 0

0 0


i

i′

δi′j′
2 (V̄2, V̄1)τ

j′δ2τβ

= (U2, 0, 0)A
i

Σ+ 0

0 0

0 0


i

i′

δi′j′
2 (V̄2, 0)τ

j′δ2τβ.

Therefore

(1) If σi[KA
β ] > 0 i = 1, . . . , r are the singular values of K, then the singular value

of T A
α can be expanded as

σi[T A
α] = σi[KA

β ] + |ε|ξi + O(ε2) with i = 1, . . . , r

for some ξi (see [30] for explicit formulas)
(2) When KA

β has σi[KA
β ] = 0 for i = r + 1, . . . , u then the corresponding u − r

singular values of T A
α are

σi

[
KA

α + εeiθBA
α

]
= 0 + |ε| σi

[
δlj
1 (0, Ū1, Ū3)C

jδ1CDBD
α(0, V1)α

m

]
+ O(ε2) (B.4)

qwith j = 1, . . . , e; l = r + 1, . . . , e, m = r + 1, . . . , u and i = r + 1, . . . , u.

Notice that Eq. (B.4) does not depend on θ.

qThese singular values are not differentiable respect to ε in ε = 0, due to the presence of the
module |ε|. However, it is possible differentiate respect to the module.
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