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Abstract: Every year and all over the world the fungal decay of fresh fruit and vegetables frequently
generates substantial economic losses. Synthetic fungicides, traditionally used to efficiently combat
the putrefactive agents, emerged, however, as the cause of environmental and human health issues.
Given the need to seek for alternatives, several biological approaches were followed, among which
those with killer yeasts stand out. Here, after the elaboration of the complex of problems, we explain
the hitherto known yeast killer mechanisms and present the implementation of yeasts displaying
such phenotype in biocontrol strategies for pre- or postharvest treatments to be aimed at combating
postharvest fungal decay in numerous agricultural products.
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1. Introduction

Postharvest fungal diseases of fruit and vegetables cause major crop losses ranging from 25%
in industrialized up to 50% in developing countries [1]. Counteractive measures include chemical,
physical, and biological approaches. Fungicides most frequently serve to combat fungal infestations of
field crops as such chemically synthesized compounds are rather inexpensive, can be stored for long
periods of time, and they are sufficiently effective. However, concern is continuously rising over their
routine use because, besides threatening human health [2–4] and the environment [5], resistant fungal
pathogenic biotypes concomitantly arose [6–8]. It is, thus, not surprising that a number of countries,
such as the USA and those that form the European Union, promote a project called “Integrated Pest
Management (IPM)” which aims at reducing or, whenever possible, completely replacing chemical
pesticides [9–14].

2. Counteractive Measures to Control Fungal Diseases

2.1. Preharvest Stage

Since prevention is better than cure, postharvest disease control should start at best prior to
the actual harvesting process, not least owing to the fact that numerous potential pathogens are
capable of performing a latent infection. Resting in the peel, germs start to thrive and prosper when
the fruit—during harvesting—becomes wounded [15]. In fact, preharvest measures to be aimed
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at preventing crop losses are frequently applied, as for citrus, for which copper compounds are
routinely deployed to combat the brown rot caused by Phythophthora citrophthora [16]. For subtropical
fruit—among them mangoes, papaya, and bananas—protective fungicide sprays are systematically
used to battle against the anthracnose disease elicited by Colletotrichum gloeosporioides [17]. There is,
however, cause for concern due to the nascency of resistant strains; thus, stingy employments of
fungicides are imperative [18].

2.2. Postharvest Stage

Mechanic handling is an indispensable and clearly fruit-sanitary relevant factor as it affects
peel integrity [19,20]. Besides controlling mechanical damage to minimize the entry of potential
pathogens [19,20], various alternative postharvest measures (physical, chemical and biological or
combinations thereof) were applied to ward off fungal infestations [18].

High or low temperatures and gamma irradiation are among the most frequently applied
postharvest physical treatments to reduce the pathogen´s population on fruit surfaces. There is,
however, a major inherent disadvantage as such strategies do not cause long-lasting protective effects,
as seen, e.g., for chemical agents [18]. Hence, chemical pesticides are widely applied to control
crop diseases, but their use is fraught with risk, and that is why the public opinion as well as the
academic community is skeptical of their usage. Strong doubts exist mainly due to their toxicity,
environmental pollution, and the emergence of resistant strains. GRAS (Generally Recognized As
Safe) compounds may serve as alternatives as they a priori do not threaten human health or the
environment. Indeed, several salts and other ecologically harmless substances displayed control
effects, and they have in fact been frequently used in lab tests, often along with biological agents;
e.g., Cryptococcus laurentii (Kufferath) combined with 2% of sodium bicarbonate was successfully applied
to control Penicillium digitatum in oranges [21]. Likewise, Pichia guilliermondii along with CaCl2 served
to fight P. digitatum in grapefruits [22], and Candida oleophila together with Mg2+ and Ca2+ salts were
shown to control Botrytis cinerea and Penicillium expansum in in vitro assays [23].

2.3. Biological Control

A number of microorganisms able to protect fruit from fungal infections have been identified,
including bacteria, filamentous fungi and yeasts [24,25]. The latter are clearly advantageous over the
others as their nutritional requirements are rather simple, they can easily be produced in high yields
with inexpensive substrates, they are not harmful to humans, the environment or host fruit, and—not
least—the target organisms are unlikely to generate resistance [26].

In addition to the search for microbial antagonists, emphasis was put on understanding possible
action mechanisms because such knowledge most probably offers opportunities to improve the
protective effectiveness. Among the several identified modes of action, the most common mechanism
simply concerns competition for space and nutrients [27–29]. However, there are other types, such as
direct parasitism [30,31], production of siderophores, antibiotics and volatile compounds [32–35],
and those modes of actions subsumed under the term killer phenotype [28].

3. Yeasts as Biocontrol Agents

Besides rather sophisticated mechanisms enabling yeasts to restrict or kill competitors (see the
following chapter), there are some general characteristics qualifying these unicellular eukaryotes
(in its broadest sense) for protection: they use nutrients rapidly and proliferate abundantly; they have
the ability to colonize fruit surfaces displaying rather long immobilization times enduring even dry
conditions; they produce extra-cellular polysaccharides enhancing their own survival, concomitantly
restricting pathogens; and they sufficiently tolerate commonly applied pesticides, such as imazalil,
tiabendazole, pyrimethanil or fludioxonil [36–40].

Though numerous reports regarding the use of yeasts as biological control agents exist, the number
of commercial products is limited and, indeed, covers the potential market only at a small fraction.
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Multiple and time-consuming steps are most critical for product development and implementation,
and that is why the involvement of a commercial company with expertise in upscaling, formulation,
registration procedures, and the marketing network is a must to successfully meet above challenges [41].

Reviews about killer yeasts and their applications in medicine, industry and agriculture have
been written over the years [42–45]. Here, we focus on representatives which actually function or
presumably can act as candidates for antagonizing harmful –most commonly filamentous– fungi
known to cause postharvest rotting of edible fruit and vegetables. After dealing with killer yeasts in
general, we present an up-to-date compilation of the literature with respect to the aforesaid application
which is schematically outlined in Figure 1.
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Figure 1. Applications of killer yeasts in agriculture to prevent fungal infections. Killer yeasts have
been used for both pre- and postharvest treatments.

3.1. The Yeast Killer Phenotype

Killer substances are produced by pro- and eukaryotic cells [44,46–49]. They clearly improve the
organisms’ capability to dominate a certain environmental niche by killing or inhibiting competing
microorganisms. However, the killer phenotype is not always implemented solely for being
advantageous for its host as the primary function rather often apparently ensures auto-selection
of the extrachromosomal elements encoding the killer toxin (virus-like particles (VLPs) or virus-like
elements (VLEs)) since it eliminates any cell that does not or no longer carries the cytoplasmic VLP or
VLE [50]. Nevertheless, as a collateral action it is advantageous for the producing cell as it inhibits
competing organisms.

The killer phenotype was first described for the baker’s yeast Saccharomyces cerevisiae by Bevan
and Makower in the year 1963 [51]. They differentiated three phenotypes, i.e., killer, sensitive and
neutral: a killer yeast is capable of producing toxins that cause the death of sensitive yeasts, a neutral
yeast is not a toxin producer and is also not affected by the toxin. Woods and Bevan [52] realized the
proteinaceous nature of the toxin, and they checked optimal conditions for its action: such as low
pH, chemical composition of the growth medium, and the physiological state of the cells affecting the
amount of the killing toxin. Initially, it was suggested that killer yeasts are lethal only to other yeasts,
but further studies evidenced that they can be equally toxic to other fungi or even bacteria [53,54].
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3.2. Genetics of the Killer Phenotype

First studies on the nature of the killer factor revealed the involvement of cytoplasmic genetic
determinants [55]. Double stranded RNA (dsRNA) associated with VLPs was proposed and approved
as the genetic basis [52,55–60]. Today, killer phenomena are known for a large number of yeasts [61,62].
Toxins cannot only be extra-chromosomally encoded but also chromosomally [44].

Killer toxins are often classified with respect to their cellular target. Essentially, there are four
categories: (a) toxins capable of generating membrane pores followed by cellular lysis; (b) toxins
displaying glucanase activity, eventually resulting in cell wall destruction and target cell lysis; (c) toxins
disturbing nuclear functions by blocking replication; and (d) toxins targeting cellular RNAs such as
specific tRNAs or rRNA (see also Figure 2).
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Figure 2. Modes of action of killer toxins according to Klassen et al. (2017), modified [61]. Killer toxins
can be divided into four categories regarding the cell target. The T1 and T2 toxin types use β-1,6-glucan
as the primary cell wall receptor (in figure, toxins targeting the cell wall or the membrane). T1-type
toxins such as K1, K2 and PMKT [65–69] bind to a membrane receptor and induce membrane pore
formation; T2-type toxins, widely recognized in the genus Wickerhamomyces [70], act as glucanases.
T3 and T4 toxin types have intracellular targets. K28 encoded by S. cerevisiae [47,63] is an example
of a T3 toxin, which uses mannoproteins as the primary receptor, reaches the nucleus via retrograde
transport and inhibits DNA synthesis. T4-type toxins, such as zymocin, PaT and PiT [64,71–73] first
bind to a chitin receptor in the cell wall. Subsequently, a membrane receptor is required for the cellular
uptake of the toxic subunit which cleaves the respective RNA target (tRNAglu, tRNAgln and rRNA).

For more detailed information on killer toxin action and self-protection of killer yeasts, we refer to
recent reviews and publications dealing with the specific subject in depth: Schaffrath et al. (2018) [44];
Schmitt and Breining (2002, 2006) [47,63]; Kast et al. (2015) [64]; Satwika et al. (2012) [50].

4. Application of Killer Yeasts as Biocontrol Agents

Fruit and vegetables seem to provide a favorable environment for yeasts in general and for killer
yeasts in particular since approximately a quarter of the strains isolated from such source display the
phenotype [42,45]. Killer yeasts have a great potential to act as biocontrol agents, producing toxins
which do not harm humans or the fruit [74]. Moreover, killer yeasts display fruit-protective qualities in
both pre- and postharvest applications.
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4.1. Preharvest Application of Killer Yeast

Though there is only a limited number of studies dealing with killer yeasts as preharvest
antagonists, such as in citrus and grapes, the reported cases clearly furnish evidence of their biocontrol
potential when applied this way.

A rather common preharvest fungal pathogen of grapes is C. gloeosporioides which generates an
anthracnose disease characterized by irregular-shaped black necrotic spots, the centers of which—in the
course of the disease—become whitish gray surrounded by narrow reddish-brown to black margins [75].
For controlling anthracnose, grapes are routinely medicated with fungicides such as fluazinam and
chlorothalonil [76].

Only rather recently, three killer yeasts were isolated displaying efficient antagonistic activity
against the anthracnose causative pathogen. The protective potential of S. cerevisiae GA8, S. cerevisiae
LFA802 and S. cerevisiae L24 was proven. Each of the three strains was able to produce extracellular
antifungal agents such as β-1, 3-glucanases and chitinases; strain GA8 additionally synthesized volatile
compounds and thermostable metabolites with the potential to obstruct C. gloeosporioides. In addition,
such strains were able to colonize wounds and stably maintained a vital state on the surface of the
berries. Moreover, each of them was able to inhibit germination of the phytopathogen’s spores [77].

B. cinerea is a wide spread, ubiquitously occurring fungus; it is the causative agent of the gray
mold disease in a wide range of hosts provoking considerable yield losses of grape, lettuce, onion,
potato, strawberry, tomato, and other fruits of commercial interest. In 2004, Santos et al. [78] purified
and characterized the CYC 1106 killer toxin from Pichia membranifaciens, a strain isolated from olive
brines to be used against grey mold. In in vivo assays, Vitis vinifera plants developed the characteristic
grey mold symptoms when inoculated with B. cinerea (control treatment). However, all of the plants
treated with a mixture of P. membranifaciens and B. cinerea remained healthy, while 20% of the plants
treated solely with the purified toxin depicted the pathology. According to the authors, such differences
could be attributed to other yeast action mechanisms such as the production of hydrolytic enzymes or
the competition for nutrients [78].

Colletotrichum acutatum is one of the most devastating fungi affecting citrus during preharvest
stages. It is the causative agent of the post bloom fruit drop. By attacking flower tissues and changing
normal fruit abscission persistent calyces and peduncles develop. Lopes et al. (2015) [79], investigated
six S. cerevisiae killer yeast strains (ACB-CR1, ACB-KD1, ACB-CAT1, ACB-BG1, ACB-K1 and ACB-PE2)
isolated from commercial ethanol fermentations in Brazil with respect to their bio-control potential for
C. acutatum. ACB-CAT1 and ACB-CR1 in vitro most efficiently inhibited mycelial growth, i.e., 71%
and 67%, respectively. All of the isolates were both, curative and preventive: 73–84% of the flowers
were asymptomatic after curative treatments, and 50–86% remained healthy when the treatment was
preventive. After analyzing putative action mechanisms, all strains were shown to produce antifungal
compounds; they competed for nutrients, inhibited the pathogen´s spore germination, and produced
killer toxins and hydrolytic enzymes.

4.2. Postharvest Application of Killer Yeasts

In spite of the rather promising results obtained in preharvest biocontrol attempts, postharvest use
of killer yeasts is most common [80].

In citrus, the main fungal postharvest affliction is the “green mold disease” produced by
P. digitatum. Control efforts routinely include chemical fungicides such as imazalil or thiabendazole [81].
Seeking for safer alternatives, we isolated more than 400 native yeasts originating from citrus, 8.5%
of which showed killer activities [82]. In in vivo assays, two strains of Pichia sp. (strains 27 and
28), and Wickerhamomyces sp. strain 56 conferred significant shelter from the decay caused by
P. digitatum. Efficiencies reached 93.6%, 82.5%, and 72.5%, respectively. Furthermore, the native
killer yeast Clavispora lusitaniae 146 displayed, again in in vivo tests, strong antagonistic activities
against the fungal pathogen (Figure 3), conferring consistent protection during the entire harvesting
period [39]. The biocontrol potential of C. lusitaniae 146 was seen to be stronger than that of a
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commercial product containing C. oleophila. Moreover, the strain was able to grow with agriculturally
applied concentrations of fungicides, which allows for the combined use of the yeast along with—then
minor—doses of the fungicides. The strain’s commercial potential unequivocally became evident when
we studied action mechanisms, such as wound colonization and the inhibition of P. digitatum spore
germination, as C. lusitaniae 146 was seen to efficiently control even a fungicide-resistant P. digitatum
strain. In addition, strain 146 recently demonstrated a broad range of protective activity in various
citrus varieties besides lemons, such as mandarins, oranges, and grapefruits [83–85].
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Figure 3. Colored scanning electron microscope (SEM) image of the surface of a lemon wound
inoculated with the killer yeast C. lusitaniae 146. The image shows a cross section of a lemon wound
where colonization by the killer yeast (orange) and ungerminated spores of citrus phypathogen
P. digitatum (green) are observed.

Several killer species are able to control the green mold disease of the Tarocco orange (Citrus sinensis),
a predominant cultivar in Eastern Sicily/Italy [86]. S. cerevisiae (strains BS46 and BCA61) and
Wickerhamomyces anomalus (strains BCU24, BS91, BS92, and BCA15) isolated from fermented olives
were tested in vivo and in vitro for their capability to restrain P. digitatum. Only W. anomalus gave
positive results in vitro; the in vivo antagonism assays eventually identified W. anomalus BS91, BS92
and BCA15 to be most effective with respect to the reduction of the disease incidence (1, 4 and 44%,
respectively). The deleterious and vice versa the positive effect on the pathogen and the cultivar,
respectively, lasted up to 10 storage days counted from the beginning of the artificially provoked
infection. In vitro, W. anomalus BS91 had an effect on mycelial structures of P. digitatum: the hyphae
became wilted, folded, and coiled with a grainy appearance, an effect presumably due to the production
of hydrolytic enzymes by BS91 (β-1, 3-glucanase) as previously reported by Muccilli et al. [70,87].

Only rather recently yeasts capable of antagonizing Penicillium italicum in “Valencia” sweet
oranges ((Citrus sinensis (L.) Osbeck (rutaceae)) were isolated [88]. The fungus can infect injured fruit
peels, generating the symptomatology known as “blue mold disease”. Sapping all parts of the
fruit the fungus makes infected oranges uneatable. From 14 citrus producing areas of the São Paulo
State/Brazil, ninety-seven yeast strains were isolated from leaves, flowers, fruits, and soils. Screening for
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protective representatives was performed in vivo and in vitro. Candida stellimalicola strains ACBL-04
and ACBL-05, and S. cerevisiae ACBL-11 and ACBL-10 were most successful in preventive treatments,
whereas ACBL-08 additionally displayed curative effects. With respect to the control mechanism,
the killer trait appeared to be crucial for the biocontrol of P. italicum.

Monilinia fructigena and Monilinia fructicola are major pathogens of stone fruit (peaches and plums).
They cause a panoply of symptoms including blossom blighting, woody cankers, and preharvest fruit
rotting; however, the most serious damage happens after harvesting during transport and storage.
Since currently there is no efficient treatment to control Monilinia spp. infections, biocontrol agents,
among them killer yeasts, were considered to presumably meet the challenge [89]. Debaryomyces hansenii
MI1a and D. hansenii K12a, isolated from blue-veined Rokpol cheese, and W. anomalus BS91,
previously shown control P. digitatum in oranges (see above and [86]), were selected due to their
killer phenotype and antagonistic activity against other fungal pathogens. Exclusively W. anomalus
BS91 was able to inhibit both of the Monilinia pathogens by producing volatile antifungal compounds
in an in vitro dual culture method. In vivo antagonism tests identified D. hansenii MI1A as totally
M. fructicola ineffective in both plum and peach, and there was only a weak impact on M. fructigena.
D. hansenii K12a and W. anomalus BS91 conferred clear fruit protection. When peaches were treated 24 h
prior to inoculation with M. fructigena, the disease severity was mitigated to 33 and 25%, respectively.
For the plums, a similar effect against M. fructigena was seen. The effect observed for peaches was even
more promising as both, D. hansenii K12a and W. anomalus BS91 lessened disease severity caused by
M. fructicola to 55%, when applied 24 h before the fungus was added. For plums, the best results were
obtained with W. anomalus BS91 that reduced disease severity to 30%.

Cells and killer toxins from D. hansenii strains (TEM8 and TEM7), previously isolated from a
Turkish-style homemade dairy product [90], were tested for their biocontrol efficiency in tomato against
Alternaria brassicicola and Rhizopus stolonifer [91]. A. brassicicola is a necrotrophic fungus that causes the
black spot disease in a broad range of host plants [92] and R. stolonifer is an important soft rot-causing
fungus affecting tomatoes during postharvest stages [93]. The efficiency of the toxin was compared
with the action of viable yeast cells. When the fruit was inoculated with a killer yeast or treated with
killer toxins prior to applying fungal spore suspensions, the lesion sizes were smaller than for the
control, and there were even samples with no damages at all. Furthermore, the killer proteins and the
cells also cropped up to be effective against Alternaria citri and A. niger in lemons and apples, indicating
a wider application spectrum than solely for tomatoes.

In the north of Brazil where papaya crops agriculturally predominate, C. gleosporoides, the causative
agent of anthracnosis, commonly produces severe postharvest losses. Additionally, the pathogen
effectuates small reddish-brown surface patches unattractively modifying the fruit´s physical
appearance. Two killer yeast species isolated from street markets and producer farms in the Ceará
State/Brazil, W. anomalus 422 and Meyerozyma guilliermondii 443 [94] were able to reduce the diameter
of disease lesions by 31.4 and 41.17%, respectively, when applied 24 h prior to the application of the
pathogen. Such killer yeasts displayed protective rather than curative effects; they were able to reduce
both the incidence and pathogenicity of C. gleosporoides presumably due to multiple factors such as
competition for space and nutrients, mycoparasitism and secretion of β-1, 3-glucanases, the latter
probably attacking the phytopathogen´s cell wall [95].

In apples, M. fructigena is the causative agent of the brown rot. The fungus infects wounds
and subsequently–and rapidly–develops the rather firm rot. The respective areas are arranged
as small cottony masses forming pathogen characteristic concentric circles [96]. Five killer yeasts,
isolated from the peel of apples, were tested in vivo and in vitro for their potential to tame the
pathogen: Schwanniomyces vanrijiae, Galactomyces geotrichum, Pichia kudriavzevii, D. hansenii and
Rhodotorula glutinis [97]. In vivo tests included three different approaches: (1) simultaneous application
of both the antagonist and the pathogen, (2) placing the yeast 24 h prior to and (3) 24 h after infection.
Disease incidence decreases of 84.02–89.5%, 80.1–86.9% and 56.3–86.9%, respectively, were obtained.
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In addition, it was shown that hydrolytic enzymes such as chitinases, pectinases, β-1, 3-glucanases,
and proteases were produced.

More recently, W. anomalus BS91, D. hansenii K12a and D. hansenii AII4b were used to protect apples
against M. fructicola [98]. All of the above strains were additionally and successfully tested against
Monilinia spp. in stone fruits as well [89]. W. anomalus BS91 and D. hansenii K12a inhibited mycelial
growth in vitro by 69 and 66%, respectively. D. hansenii AII4b was less effective (56%). Nevertheless,
in vivo BS91 and K12a reduced the M. fructicola disease by 92 and 85%, respectively, while AII4b
was less effective (70% disease reduction). Compared to untreated fruit, rot severity was reduced by
approximately 52 up to 69%. Stress induction assays by measuring peroxidase and catalase levels in the
peel of fruit indicated highest levels of peroxidase (POD) when wounds were treated with W. anomalus
BS91. Lowest catalase (CAT) values were obtained with D. hansenii AII4b. The above findings led to
the conclusion that the yeasts were able to modulate the activities of CAT and POD in apple tissues,
leading the authors to suggest the yeasts promising candidates for developing effective biofungicides
against M. fructicola.

Grapes are almost routinely infected by the rot-causing A. carbonarius and A. niger, both responsible
for the accumulation of ochratoxin A, a potent nephrotoxic and carcinogenic compound that can even
be found in secondary grape products [99,100].

Epiphytic yeasts isolated from grapes in Southern Italy, after molecular identification and
inspection of the killer phenotype, were tested in vivo and in vitro to identify those representatives
which are able to conquer the co-inoculated pathogenic fungi in their common ecological niches.
Issatchenkia orientalis 17C2 and 16C2 efficiently reduced disease incidences of A. carbonarius and A. niger
on grapes (100% growth reduction), due to the production of secondary antifungal metabolites and
competition for essential nutrients [101].

Table 1 summarizes the known instances in which killer yeasts were used to combat or at least
mitigate fungal diseases in fruit and crop.

Table 1. Killer yeasts used as biological control agents in fruit (Figure 1).

Application
Stage Fruit Pathogen Antagonist Killer Yeast Accessory Functions References

Preharvest

Grapevine C. gloeosporioides S. cerevisiae GA8, CK and L24
Production of antifungal volatile compounds

(S. cerevisiae GA8) and production of hydrolytic
enzymes (β-1,3-glucanase and chitinase)

[77]

B. cinerea P. membranifaciens CYC 1106 N.D. [78]

Citrus C. acutatum
S. cerevisiae ACB-AR1, ACB-KD1,
ACB-CAT1, ACB-BG1, ACB-K1,

and ACB-PE2

Competition for nutrients, inhibition of spore
germination, production of hydrolytic enzymes
(β-1,3-glucanase and chitinase) and production
of antifungal volatile compounds (S. cerevisiae

ACB-CAT1, ACB-BG1)

[79]

Postharvest

Lemon
P. digitatum and P.

italicum
P. fermentans 27 and 28, W.

anomalus 56, C. lusitaniae 146 Competition for nutrient and space [39,82–85]

A. citri D. hansenii TEM8 and TEM17 N.D. [90,91]

Orange
P. digitatum W. anomalus BS91 and BS92 Mycoparasitism, production of hydrolytic

enzymes (β-1,3-glucanase) [70,86,87]

C. lusitaniae 146 Competition for nutrient and space [85]

P. italicum
C. stellimalicola ACBL-04,

ACBL-05, ACBL-08 and S.
cereviciae ACBL-11

Inhibition of spore germination, production of
hydrolytic enzymes (chitinase) [88]

Mandarin P. digitatum C. lusitaniae 146 Competition for nutrient and space [85]

Grapefruit P. digitatum C. lusitaniae 146 Competition for nutrient and space [85]

Peach M. fructigena and
M. fructicola

D. hansenii KI2a and W. anomalus
BS91

Production of hydrolytic enzymes
(β-1,3-glucanase) and production of antifungal

volatile compounds
[89]

Plum M. fructigena and
M. fructicola

D. hansenii KI2a and W. anomalus
BS91

Production of hydrolytic enzymes
(β-1,3-glucanase) and production of antifungal

volatile compounds (W. anomalus BS91)
[89]
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Table 1. Cont.

Application
Stage Fruit Pathogen Antagonist Killer Yeast Accessory Functions References

Postharvest

Tomato A. brassicicola and
R. stolonifer D. hansenii TEM8 and TEM17 N.D. [90,91]

Papaya C. gloeosporioides W. anomalus 422 and M.
guilliermondii 443

Competition for nutrients and space,
mycoparasitism and production of hydrolytic

enzymes (β-1,3-glucanase)
[94,95]

Apple
M. fructigena

S. vanrijiae, G. geotrichum, P.
kudriavzevii, D. hansenii and R.

glutinis

Production of hydrolytic enzymes (chitinase,
β-1,3-glucanase, pectinase, and protease) [97]

M. fructicola W. anomalus BS91, D. hansenii
4II4b and KI2a Induction of resistance plant [98]

A. niger D. hansenii TEM8 and TEM17 N.D. [90,91]

Grape A. carbonarius and
A. niger I. orientalis 2C2 and 16C2 Competition for nutrients [101]

N.D.: not determined.

5. Discussion and Conclusions

Since the discovery of the phenotype, the so-called killer yeasts became subjects of basic as well
as applied research due to their sophisticated killing mechanisms and their potential applications in
industry, medicine and agriculture. Regarding the latter, killer yeasts (and their toxins) have been
used to control several economically important plant pathogens in a diversity of fruits, such as citrus,
grape, papaya, stone fruit, tomato, and apple. They have shown their protective efficacy during both,
pre- and postharvest stages.

The positive, fruit-protecting impact is apparently not merely due to a single action mechanism.
Shelter from fungal infestation is probably brought about by accessory abilities, such as competition
for space and nutrients and/or the production of antifungal compounds [28]. However, it is not to
be excluded that killer proteins provide long-lasting effects improving their potential for biological
control of crop-damaging organisms.

With respect to ecological and human health issues, one has to emphasize that many of the
killer yeasts target specific fungal components, such as β-glucan, the main component of the cell
wall. In addition, the majority of them cannot withstand the body temperature and a neutral
pH-value) [44,86].

In spite of the numerous studies which have clearly demonstrated the advantages and benefits
of using killer yeasts as biocontrol agents, commercial formulations are still not available. However,
due to the obvious abundance and diversity of epiphytically thriving killer yeasts on fruit surfaces,
and the continuous increase in the number of publications with respect to the search for novel killer
strains as biocontrol agents, commercial formulations may soon be on hand.
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