
THE STRUCTURE OF GROUP PRESERVING OPERATORS

D. BARBIERI, C. CABRELLI, D. CARBAJAL, E. HERNÁNDEZ AND U. MOLTER

Abstract. In this paper, we prove the existence of a particular diagonalization
for normal bounded operators defined on subspaces of L2(S) where S is a
second countable LCA group. The subspaces where the operators act are

invariant under the action of a group Γ which is a semi-direct product of
a uniform lattice of S with a discrete group of automorphisms. This class
includes the crystal groups which are important in applications as models for

images. The operators are assumed to be Γ preserving. i.e. they commute
with the action of Γ. In particular we obtain a spectral decomposition for these
operators.

This generalizes recent results on shift-preserving operators acting on lattice
invariant subspaces where S is the Euclidean space.

1. Introduction

Let Γ be a discrete group, not necessarily commutative, acting on L2(S), where
S is a second countable LCA group.

In this article, we study the structure of bounded operators acting on subspaces of
L2(S) that are invariant under the action of the group Γ (which we call Γ-invariant
subspaces). Our operators are required to be Γ-preserving. This means that they
commute with the action of Γ.

A recent paper [1], studied the case where S is the d-dimensional additive group
Rd and the group Γ is the lattice ∆ = Zd acting by translations on L2(Rd). The
authors considered ∆-preserving operators acting on finitely generated ∆-invariant
spaces.

They introduced the notion of ∆-eigenvalue and ∆-diagonalization (see definition
in Section 3) and proved that if L : V → V is a bounded normal ∆-preserving oper-
ator defined on a finitely generated ∆-invariant space V , then L is ∆-diagonalizable,
that is, there exist r ∈ N and ∆-invariant subspaces V1, . . . , Vr such that:

V = V1

.
⊕ . . .

.
⊕ Vr,

where the sum is orthogonal and the subspaces are invariant under L. The action of
L on each f ∈ Vj is given by Lf = Λajf with Λaj =

∑
k∈∆ aj(k)Tk, and Tk denotes

the translation by k ∈ ∆. The operator Λaj is called a ∆-eigenvalue, and is defined
by some sequence aj ∈ `2(∆), j = 1, . . . , r. As a consequence we have the following
formula for L:

L =

r∑
j=1

ΛajPVj
,

where PVj
denotes the orthogonal projection onto Vj .

This type of decomposition of a ∆-preserving operator describes in a simple
and compressed way the action of L and is reminiscent of the spectral theorem for
normal matrices. The finiteness of the decomposition is a consequence of the fact
that the invariant space on which L acts is finitely generated.
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In the first part of this paper, we extend this result to the group setting (∆ is a
uniform lattice of a second countable group S) and we remove the requirement that
the invariant space is finitely generated. We are able to prove the ∆-diagonalization
for normal bounded ∆-preserving operators, mentioned before, satisfying some
additional properties.

The main difficulty in pursuing this, is a question about measurability that can
not be solved using the arguments of the finitely generated case. We need to resort
to the theory of set-valued maps and results on measurable selections, in particular,
Castaign’s Selection Theorem (see subsection 2.3).

The key tool in the analysis is the characterization of invariant spaces by Helson
[20] through measurable range functions and the decomposition of ∆-preserving
operators by measurable range operators (or direct integrals of operators), see [12].

In the second part of the paper, we extend this decomposition to Γ-invariant
spaces. More exactly, we consider a non-commutative group Γ that is a semidirect
product Γ = ∆ o G. Here, ∆ is a discrete cocompact subgroup of S and G is a
discrete and countable group that acts on S by continuous automorphisms preserving
∆. (See Section 4 for details). These groups are important in applications as models
for images since they include, as a particular case, rigid movements. See [7] and
[22] for applications to image processing.

The structure of Γ-invariant spaces has been studied in great detail in a recent
paper [8]. In this article, we consider Γ-preserving operators in this general setting.
In order to obtain a diagonalization for these operators we need to define what we
mean by Γ-eigenvalues, defined previously for the case of uniform lattices.

Because Γ-invariant subspaces are a particular subclass of ∆-invariant subspaces
with extra restrictions, Γ-eigenvalues should be ∆-eigenvalues with some special
property, due to the action of the group G (see Proposition 4.13). Finally, using this,
we are able to obtain the desired diagonalization that we call Γ-diagonalization,

The paper is organized as follows: Section 2 sets the notation that we will use
throughout the paper and contains all the definitions and properties needed for
the diagonalization results. We start in Subsection 2.1 describing the structure of
∆-invariant subspaces and its characterizations through measurable range functions.
We consider ∆-preserving operators and its associated range operators in Subsection
2.2. In Subsection 2.3, the definition and basic properties of measurable set-valued
maps and a result on measurable selections, are described. Then, we show results on
the relationships between the spectrum of a ∆-preserving operator and the spectrum
of its range operator in Subsection 2.4. Sections 3 and 4 contain the main results
of this paper. In Section 3 we prove the ∆-diagonalization in the setting of groups
for ∆-invariant spaces not necessarily finitely generated and finally in Section 4 we
treat the Γ-diagonalization case.

2. Preliminaries

Throughout this work, S will be a second countable LCA group and ∆ will be a
uniform lattice of S (that is, a discrete subgroup such that S/∆ is compact). We

will denote by Ŝ the Pontryagin dual of S and we will write the characters of S
indistinctly by

〈ξ, x〉 = e2πiξ.x , ξ ∈ Ŝ, x ∈ S.

Moreover, the annihilator of ∆ will be denoted by

∆⊥ = {` ∈ Ŝ : 〈`, k〉 = 1 ∀ k ∈ ∆}.

The Haar measure on S of a measurable set E ⊂ S will be denoted by |E|.
Furthermore, Ω ⊂ Ŝ will always denote a Borel section of Ŝ/∆⊥.
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We will use the following notation for the Fourier transform of f ∈ L1(S):

Ff(ξ) = f̂(ξ) =

∫
S

e−2πiξ.xf(x)dx =

∫
S

〈ξ, x〉f(x)dx,

which extends by density to an isometric isomorphism in L2(S).
We denote by T : ∆→ U(L2(S)) the unitary representation defined by

Tkf(x) = f(x− k) , f ∈ L2(S), k ∈ ∆.

Note that for all f ∈ L2(S) and all k ∈ ∆, the following relation holds:

T̂kf(ξ) = e−2πiξ.kf̂(ξ), ξ ∈ Ŝ. (2.1)

If H is a Hilbert space, we denote by B(H) the linear and bounded operators from
H into H. Given an operator A ∈ B(H) we denote by σ(A) its operator spectrum.
The point spectrum of A, that is the set of its eigenvalues, is denoted by σp(A).

A normal operator A ∈ B(H) is called diagonalizable if H admits an orthonormal

basis consisting of eigenvectors of A. We will use the symbol
.
⊕ to denote an

orthogonal sum.

2.1. ∆-invariant spaces. We begin by introducing some important notions on
∆-invariant spaces, also known as shift-invariant spaces by translations of ∆.

Definition 2.1. A closed subspace V ⊂ L2(S) is ∆-invariant if TkV ⊂ V for all
k ∈ ∆.

Given a countable set of functions Φ ⊂ L2(S), we will denote

S(Φ) := span{Tkϕ : k ∈ ∆, ϕ ∈ Φ} .
Since L2(S) is separable, if V is a ∆-invariant subspace of L2(S), there exists a
countable set Φ ⊂ L2(S) such that V = S(Φ). In this case, we say that Φ is a set of
generators of V . Moreover, if V admits a finite set of generators, we say that V is
finitely generated, and if V = S(ϕ) for ϕ ∈ L2(S) we say that V is principal.

Definition 2.2. For f ∈ L2(S) and ω ∈ Ŝ define formally the fiberization map T
as

T [f ](ω) = {f̂(ω + `)}`∈∆⊥ . (2.2)

The fiberization map T is an isometric isomorphism between the Hilbert spaces
L2(S) and L2(Ω, `2(∆⊥)), see [15, Proposition 3.3]. Observe that by (2.1), for every
f ∈ L2(S) and k ∈ ∆, we have the following intertwining property:

T [Tkf ](ω) = e−2πiω.kT [f ](ω), ω ∈ Ω. (2.3)

The following map, first introduced by Helson [20], is fundamental in the theory
of shift-invariant spaces.

Definition 2.3. A range function is a map

J : Ω→ {closed subspaces of `2(∆⊥)}.

We say that a range function J is measurable if ω 7→ 〈PJ (ω)a, b〉`2(∆⊥) is mea-

surable for all a, b ∈ `2(∆⊥), where PJ (ω) ∈ B(`2(∆⊥)) is the orthogonal projection
onto J (ω).

The next theorem is due to Helson [20] and Bownik [11] in the Euclidean setting.
We state its generalization to the setting of LCA groups as it appears in [15].

Theorem 2.4 ([11, 15]). Let V be a closed subspace of L2(S) and T the map of
Definition 2.2. The subspace V is ∆-invariant if and only if there exists a unique
measurable range function JV such that

V =
{
f ∈ L2(S) : T [f ](ω) ∈ JV (ω), a.e. ω ∈ Ω

}
.
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Moreover, if V = S(Φ) for some countable set Φ of L2(S), the measurable range
function associated to S(Φ) satisfies

JV (ω) = span{T [ϕ](ω) : ϕ ∈ Φ}, a.e. ω ∈ Ω.

Remark 2.5. Uniqueness of the the measurable range function is understood in the
following sense: two range functions J1 and J2 are equal if J1(ω) = J2(ω) a.e. ω ∈
Ω.

From now on, given a ∆-invariant space V , we will simply write its associated
range function as J when it is clear from the context that we are referring to JV .

Given a range function J , the space

MJ = {F ∈ L2
(
Ω, `2(∆⊥)

)
: F (ω) ∈ J (ω), for a.e. ω ∈ Ω}, (2.4)

is a closed multiplicative-invariant subspace of L2
(
Ω, `2(∆⊥)

)
, i.e. for every F ∈

MJ we have that ψF ∈ MJ for all ψ ∈ L∞(Ω). By Theorem 2.4, if V is a
∆-invariant space with range function J , we have that T [V ] =MJ .

The following identity is due to Helson [20],

(PMJ F )(ω) = PJ (ω)(F (ω)), ∀F ∈ L2(Ω, `2(∆⊥)), a.e. ω ∈ Ω, (2.5)

and as a consequence, the next proposition holds.

Proposition 2.6. Let V ⊂ L2(S) be a ∆-invariant space with range function JV .
Then V ⊥ is also a ∆-invariant space with range function

JV ⊥(ω) = (JV (ω))⊥, a.e. ω ∈ Ω.

The result below gives a characterization of frames of translations of a ∆-invariant
space V in terms of its fibers, see [11, 15].

Theorem 2.7 ([11, 15]). Let Φ ⊂ L2(S) be a countable set. Then the following
conditions are equivalent:

(1) The system {Tkϕ : k ∈ ∆, ϕ ∈ Φ} is a frame of V with bounds A,B > 0.
(2) The system {T [ϕ](ω) : ϕ ∈ Φ } ⊂ `2(∆⊥) is a frame of J (ω) with uniform

bounds A,B > 0 for a.e. ω ∈ Ω.

Definition 2.8. The spectrum of a ∆-invariant space V with range function J is
defined by

Σ(V ) = {ω ∈ Ω : dimJ (ω) > 0} .

The result we state next gives a decomposition of a ∆-invariant space into an
orthogonal sum of principal ∆-invariant spaces satisfying some additional properties.
In [11] the theorem was proved in the Euclidean case but the proof can be extended
in a straightforward manner to our setting.

Theorem 2.9 ([11, Theorem 3.3]). Let V be a ∆-invariant space of L2(S). Then
V can be decomposed as an orthogonal sum

V =

.⊕
i∈N

S(ϕi), (2.6)

where ϕi is a Parseval frame generator of S(ϕi), and Σ(S(ϕi+1)) ⊂ Σ(S(ϕi)) for
all i ∈ N.

As a consequence, one obtains the following lemma which for the case of
dimJ (ω) < ∞ for a.e. ω ∈ Ω has been proved in [1], and extends with little
effort to the general case.

Lemma 2.10. Let V be a ∆-invariant space with range function J . Then, there
exist functions {ϕi}i∈N of L2(S) and a family of disjoint measurable sets {An}n∈N0

and A∞, such that Ω =
(⋃

n∈N0
An
)
∪A∞ and the following statements hold:
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(1) {Tkϕi : i ∈ N, k ∈ ∆} is a Parseval frame of V ,
(2) for every n ∈ N and for every i > n, T ϕi(ω) = 0 a.e. ω ∈ An,
(3) for every n ∈ N, {T ϕ1(ω), . . . , T ϕn(ω)} is an orthonormal basis of J (ω)

for a.e. ω ∈ An, and {T ϕi(ω)}i∈N is an orthonormal basis of J (ω) for a.e.
ω ∈ A∞,

(4) for every n ∈ N0, dimJ (ω) = n for a.e. ω ∈ An and dimJ (ω) = ∞ for
a.e. ω ∈ A∞.

2.2. ∆-preserving operators. The natural operators acting on ∆-invariant spaces
are the ∆-preserving operators. These are the ones that commute with translations
by elements of ∆, also known in the literature as shift-preserving operators.

Definition 2.11. Let V, V ′ ⊂ L2(S) be two ∆-invariant spaces and let L : V → V ′

be a bounded operator. We say that L is ∆-preserving if LTk = TkL for all k ∈ ∆.

The structure of ∆-preserving operators can be understood through the concept
of its range operator, which was first introduced in the Euclidean context in [11].

Definition 2.12. Given measurable range functions

J ,J ′ : Ω→ {closed subspaces of `2(∆⊥)},
a range operator O : J → J ′ is a choice of linear operators O(ω) : J (ω)→ J ′(ω),
ω ∈ Ω.

A range operator O is said to be bounded if ess supω∈Ω‖O(ω)‖op < ∞, and is
measurable if ω 7→ 〈O(ω)PJ (ω)a, b〉`2(∆⊥) is measurable for all a, b ∈ `2(∆⊥).

There exists a correspondence between bounded ∆-preserving operators and
bounded measurable range operators. In what follows we describe how this corre-
spondence can be deduced.

Definition 2.13. For ψ ∈ L∞(Ω), denote as Mψ : L2
(
Ω, `2(∆⊥)

)
→ L2

(
Ω, `2(∆⊥)

)
the multiplication operator

MψF (ω) = ψ(ω)F (ω), F ∈ L2
(
Ω, `2(∆⊥)

)
, ω ∈ Ω,

which is well defined and bounded.

Let D = {e−2πiω.k}k∈∆ ⊆ L∞(Ω), then D is a determining set for L1(Ω) (see
[12, Definition 3.3]). If L : V → V ′ is a bounded ∆-preserving operator, then the
operator

L̃ = T LT −1 :MJV
→MJV ′ (2.7)

is bounded and, by (2.3), satisfies that L̃Mψ = MψL̃ for every ψ ∈ D. By [12,
Theorem 3.7], there exists a bounded measurable range operator O : JV → JV ′
such that L̃F (ω) = O(ω)F (ω), for every F ∈MJV

, ω ∈ Ω. That is,

T [Lf ](ω) = O(ω)T [f ](ω), f ∈ V, ω ∈ Ω. (2.8)

Moreover, the correspondence between L and O is one-to-one if we identify range
operators that agree a.e. ω ∈ Ω.

A different way to understand range operators is through the direct integral
theory. In fact, it can be proved (see [12]) that

MJV
=

∫ ⊕
Ω

JV (ω) dω

and that the operator L̃ defined in (2.7) is a decomposable operator such that

L̃ =

∫ ⊕
Ω

O(ω) dω.

In the following theorem we enumerate some results that relate the properties of
L with the pointwise properties of its range operator O (see [12] for proofs).
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Theorem 2.14 ([12]). Let V, V ′ ⊂ L2(S) be two ∆-invariant spaces. Let L : V →
V ′ be a ∆-preserving operator with corresponding range operator O : JV → JV ′ .
Then the following are true:

(1) ‖L‖op = ess supω∈Ω‖O(ω)‖op.
(2) The adjoint L∗ : V ′ → V is also ∆-preserving with corresponding range

operator O∗ : JV ′ → JV given by O∗(ω) = (O(ω))∗ for a.e. ω ∈ Ω.
(3) L is normal (self-adjoint) if and only if O(ω) is normal (self-adjoint) for

a.e. ω ∈ Ω.
(4) L is injective if and only if O(ω) is injective for a.e. ω ∈ Ω.
(5) L is a (partial) isometry if and only if O(ω) is a (partial) isometry for a.e.

ω ∈ Ω.
(6) The space V ′′ = L(V ) ⊆ L2(S) is ∆-invariant and its range function is

given by

JV ′′(ω) = O(ω)JV (ω),

for a.e. ω ∈ Ω.
(7) The space ker(L) is ∆-invariant and its range function is given by K(ω) =

ker(O(ω)) for a.e. ω ∈ Ω.

2.3. Measurable set-valued maps. Given L : V → V a bounded ∆-preserving
operator, there is a relation between the spectrum of L and the pointwise spectrum
of its range operator, as we will discuss in the next subsection. For that, we need to
introduce the definition of measurable set-valued maps. We refer the reader to [6]
for a detailed exposition on the set-valued maps’ theory.

Definition 2.15. Let (X,M) be a measurable space and Y a topological space. A
set-valued map from X to Y is a map F : X  Y whose values are sets in Y . That
is, F (x) ⊆ Y for every x ∈ X. If F (x) is closed (compact) for every x ∈ X, then F
is said to be a set-valued map to closed (compact) values.

A set-valued map is said to be measurable if for every open set O ⊂ Y , the set

F−1(O) := {x ∈ X : F (x) ∩O 6= ∅} ∈ M.

For example, in [12] it was proved that a measurable range function J is a
measurable set-valued map Ω `2(∆⊥) to non-empty closed values.

One very important result that we will need later is the existence of a dense set of
measurable selections for measurable set-valued maps, which is known as Castaign’s
Selection Theorem (see [6] for a proof).

Definition 2.16. Let (X,M) be a measurable space and Y a topological space.
Given F : X  Y a measurable set-valued map, we say that a measurable function
f : X → Y is a measurable selection of F if f(x) ∈ F (x) for every x ∈ X.

Theorem 2.17 (Castaign’s Selection Theorem). Let (X,M) be a measurable space,
Y a complete separable metric space and F : X  Y a measurable set-valued map
to non-empty closed values, then there exists a sequence of measurable selections
fj : X → Y , j ∈ N such that for every x ∈ X.

F (x) = {fj(x) : j ∈ N}. (2.9)

2.4. The spectrum of ∆-preserving operators. We start this subsection with
Theorem 2.18 and Theorem 2.19 whose proofs appeared in [12] and also in [16, 24]
in the context of decomposable operators on direct integral Hilbert spaces.

The first theorem establishes that the spectra of the fibers of a ∆-preserving
operator L define a measurable set-valued map and describe the relationship between
those spectra and the spectrum of L.
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Theorem 2.18 ([12]). Let L : V → V be a ∆-preserving operator with range
operator O : J → J . Then F : Ω  C defined by F (ω) = σ(O(ω)), ω ∈ Ω is a
measurable set-valued map to non-empty compact values and F (ω) ⊆ σ(L) for a.e.
ω ∈ Ω.

Moreover, when L is normal, σ(L) coincides with the smallest closed subset of C
that contains F (ω) for a.e. ω ∈ Ω.

Suppose now that L : V → V is a normal, bounded and ∆-preserving operator.
Then, there exists a spectral measure E of L and we have that

L =

∫
σ(L)

λ dE(λ).

Since the range operator O satisfies that O(ω) is normal for a.e. ω ∈ Ω, then there
exists a spectral measure Eω of O(ω) for a.e. ω ∈ Ω and

O(ω) =

∫
σ(O(ω))

λ dEω(λ).

In this direction, the following result was obtained.

Theorem 2.19 ([12]). Let L : V → V a normal, bounded and ∆-preserving operator
with range operator O. Let E be the spectral measure of L and Eω the spectral
measure of O(ω) for a.e. ω ∈ Ω. Then, for any Borel set B ⊂ C, E(B) is a
∆-preserving operator and its range operator is given by Eω(B).

In the next section, we will discuss to what extent the diagonalization properties
of the range operator can provide the ∆-preserving operator with a special structure.
For this purpose, we are interested in finding measurable selections of the eigenvalues
of the range operator.

Assume first that L is acting on a ∆-invariant space V such that dimJ (ω) <∞
for a.e. ω ∈ Ω. Then, we have that O(ω) : J (ω)→ J (ω) is an operator acting on
a finite-dimensional space for a.e. ω ∈ Ω. In [1], a construction of a measurable
selection of the eigenvalues of O was obtained in the following sense.

Theorem 2.20 ([1]). Let O : J → J be a bounded measurable range operator on a
range function satisfying dimJ (ω) <∞ for a.e. ω ∈ Ω. Then, there exist functions
λj ∈ L∞(Ω), j ∈ N, such that

(1) λj(ω) 6= λj′(ω) for j 6= j′ and for a.e. ω ∈ Ω,
(2) σ(O(ω)) = {λ1(ω), . . . , λi(ω)} for a.e. ω ∈ An,i and for every i ≤ n,

i, n ∈ N,

where An,i are the measurable sets:

An,i := {ω ∈ An : #σ(O(ω)) = i} , (2.10)

and {An}n∈N are the sets defined in Lemma 2.10.

Remark 2.21. If r = ess supω∈Ω #σ(O(ω)) <∞, then |An,i| = 0 for every i > r.
Thus if we discard the functions λj such that λj(ω) is not an eigenvalue of O(ω) for
a.e. ω ∈ Ω, the number of measurable functions constructed, after discarding, will
be r in total.

We remark that dimJ (ω) <∞ for a.e. ω ∈ Ω does not imply that V is finitely
generated, as we show in the example below.

Example 2.22. Let S = R, ∆ = Z and Ω = [0, 1). For every n ∈ N, define
the set En := [0, 1

n ) and ψn ∈ L2(R) by the map T as T [ψn] := enχEn
, where

en is the nth canonical sequence of `2(Z). Then V := S({ψn : n ∈ N}) is a
Z-invariant space which is not finitely generated and its range function J satisfy
that dimJ (ω) <∞ for a.e. ω ∈ [0, 1). Indeed, let An := En \En+1 for n ∈ N, then
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[0, 1) =
⋃
n∈NAn ∪ {0}. For every n ∈ N and for a.e. ω ∈ An, the dimension of

J (ω) is n since {T [ψ1](ω), . . . , T [ψn](ω)} is an orthonormal basis of J (ω).

To remove the condition dimJ (ω) <∞ for a.e. ω ∈ Ω, Theorem 2.20 is no longer
useful since its proof strongly relies on the fact that the dimension of J (ω) is finite
for a.e. ω ∈ Ω. In the following section we will see that, under certain conditions,
Castaign’s Selection Theorem (Theorem 2.17) will be helpful in this endeavor.

3. ∆-diagonalization

We are interested in studying the structure of bounded, normal and ∆-preserving
operators whose fibers are diagonalizable operators almost everywhere. The question
that arises is the following. Suppose that L : V → V is a bounded, normal and
∆-preserving operator with range operator O : J → J . If O(ω) is diagonalizable
for a.e. ω ∈ Ω, does this induce any simpler kind of decomposition for L?

This question has been studied in [1] in the Euclidean setting with ∆ = Zd, where
a positive answer was obtained for the case of normal ∆-preserving operators acting
on finitely generated ∆-invariant spaces. For this, the authors introduced three new
concepts which they called s-eigenvalue, s-eigenspace and s-diagonalization.

3.1. Background. In this subsection we will review part of the work done in [1].
Along the way, we will translate the statements to the general group setting and we
will show the results that can be effortlessly extended to ∆-invariant spaces that
are not finitely generated.

Given a sequence a = {a(s)}s∈∆ ∈ `1(∆), we denote its Fourier transform as

â(ω) =
∑
s∈∆

a(s)e−2πiω.s, ω ∈ Ω.

This extends to `2(∆) and it holds that a ∈ `2(∆) if and only if â ∈ L2(Ω).
Moreover, if â ∈ L∞(Ω), we will say that a is of bounded spectrum.

Definition 3.1. Given a ∈ `2(∆) of bounded spectrum, let Mâ : L2(Ω, `2(∆⊥))→
L2(Ω, `2(∆⊥)) be the multiplication operator by â, as in Definition 2.13. We denote
by Λa : L2(S)→ L2(S) the operator defined by

Λa := T −1MâT ,

which is clearly well-defined and bounded.

Let us denote by B the following set:

B := {ϕ ∈ L2(S) : {Tkϕ}k∈∆ is a Bessel sequence}.

Recall that if a ∈ `2(∆) and f ∈ B, then the series∑
s∈∆

a(s)Tsf (3.1)

converges in L2(S).

Proposition 3.2. Let a = {a(s)}s∈∆ ∈ `2(∆) be of bounded spectrum. If f ∈ B,
then

Λaf =
∑
s∈∆

a(s)Tsf,

with convergence in L2(S).
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Proof. Given that (3.1) is convergent in L2(S), for a.e. ω ∈ Ω,

T

(∑
s∈∆

a(s)Tsf

)
(ω) =

{
F

(∑
s∈∆

a(s)Tsf

)
(ω + `)

}
`∈∆⊥

=

{∑
s∈∆

a(s)e−2πiω.sf̂(ω + `)

}
`∈∆⊥

= â(ω){f̂(ω + `)}`∈∆⊥

= MâT f(ω).

Thus, Λaf =
∑
s∈∆ a(s)Tsf . �

On the other hand, B is a dense set of L2(S) since the functions of compact
support in L2(S) belong to B (see [17, Proposition 9.3.4], where a proof is given in
the Euclidean case and can be immediately extended to our group context). Then, if
a ∈ `2(∆) is of bounded spectrum, it is possible to give an alternative definition for

Λa as the continuous extension of the bounded operator Λ̃a : B→ L2(S), defined
by

Λ̃af :=
∑
s∈∆

a(s)Tsf. (3.2)

For this reason, sometimes we will write Λaf as the series (3.2), even for functions

which are not in B, meaning the extension of Λ̃a to L2(S).
Notice that in the particular case when a ∈ `1(∆) (and thus of bounded spectrum),

an easy computation shows that Λa =
∑
s∈∆ a(s)Ts where the convergence is in the

strong operator topology of B(L2(S)).
Observe that if V is ∆-invariant, then Λa(V ) ⊆ V whenever it is bounded, and in

this case Λa : V → V is a ∆-preserving operator with corresponding range operator
Oa(ω) = â(ω)Iω, a.e. ω ∈ Ω, where Iω denotes the identity operator on J (ω) for
a.e. ω ∈ Ω.

The following corresponds to the definition of s-eigenvalue and s-eigenvector in
[1].

Definition 3.3. Let V ⊂ L2(S) be a ∆-invariant space and L : V → V a bounded
∆-preserving operator. Given a ∈ `2(∆) a sequence of bounded spectrum, we say
that Λa is a ∆-eigenvalue of L if

Va := ker (L− Λa) 6= {0}.

We call Va the ∆-eigenspace associated to Λa.

These ∆-eigenspaces Va are ∆-invariant spaces and satisfy that LVa ⊆ Va.
The proposition below was proved in [1] showing that the ∆-eigenvalues of L are
intrinsically related to the eigenvalues of the range operator of L.

Proposition 3.4. Let V ⊂ L2(S) be a ∆-invariant space with range function J ,
L : V → V a bounded ∆-preserving operator with range operator O and a ∈ `2(∆) a
sequence of bounded spectrum. Then, the following statements hold:

(1) If Λa is a ∆-eigenvalue of L, then â(ω) is an eigenvalue of O(ω) for a.e.
ω ∈ Σ(Va).

(2) The mapping ω 7→ ker (O(ω)− â(ω)Iω), ω ∈ Ω is the measurable range
function of Va, which we will denote by Ja.

Remark 3.5. In fact, the converse for statement (1) in Proposition 3.4 is true in
the following sense: if â(ω) is an eigenvalue of O(ω) for a.e. ω in a set of positive
measure, then Λa is a ∆-eigenvalue of L.
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The following is an extension of the definition of s-diagonalization given in [1],
which was originally stated for finitely generated ∆-invariant spaces. Here, we
extend the definition to any ∆-invariant space.

Definition 3.6. Let V ⊂ L2(S) be a ∆-invariant space and L : V → V a bounded,
∆-preserving operator. We say that L is ∆-diagonalizable if there exists a set of
sequences of bounded spectrum {aj}j∈I ⊆ `2(∆), where I is at most countable, such
that Λaj is a ∆-eigenvalue of L for every j ∈ I and V can be decomposed into the
orthogonal sum

V =

.⊕
j∈I

Vaj . (3.3)

Given such a decomposition, we will say that {aj}j∈I ⊆ `2(∆) is a ∆-diagonalization
of L.

If an operator L is ∆-diagonalizable, a decomposition as in (3.3) exists but is not
unique. Observe that if {aj}j∈I is a ∆-diagonalization of L, then

L =
∑
j∈I

ΛajPVaj
, (3.4)

where PVaj
is the orthogonal projection of V onto Vaj and, if I is an infinite set,

the convergence is in the strong operator topology sense.
The next theorem enumerates some results regarding ∆-diagonalizable operators.

Statements (1) and (3) are extended versions of [1, Theorem 6.4] and [1, Theorem
6.16] respectively.

Theorem 3.7. Let V be a ∆-invariant space with range function J and L : V → V a
bounded ∆-preserving operator with range operator O. Then, the following statements
hold:

(1) If L is ∆-diagonalizable, O(ω) is diagonalizable for a.e. ω ∈ Ω. Moreover,
if {aj}j∈I is a ∆-diagonalization of L, then σp(O(ω)) ⊂ {âj(ω) : j ∈ I}
for a.e. ω ∈ Ω.

(2) If L is ∆-diagonalizable, L is normal.
(3) If dimJ (ω) <∞ for a.e. ω ∈ Ω and L is normal, then L is ∆-diagonalizable.

Proof. The statement in (1) follows straightforwardly from the Definition 3.6 and
Proposition 3.4.

In order to see (2), observe that if L is ∆-diagonalizable, then O(ω) is normal for
a.e. ω ∈ Ω since it is diagonalizable for a.e. ω ∈ Ω. Thus, by Theorem 2.14, L is
normal.

Finally, we prove (3). If L is normal then O(ω) is normal for a.e. ω ∈ Ω due
to Theorem 2.14. Thus, we have that O(ω) is a normal operator acting on a
finite-dimensional space J (ω), and hence diagonalizable for a.e. ω ∈ Ω.

By Theorem 2.20, there exist functions λj ∈ L∞(Ω), j ∈ N, such that for a.e.
ω ∈ Ω we have the following orthogonal decomposition

J (ω) =

.⊕
j∈N

ker(O(ω)− λj(ω)Iω). (3.5)

We discard the functions such that ker(O(ω)−λj(ω)Iω) = {0} for a.e. ω ∈ Ω. Since
for every j, λj ∈ L∞(Ω), there exists a sequence of bounded spectrum aj ∈ `2(∆)
such that âj = λj . Then, Λaj is a ∆-eigenvalue of L for every j and by (3.5) we
have the orthogonal decomposition

V =

.⊕
j

Vaj .
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�

Notice that because of Remark 2.21, if V is finitely generated and L is ∆-
diagonalizable, then there exists a ∆-diagonalization where the sum in (3.4) is
finite.

In general it is uncertain if the diagonalization of O(ω) for a.e. ω ∈ Ω implies
that L is ∆-diagonalizable. This is due to the fact that it depends on the possibility
to obtain a measurable selection of the eigenvalues of the range operator.

3.2. ∆-diagonalization on general ∆-invariant spaces. In this subsection we
establish conditions on the range operator of a ∆-preserving operator acting on a
general ∆-invariant space in order to admit a ∆-diagonalization. For this, we will
make use of the following lemma.

Lemma 3.8. Let (X,M) be a measurable space, and let F : X  C be a measurable
set-valued map to non-empty closed values such that F (x) ⊆ K for every x ∈ X
and K ⊂ C a compact set. Then, there exists a sequence of measurable bounded
functions gj : X → C, j ∈ N such that for every j 6= j′, gj(x) 6= gj′(x) for every
x ∈ X and

F (x) ⊂ {gj(x) : j ∈ N}, x ∈ X. (3.6)

Proof. By Theorem 2.17 we have a sequence of measurable functions fj : X → Y ,

j ∈ N such that F (x) = {fj(x) : j ∈ N} for every x ∈ X. We construct the functions
gj , j ∈ N inductively. Choose z0 /∈ K such that z0 + j /∈ K for every j ∈ N.

Let g1 := f1. Now, consider the set E2 := {x ∈ X : f2(x) = g1(x)}. Since both
f2 and g1 are measurable functions, we have that E2 is measurable. Now, define
g2 : X → C as follows,

g2(x) :=

{
f2(x) x /∈ E2

z0 + 2 c.c.
(3.7)

It is clear that g2 is a measurable bounded function and g1(x) 6= g2(x) for every
x ∈ X.

Now, let E3 := {x ∈ X : f3(x) = g2(x)} ∪ {x ∈ X : f3(x) = g1(x)}. Again,
since f3, g2 and g1 are measurable functions, E3 is a measurable set. Hence, we
define g3 : X → C as

g3(x) :=

{
f3(x) x /∈ E3

z0 + 3 c.c.
(3.8)

Again, g3 is a measurable bounded function and g3(x) 6= g2(x) 6= g1(x) for every
x ∈ X.

Proceeding this way, in countable steps we obtain a sequence of measurable
bounded functions gj : X → C, j ∈ N such that gj(x) 6= gj′(x) for j 6= j′ and for
every x ∈ X. Moreover, it is clear that, by construction, {fj(x) : j ∈ N} ⊂ {gj(x) :

j ∈ N} for every x ∈ X and so F (x) ⊂ {gj(x) : j ∈ N} for every x ∈ X. �

Now, we are ready to state and prove the following theorem.

Theorem 3.9. Let V ⊆ L2(S) be a ∆-invariant space with range function J . Let
L : V → V be a bounded, normal and ∆-preserving operator with range operator
O : J → J . Suppose that O(ω) is diagonalizable and all its eigenvalues are isolated
points of σ(O(ω)) for a.e. ω ∈ Ω. Then, L is ∆-diagonalizable.

Proof. By Theorem 2.18 and Lemma 3.8, there exists a sequence of measurable
and bounded functions gj : Ω → C, j ∈ N such that gj(ω) 6= g′j(ω) for j 6= j′ and
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σ(O(ω)) ⊆ {gj(ω) : j ∈ N} for a.e. ω ∈ Ω. Furthermore, since all the eigenvalues
of O(ω) are isolated points of σ(O(ω)) for a.e. ω ∈ Ω, then

σp(O(ω)) ⊂ {gj(ω) : j ∈ N} (3.9)

for a.e. ω ∈ Ω.
Since O(ω) is diagonalizable for a.e. ω ∈ Ω, the following equality holds

J (ω) =

.⊕
j∈N

ker (O(ω)− gj(ω)Iω) (3.10)

where the sum is orthogonal. Notice that ker (O(ω)− gj(ω)Iω) could be {0} for
some j and some set of positive measure. However, we discard all the functions gj
such that ker (O(ω)− gj(ω)Iω) = {0} almost everywhere.

Now, since gj is measurable and bounded, there exists a sequence of bounded
spectrum aj ∈ `2(∆) such that âj = gj . Then, Λaj is a ∆-eigenvalue of L for all j
and by (3.10) we get the orthogonal decomposition

V =

.⊕
j

Vaj .

�

In what follows we discuss two examples of operators satisfying that O(ω) is
diagonalizable and σp(O(ω)) are all isolated points of σ(O(ω)) for a.e. ω ∈ Ω and
hence ∆-diagonalizable. As a first example, we give the following case.

Example 3.10. Let L : V → V be a bounded, normal, injective and ∆-preserving
operator such that O(ω) is compact for a.e. ω ∈ Ω. For this case, by Theorem 2.14,
O(ω) is normal and injective for a.e. ω ∈ Ω. Hence, O(ω) is diagonalizable and its
eigenvalues are all isolated points of σ(O(ω)) for a.e. ω ∈ Ω, and thus, by Theorem
3.9, L is ∆-diagonalizable.

Notice that O(ω) being compact a.e. ω ∈ Ω does not imply that L is compact,
this can be seen as a consequence of the following two results.

Proposition 3.11. Let L : V → V be a bounded ∆-preserving operator. Then, L
does not have eigenvalues with finite multiplicity.

Proof. Suppose there is an eigenvalue λ of finite multiplicity. Then, Eλ = ker(L−
λI) 6= {0}. Since Eλ is a ∆-invariant space and the only finite dimensional ∆-
invariant space is the zero space, we obtain a contradiction. �

Corollary 3.12. Let L : V → V be a bounded ∆-preserving operator. Then, L is
compact if and only if L = 0.

Proof. If L is compact, L∗L is bounded, normal, compact and ∆-preserving . Hence,
L∗L is diagonalizable. Moreover, by compactness, every eigenvalue λ 6= 0 of L∗L
should be of finite multiplicity. By Proposition 3.11, we deduce that λ = 0 is the
only possible eigenvalue. Hence L∗L = 0 and so L = 0. �

For instance, let V be a finitely generated ∆-invariant space with range function
J and take any bounded ∆-preserving operator L 6= 0 acting on V . Then, O(ω) :
J (ω)→ J (ω) is compact since dimJ (ω) <∞ for a.e. ω ∈ Ω but L is not.

Remark 3.13. Let L be a bounded, normal and ∆-preserving operator such that
O(ω) is compact for a.e. ω ∈ Ω but not necessarily injective. Given V ′ := ker(L)⊥

the orthogonal complement of ker(L) in V , we have that V ′ is a ∆-invariant space
which is also invariant by L. Thus, define L′ := L|V ′ : V ′ → V ′, then L′ is
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an operator satisfying the same properties as in Example 3.10. Hence, L′ is ∆-
diagonalizable on V ′. Given a ∆-diagonalization {aj}j∈I of L′ : V ′ → V ′, we can
decompose V as follows

V = ker(L)
.
⊕

.⊕
j

V ′aj .

where V ′aj are ∆-eigenspaces of L′.

We now give some sufficient conditions for a ∆-preserving operator to admit
compact range operator a.e. ω ∈ Ω.

Proposition 3.14. Let V be a ∆-invariant space with range function J and
L : V → V a bounded ∆-preserving operator with range operator O.

(1) If V ′ = L(V ) is a ∆-invariant space satisfying that dimJV ′(ω) <∞ for a.e.
ω ∈ Ω, then O(ω) is of finite rank a.e. ω ∈ Ω. We will call these operators
of finite range rank.

(2) If there exists a sequence {Ln}n∈N such that Ln : V → V is a bounded
∆-preserving operator of finite range rank for every n ∈ N, and Ln → L
when n→∞ uniformly, then O(ω) is compact for a.e. ω ∈ Ω.

Proof. (1) Recall that by item (6) in Theorem 2.14 the range function associated

to L(V ) is the one given by O(ω)J (ω) for a.e. ω ∈ Ω. Thus, O(ω) is a finite rank
operator for a.e. ω ∈ Ω.

(2) Let On be the range operator associated to each Ln for every n ∈ N, then
by (1) in Theorem 2.14 we have that On(ω)→ O(ω) when n→∞ for a.e. ω ∈ Ω.
However using (1) of this proposition we have that On(ω) is of finite rank for every
n ∈ N, thus O(ω) is compact for a.e. ω ∈ Ω. �

For the second example we need to give the following definition.

Definition 3.15. Let H be a separable Hilbert space, A : H → H a normal bounded
operator, I a finite index set and {fi}i∈I ⊂ H. We say that (H, A, {fi}i∈I) is a
DS-triple if {Anfi : n ∈ N, i ∈ I} is a frame of H. In that case, we say that A
admits a DS-triple.

The problem of finding conditions onH, A and {fi}i∈I under which (H, A, {fi}i∈I)
is a DS-triple has been well studied and is of special interest in the context of
dynamical sampling theory, see [3, 4, 2, 5, 14]. The following result has been proved
in [14].

Theorem 3.16 ([14]). Let H be an infinite-dimensional separable Hilbert space,
A : H → H a bounded normal operator and {fi}i∈I ⊂ H with I a finite index
set. If (H, A, {fi}i∈I) is a DS-triple, then A is diagonalizable and σp(A) ⊂ D,
where D = {λ ∈ C : |λ| < 1}. Moreover, in this case, the dimension of each
eigenspace is less than or equal to #I and the cluster points of σp(A) are contained
in S1 = {λ ∈ C : |λ| = 1}.

Remark 3.17. In a similar way as in Corollary 3.12, one can also prove that if a
∆-preserving operator L : V → V admits a DS-triple (V,L, {fi}i∈I) with I a finite
index set, then L = 0. However, a ∆-preserving operator L 6= 0 could satisfy that
O(ω) admits a DS-triple for a.e. ω ∈ Ω.

Observe that a normal compact operator acting on an infinite-dimensional Hilbert
space never admits a DS-triple since the only cluster point of its eigenvalues, if any,
is zero. Thus, we have the following example.
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Example 3.18. Let V be a ∆-invariant space with range function J such that
dimJ (ω) = ∞ for a.e. ω ∈ Σ(V ). Let L : V → V be a bounded, normal ∆-
preserving operator such that O(ω) is admits a DS-triple for a.e. ω ∈ Σ(V ). By
Theorem 2.14, O(ω) is normal for a.e. ω ∈ Ω. Then, by Theorem 3.16, O(ω) is
diagonalizable and its eigenvalues are all isolated points of σ(O(ω)) for a.e. ω ∈ Ω.
Then, by Theorem 3.9, L is ∆-diagonalizable.

Finally we give a sufficient condition for a ∆-preserving operator in order to
guarantee that its fibers admit a DS-triple which is an immediate consequence of
Theorem 2.7.

Proposition 3.19. Let V be a ∆-invariant space with range function J . Let
L : V → V a bounded ∆-preserving operator with range operator O. Assume that
there exist functions {fi}i∈I , with I a finite index set, such that {TkLjfi : k ∈
∆, j ∈ N, i ∈ I} is a frame of V , then (J (ω), O(ω), {T [fi](ω)}i∈I) is a DS-triple for
a.e. ω ∈ Ω.

4. Γ-preserving operators and Γ-diagonalization

Throughout this section, we will consider a discrete and at most countable group
G acting on S by the continuous automorphisms x 7→ gx ∈ S for g ∈ G and x ∈ S.
As before, ∆ is a uniform lattice of S and we will assume that the action of G on
S preserves ∆, that is g∆ = ∆ for all g ∈ G. This implies in particular that the
action of G preserves the Haar measure of S, i.e.

|gE| = |E| , ∀ E ⊂ S measurable, ∀ g ∈ G.
This can be proved as follows. Since G acts on S by automorphisms, then (see e.g.
[21, Theorem 15.26]) there exists a homomorphism δ : G→ R+ such that, for all
measurable E ⊂ S we have |gE| = δ(g)|E|. Let Q ⊂ S be a fundamental domain
for S/∆. Its measure |Q| is finite and, since the action of G preserves ∆, then for
all g ∈ G the set gQ is a fundamental domain, so |gQ| = |Q|. Thus, δ = 1.

The action of G on S induces an action of G on Ŝ by duality:

〈g∗ξ, x〉 := 〈ξ, gx〉, g ∈ G, ξ ∈ Ŝ, x ∈ S.

This dual action of G on Ŝ satisfies g∗1g
∗
2 = (g2g1)∗ for all g1, g2 ∈ G, and it preserves

∆⊥ and the Haar measure of Ŝ. Moreover, it induces an action on the quotient

group Ŝ/∆⊥ by

g∗[ξ] := [g∗ξ] , ξ ∈ Ŝ, g ∈ G,
where [ξ] is the class of ξ in Ŝ/∆⊥. This implies that we can define an action of G

on any Borel section Ω ⊂ Ŝ of Ŝ/∆⊥, as follows. Let qΩ : Ŝ→ Ω be the canonical

section, that is, qΩ(ξ) is the unique point in [ξ] ∩ Ω, and denote by νΩ : Ŝ→ ∆⊥

the map

νΩ(ξ) = qΩ(ξ)− ξ , ξ ∈ Ŝ. (4.1)

Then, the maps {g] : Ω→ Ω, g ∈ G} given by

g]ω = qΩ(g∗ω) (4.2)

define an action, satisfying g]1g
]
2 = (g2g1)]. Indeed, we have

g]1g
]
2ω = qΩ(g∗1g

]
2ω) = qΩ(g∗1qΩ(g∗2ω)) = qΩ(g∗1(g∗2ω + νΩ(g∗2ω)))

= qΩ(g∗1g
∗
2ω + g∗1νΩ(g∗2ω)) = qΩ(g∗1g

∗
2ω) = qΩ((g2g1)∗ω)

where the second to last identity is due to the fact that g∗1νΩ(g∗2ω) ∈ ∆⊥. The

action (4.2) will coincide with the dual action of G on Ŝ only when Ω is an invariant

subset of Ŝ for the dual action.
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Given that the action of G preserves ∆, we can define the semidirect product

Γ = ∆ oG = {(k, g) : k ∈ ∆, g ∈ G},

with composition law

(k, g) · (k′, g′) = (k + gk′, gg′).

The action of Γ on S reads

γx = gx+ k , γ = (k, g) ∈ Γ , x ∈ S.

A motivational example for this setting is given by the crystal (or crystallographic)
groups.

Definition 4.1. A crystal group Γ is a discrete subgroup of the isometries of Rd
that has a closed and bounded Borel section P , that is,

(1)
⋃
γ∈Γ γP = Rd.

(2) If γ 6= γ′, then |γP ∩ γ′P | = 0.

There is a subclass of the crystal groups we are interested in.

Definition 4.2. We say that a crystal group Γ splits if it is the semidirect product
Γ = ∆ oG of a finite group G and a uniform lattice ∆ of Rd.

In particular, it can be seen that any crystal group can be embedded in a crystal
group that splits. We refer the reader to [10, 18, 19] for more general results on
these groups.

We will now define some unitary representations which play a fundamental role
in what follows.

Definition 4.3. We denote by R : G → U(L2(S)) the unitary representation
defined by

Rgf(x) = f(g−1x) , f ∈ L2(S), g ∈ G.

Note that, since RgTk = TgkRg, the map (k, g) 7→ TkRg defines a unitary
representation of the semidirect product group Γ = ∆ oG on L2(S). Also, for all
f ∈ L2(S) and all g ∈ G, the following relation holds:

R̂gf(ξ) = f̂(g∗ξ). (4.3)

Definition 4.4. We denote by t : ∆⊥ → U(`2(∆⊥)) the left regular representation
of ∆⊥, that is

t`a(`′) = a(`′ − `) , a ∈ `2(∆⊥), `, `′ ∈ ∆⊥.

and by r : G→ U(`2(∆⊥)) the unitary representation defined by

rga(`) = a(g∗`) , g ∈ G, a ∈ `2(∆⊥), ` ∈ ∆⊥.

As for the previous case, since rgt` = t(g∗)−1`rg, and recalling that g∗1g
∗
2 = (g2g1)∗,

the map (`, g) 7→ t`rg defines a unitary representation of the semidirect product
group ∆⊥ oG on `2(∆⊥).

Finally, we introduce the following representation of G on L2(Ω, `2(∆⊥)).

Definition 4.5. We denote by Π the unitary representation of G on the Hilbert
space L2(Ω, `2(∆⊥)) defined by

Π(g) = T RgT −1.

The explicit form of the representation Π is provided by the following proposition.
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Proposition 4.6. Let Ω be a fundamental set for Ŝ/∆⊥ and let π : Ω × G →
U(`2(∆⊥)) be the map

πω(g)a(`) = rgtνΩ(g∗ω)a(`) = a(g∗`− νΩ(g∗ω))

where νΩ is given by (4.1). Then the representation Π reads explicitly

Π(g)F (ω) = πω(g)F (g]ω), F ∈ L2(Ω, `2(∆⊥)), g ∈ G, a.e. ω ∈ Ω. (4.4)

Moreover, the map (ω, g) 7→ πω(g) satisfies πω(e) = I`2(∆⊥) and

πω(g1g2) = πω(g1)πg
]
1ω(g2). (4.5)

In particular, if Ω is invariant under the dual action of G on Ŝ, then πω(g) = rg.

Proof. By (4.1), (4.2) and (4.3), for all f ∈ L2(S) we have that

T [Rgf ](ω) = {f̂(g∗ω + g∗`)}`∈∆⊥ = {f̂(g]ω + g∗`− νΩ(g∗ω))}`∈∆⊥

= πω(g)T [f ](g]ω)

which proves (4.4) using that T is an isomorphism. In order to prove (4.5), recall
that Π is a unitary representation, because it is defined as the intertwining of a
unitary representation with an isomorphism of Hilbert spaces. Using (4.4), this
implies that

Π(g1)Π(g2)F (ω) = Π(g1g2)F (ω) = πω(g1g2)F (g]2g
]
1ω).

On the other hand, we have

Π(g1)Π(g2)F (ω) = πω(g1)Π(g2)F (g]1ω) = πω(g1)πg
]
1ω(g2)F (g]2g

]
1ω).

Since both relations hold for all F ∈ L2(Ω, `2(∆⊥)), all g ∈ G and a.e. ω ∈ Ω, this
proves (4.5). �

4.1. Γ-invariant spaces. Given this setting, we are now interested in the subspaces
of L2(S) that are invariant under the action of the unitary representation TkRg.
These spaces have been first studied in great detail in [8].

Definition 4.7. We say that a closed subspace V ⊂ L2(S) is Γ-invariant if
TkRgV ⊂ V for all (k, g) ∈ Γ.

A Γ-invariant space is, in particular, ∆-invariant as it can be seen that V is
Γ-invariant if

f ∈ V ⇒ Tkf ∈ V ∀ k ∈ ∆ , and Rgf ∈ V ∀ g ∈ G.

Consequently, V is Γ-invariant if and only if V is ∆-invariant, and Π(g)T [V ] ⊂
T [V ] for every g ∈ G, where Π is the representation given in Definition 4.5.

The following theorem gives a characterization of Γ-invariant closed subspaces in
terms of a covariance property of the range function associated to its ∆-invariant
subspace. This theorem generalizes the one in [8, Theorem 3.3] where a proof was
given under the additional hypothesis that the fundamental domain Ω is invariant

under the dual action of G on Ŝ. However, in that paper this additional hypothesis
was omitted, as one of the reviewers of this paper pointed out.

Theorem 4.8. A closed subspace V of L2(S) is Γ-invariant if and only if it is
∆-invariant and its associated range function J satisfies

J (ω) = πω(g)J (g]ω) , a.e. ω ∈ Ω , ∀g ∈ G. (4.6)
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Proof. Assume that V is ∆-invariant with range function J and, for g ∈ G, let us
denote by Vg = Rg(V ). Then Vg is also ∆-invariant, and we denote by Jg its range
function. We claim that

Jg(ω) = πω(g)J (g]ω) , a.e. ω ∈ Ω , ∀g ∈ G.

Note that, by proving this claim, we also prove the statement of the Theorem.
To prove the claim recall that, by Theorem 2.4, F ∈ T [V ] ⇐⇒ F (ω) ∈ J (ω)

for a.e. ω ∈ Ω and, by (4.4), for F ∈ T [V ] we have Π(g)F (ω) = πω(g)F (g]ω).
Assume first that, for a given g ∈ G, we have a function H ∈ L2(Ω, `2(∆⊥)) such

that H(ω) ∈ Jg(ω) for a.e. ω ∈ Ω, that is H ∈ T [Rg(V )]. We want to prove that
H(ω) ∈ πω(g)J (g]ω) for a.e. ω ∈ Ω. By Definition 4.5, we have Π(g−1)H ∈ T [V ],
which implies

πω(g−1)H((g−1)]ω) ∈ J (ω) , a.e. ω ∈ Ω.

Denoting by ω′ = (g−1)]ω, this reads equivalently

πg
]ω′(g−1)H(ω′) ∈ J (g]ω′) , a.e. ω′ ∈ Ω.

Thus, by applying πω
′
(g) on both sides, and using Proposition 4.6, we obtain

H(ω) ∈ πω(g)J (g]ω) for a.e. ω ∈ Ω.
Assume now that, for a g ∈ G, we have an H ∈ L2(Ω, `2(∆⊥)) such that

H(ω) ∈ πω(g)J (g]ω) for a.e. ω ∈ Ω, and let F = Π(g−1)H. Then

H(ω) = πω(g)F (g]ω).

Since πω(g) is a unitary operator on `2(∆⊥), and g] is a bijection of Ω we have
obtained that F (ω) ∈ J (ω) for a.e. ω ∈ Ω. That is, F ∈ T [V ], or, equivalently,
H ∈ Π(g)(T [V ]) = T [RgV ]. Thus, H(ω) ∈ Jg(ω) for a.e. ω ∈ Ω. �

4.2. Γ-preserving operators. In this subsection we consider operators defined on
Γ-invariant spaces which commute with the unitary representation TkRg.

Definition 4.9. Let V, V ′ ⊂ L2(S) be two Γ-invariant spaces. We say that a
bounded operator L : V → V ′ is Γ-preserving if LTkRg = TkRgL for every k ∈ ∆
and g ∈ G.

Observe that, in particular, L is Γ-preserving if and only if L is ∆-preserving
and LRg = RgL for every g ∈ G. We will focus on bounded Γ-preserving operators
acting on a Γ-invariant V , that is L : V → V . Since L is ∆-preserving, there exists
a corresponding range operator O : J → J .

In the same spirit of Theorem 4.8, we have the following result.

Theorem 4.10. Let V ⊂ L2(S) be a Γ-invariant space and L : V → V a bounded
operator with corresponding range operator O. Then, L is Γ-preserving if and only
if it is ∆-preserving and for all g ∈ G and a.e. ω ∈ Ω,

O(g]ω) = πg
]ω(g−1)O(ω)πω(g). (4.7)

Proof. Assume that L is Γ-preserving. Fix g ∈ G and note that for every f ∈ V ,
and for a.e. ω ∈ Ω

O(ω) (Π(g)T [f ](ω)) = O(ω) (T [Rgf ](ω)) = T [LRgf ](ω)

= T [RgLf ](ω) = Π(g)T [Lf ](ω)

= Π(g)O(ω)T [f ](ω).

Hence, if F ∈ T [V ], by (4.4) we have that for a.e. ω ∈ Ω

O(ω)πω(g)F (g]ω) = πω(g)O(g]ω)F (g]ω).
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Since, by (4.5), (πω(g))−1 = πg
]ω(g−1), we deduce that for a.e. ω ∈ Ω,

O(g]ω) = πg
]ω(g−1)O(ω)πω(g).

For the converse, if (4.7) holds, then for every F ∈ T [V ] we have that for a.e.
ω ∈ Ω and for every g ∈ G,

O(ω)Π(g)F (ω) = Π(g)O(ω)F (ω).

By the computation above, this means that for every f ∈ V and for every g ∈ G,
T [LRgf ] = T [RgLf ]. Thus, LRg = RgL for every g ∈ G. �

As a consequence, we see that much of the structure of O is preserved by the
action of G on Ω. In particular, we have the next proposition concerning the spectra
of O(ω).

Proposition 4.11. Let V ⊂ L2(S) be a Γ-invariant space and L : V → V a
bounded Γ-preserving operator with corresponding range operator O. Then for all
g ∈ G and a.e. ω ∈ Ω,

(1) σ(O(ω)) = σ(O(g]ω)).
(2) σp(O(ω)) = σp(O(g]ω)).

Proof. Fix g ∈ G and ω ∈ Ω where J and O are defined. Assume that λ ∈ σ(O(ω)),
then O(ω)− λIω is not invertible in J (ω). Thus,

O(g]ω)− λIg]ω = πg
]ω(g−1)O(ω)πω(g)− λπg

]ω(g−1)πω(g)

= πg
]ω(g−1)(O(ω)− λIω)πω(g),

which implies that O(g]ω)− λIg]ω is not invertible in J (g]ω), hence proving (1).
Now, to prove (2), suppose λ ∈ C is an eigenvalue of O(ω), then there exists v 6= 0

and v ∈ ker (O(ω)− λIω). We will see that πg
]ω(g−1)v ∈ ker

(
O(g]ω)− λIg]ω

)
.

Indeed, we have that

O(g]ω)(πg
]ω(g−1)v) = πg

]ω(g−1)O(ω)πω(g)(πg
]ω(g−1)v) = πg

]ω(g−1)O(ω)v

= πg
]ω(g−1)λ v = λ (πg

]ω(g−1)v).

Since v 6= 0, then πg
]ω(g−1)v 6= 0 and consequently ker

(
O(g]ω)− λIg]ω

)
6= {0}. �

We remark that given a measurable function λ : Ω → C such that λ(ω) is an
eigenvalue of O(ω) for a.e. ω ∈ Ω the proposition above does not imply that
λ(ω) = λ(g]ω) for every g ∈ G and a.e. ω ∈ Ω.

Since we are interested in obtaining a diagonalization for Γ-preserving operators
similar to Definition 3.6, we must find some suitable operators to play the role of
Γ-eigenvalue. The natural choice would be Ka =

∑
(s,h)∈Γ a(s, h)TsRh for some

sequence a = {a(s, h)}(s,h)∈Γ satisfying certain conditions. However, if we require
that these operators commute with TkRg for every k ∈ ∆ and g ∈ G, it is not
difficult to see that we are left only with a multiple of the identity.

Hence, we turn to the ∆-preserving operators Λa of Definition 3.1, with a ∈ `2(∆)
of bounded spectrum. We are interested in characterizing such operators that
commute with the unitary representation Rg of G on L2(S).

For the next proposition, we introduce the following representation.

Definition 4.12. We denote by r̃ : G→ U(`2(∆)) the representation defined by

(r̃g(a))(s) = a(g−1s), g ∈ G, a ∈ `2(∆), s ∈ ∆.

Proposition 4.13. Let a ∈ `2(∆) of bounded spectrum and let Λa an operator as
in Definition 3.1. Then, the following statements are equivalent.

(1) RgΛa = ΛaRg for every g ∈ G.
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(2) For every g ∈ G, r̃g(a) = a.
(3) For every g ∈ G, â(g]ω) = â(ω) for a.e. ω ∈ Ω.

Proof. For a given g ∈ G, first compute for ω ∈ Ω,

̂(r̃g(a))(ω) =
∑
s∈∆

(r̃g(a))(s)e−2πiω·s =
∑
s∈∆

a(g−1s)e−2πiω·s

=
∑
s∈∆

a(s)e−2πiω·gs =
∑
s∈∆

a(s)e−2πig∗ω·s

=
∑
s∈∆

a(s)e−2πig]ω·s = â(g]ω). (4.8)

Now, recalling that Π(g) = T RgT −1, we see that

RgΛa = RgT −1MâT = T −1Π(g)MâT . (4.9)

On the other hand, observe that for F ∈ L2(Ω, `2(∆⊥)) and using (4.4)

Π(g)MâF (ω) = Π(g) â(ω)F (ω) = πω(g) â(g]ω)F (g]ω)

= â(g]ω)πω(g)F (g]ω) = Mâ(g]·) Π(g)F (ω).

From the last equality, together with (4.8) and (4.9) it follows that

RgΛa = T −1Mâ(g]·) Π(g)T = T −1Mâ(g]·) T Rg = Λr̃g(a)Rg.

Then, RgΛa = ΛaRg if and only if Λr̃g(a)Rg = ΛaRg. Since Rg is invertible, this

holds if and only if r̃(g)(a) = a or, equivalently, â(g]ω) = â(ω) for a.e. ω ∈ Ω. �

If a ∈ `2(∆) is a sequence of bounded spectrum which satisfies any of the
conditions of Proposition 4.13 and V ⊂ L2(S) is Γ-invariant, then Λa(V ) ⊆ V and
Λa : V → V is Γ-preserving.

Remark 4.14. If the group G is infinite, often this class of operators is very small.
Indeed, for any s0 ∈ ∆, by the invariance (2) of Proposition 4.13, we have that∑

s∈∆

|a(s)|2 ≥
∑

s∈{g−1s0 : g∈G}

|a(s)|2 = #{g−1s0 : g ∈ G}.|a(s0)|2.

Since the sequence a is in `2(∆), for every s ∈ ∆ where a(s) 6= 0 we have

#{gs : g ∈ G} <∞. (4.10)

For example, consider the group of translations and shears in R2. That is, S = R2,
∆ = Z2 and G = {

(
1 k
0 1

)
: k ∈ Z}, which preserves the lattice Z2. For s = (s1, s2) ∈

Z2 we have that gs = (s1 + ks2, s2). Hence, if s2 6= 0 then #{gs : g ∈ G} =∞ and
so a(s) = 0 necessarily. Thus, the operators of this kind must be of the form

Λa =
∑
s1∈Z

a(s1, 0)T(s1,0).

Furthermore, if G were an infinite group acting faithfully over ∆, then every
operator Λa which commutes with Rg for every g ∈ G must satisfy that a(s) = 0 for
every s ∈ ∆ \ {0}.

4.3. Γ-diagonalization. Now, we aim to find conditions on ∆-preserving operators
in order to obtain a ∆-diagonalization like in Definition 3.6 where each ∆-eigenvalue
of the decomposition commute with the unitary representation TkRg and each
∆-eigenspace is Γ-invariant.
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Definition 4.15. Let V ⊂ L2(S) be a Γ-invariant space and L : V → V a
bounded Γ-preserving operator. Let a ∈ `2(∆) be of bounded spectrum, we say that
Λa : V → V is a Γ-eigenvalue of L if r̃g(a) = a for every g ∈ G and Λa is a
∆-eigenvalue of L, i.e.

Va := ker(L− Λa) 6= {0}.
Furthermore, we will say that L is Γ-diagonalizable if it admits a ∆-diagonalization

{aj}j∈I of L where Λaj is a Γ-eigenvalue for every j ∈ I.

Observe that, in this case, the ∆-eigenspace Va associated to a Γ-eigenvalue Λa
is a Γ-invariant subspace of V . In particular, if L is Γ-diagonalizable, then

L =
∑
j∈I

ΛajPVaj

where each Vaj is Γ-invariant subspace and the convergence of the series is in the
strong operator topology sense.

In what follows, we will assume that there exists a Borel set Ω0 ⊂ Ω which is a
transversal for the action of G on Ω, that is, Ω0 intersects each orbit of the action
of G on Ω in exactly one point. We remark that a Borel transversal for the action
of G on Ω is not necessarily a tiling of Ω, i.e. a set such that {g]Ω0}g∈G is an a.e.
partition of Ω.

When G is finite, the existence of such set is ensured by [23, Theorem 12.16].
Moreover, the existence of a Borel transversal is equivalent to the existence of a
Borel selector for the action of G on Ω (see [23]), that is, a Borel function s : Ω→ Ω
such that for every ω, ω′ ∈ Ω, we have that

ω′ ∈ OG(ω) ⇒ s(ω) = s(ω′) ∈ OG(ω),

where
OG(ω) = {ω′ ∈ Ω : ω′ = g]ω, g ∈ G}.

Under this assumption we are able to prove our final goal. In the next theorem we
show that a normal ∆-diagonalizable operator which is Γ-preserving always admits
a Γ-diagonalization.

Theorem 4.16. Let V ⊂ L2(S) be a Γ-invariant space and L : V → V a bounded
normal Γ-preserving operator. Then, L is Γ-diagonalizable if and only if it is
∆-diagonalizable.

Proof. We just need to prove that if L is ∆-diagonalizable, then it admits a
∆-diagonalization conformed by Γ-eigenvalues. Assume that {aj}j∈I is a ∆-
diagonalization of L. By Theorem 3.7, O(ω) is diagonalizable and σp(O(ω)) ⊂
{âj(ω) : j ∈ I} for a.e. ω ∈ Ω.

Now, let s : Ω→ Ω be a Borel selector for the action of G on Ω. In particular,
we have that σp (O(s(ω))) ⊂ {âj(s(ω)) : j ∈ I} for a.e. ω ∈ Ω. Moreover, by (2) in
Proposition 4.11 we see that σp(O(ω)) = σp (O(s(ω))) for a.e. ω ∈ Ω. Thus, taking
λj(ω) = âj ◦ s(ω) we get that

σp(O(ω)) ⊂ {λj(ω) : j ∈ I} (4.11)

for a.e. ω ∈ Ω. Since s is a selector, we see that λj(g
]ω) = λj(ω) for every j ∈ I,

g ∈ G and a.e. ω ∈ Ω. Also, given that s is a Borel selector and âj ∈ L∞(Ω), we
obtain that λj ∈ L∞(Ω).

Since O(ω) is diagonalizable the following orthogonal decomposition holds

J (ω) =

.⊕
j∈I

ker(O(ω)− λj(ω)Iω) (4.12)

for a.e. ω ∈ Ω. We now discard those functions λj such that ker(O(ω)−λj(ω)Iω) =
{0} for a.e. ω ∈ Ω. For each remaining j, there exists a sequence bj ∈ `2(∆) of
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bounded spectrum such that b̂j = λj . So, Λbj is a Γ-eigenvalue of L for every j and
by (4.12) we conclude that

V =

.⊕
j

Vbj . (4.13)

Hence, L is Γ-diagonalizable. �
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