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Abstract. The IKt-algebras that we investigate in this paper were introduced in the

paper An algebraic axiomatization of the Ewald’s intuitionistic tense logic by the first

and third author. Now we characterize by topological methods the subdirectly irreducible

IKt-algebras and particularly the simple IKt-algebras. Finally, we consider the particular

cases of finite IKt-algebras and complete IKt-algebras.
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1. Introduction and Preliminaries

In this paper, we take for granted the concepts and results on distributive
lattices, Heyting algebras, category theory, universal algebra and Priestley
duality. To obtain more information about these topics, we direct the reader
to the bibliography indicated in [1,6,8,18,30,33–35]. However, in order to
simplify reading, in this section we shall summarize the fundamental con-
cepts we use.

If X is a poset (i.e. partially ordered set) and Y ⊆ X, then we shall
denote by ↓ Y (↑ Y ) the set of all x ∈ X such that x ≤ y (y ≤ x) for some
y ∈ Y . If x ∈ X we shall denote by ↓ x (↑ x) instead of ↓ {x} (↑ {x}).

Let X,Y be sets. Given a relation R ⊆ X × Y, for each Z ⊆ X, R(Z)
will denote the image of Z by R. If Z = {x}, we will write R(x) instead of
R({x}). Moreover, for each V ⊆ Y , R−1(V ) will denote the inverse image
of V by R, i.e. R−1(V ) = {x ∈ X : R(x)∩V �= ∅}. If V = {y}, we will write
R−1(y) instead of R−1({y}). Besides, if R, T ⊆ X × X then the relation
R ◦ T is defined by setting (x, y) ∈ R ◦ T if and only if there is z ∈ X such
that (x, z) ∈ R and (z, y) ∈ T . If Y is a subset of X, then Y c will denote
the set-theoretic complement of Y, i.e. Y c = X\Y .

Let us recall that an algebra A = 〈A,∨,∧,→, 0, 1〉 is a Heyting algebra
if the following conditions hold:
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(1) 〈A,∨,∧, 0, 1〉 is a lattice with 0, 1,

(2) x ∧ (x → y) = x ∧ y,

(3) x ∧ (y → z) = x ∧ [(x ∧ y) → (x ∧ z)],

(4) (x ∧ y) → x = 1.

In [18] a duality theory for Heyting algebras was developed. In order to
determine this duality, the category HS of Heyting space and their corre-
sponding morphisms (or p-functions) was introduced, which we will describe
below. Specifically, a Heyting space is a Priestley space (X, ≤, τ) such that
if U is clopen in ′X ′, then ↓ U is clopen. Alternatively, (X, ≤, τ) is a Heyt-
ing space if for every open set U , then downset ↓ U is open. From now
on, whenever it is deemed convenient, Heyting space will be denoted simply
by X.

On the other hand, a p-function from a Heyting space X1 into another
one X2 is an order preserving continuous function f : X1 −→ X2, which
verifies the following condition:

(pf) for all x ∈ X1, z ∈ X2 such that f(x) ≤ z, there is y ∈ X1 such that
x ≤ y and f(y) = z.

Besides, if A is a Heyting algebra and X(A) is the set of all prime filters of
A, then the Priestley space associated with A, (X(A),⊆, τ) (see [33–35]), is a
Heyting space. If X is a Heyting space and D(X) is the set of all increasing
and clopen subsets of X, then (D(X),∪,∩,→, ∅, X) is a Heyting algebra,
where for all U, V ∈ D(X),

U → V = {x ∈ X : ↑ x ∩ U ⊆ V }. (I)

Furthermore, (A,→) ∼= (D(X(A)),→) for all Heyting algebra A and X ∼=
X(D(X)) for all Heyting space X, via natural isomorphisms denoted by σA

and εX respectively, where σA : A −→ D(X(A)) is defined by

σA(a) = {S ∈ X(A) : a ∈ S}, (II)

and εX : X −→ X(D(X)) is defined by

εX(x) = {U ∈ D(X) : x ∈ U}. (III)

The correspondences between the morphisms of both categories are de-
fined in the usual way. Then, it is concluded that the category HS of Heyting
spaces and p-functions is dually equivalent to the category HA of Heyting
algebras and their corresponding homomorphisms. The above duality was
taken into account to characterize the congruence lattice on a Heyting alge-
bra as it is indicated in the following theorem:
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Theorem 1.1. Let A be a Heyting algebra, X(A) be the Heyting space associ-
ated with A, CI(X(A)) be the lattice of increasing and closed subsets of X(A)
and ConH(A) be the lattice of Heyting congruence on A. If Y ∈ CI(X(A))
and

ΘI(Y ) = {(a, b) ∈ A × A : σA(a) ∩ Y = σA(b) ∩ Y }, (IV)
then ΘI(Y ) ∈ ConH(A). Conversely, if θ ∈ ConH(A), h : A −→ A/θ is the
natural epimorphism and

Y = {h−1(S) : S ∈ X(A/θ)}, (V)

then Y ∈ CI(X(A)) and θ = ΘI(Y ). Therefore, the lattice CI(X(A)) is iso-
morphic to the dual lattice ConH(A), and the isomorphism is the function
ΘI defined by the prescription IV.

Let us recall that under the Priestley duality, the lattice of all filters
of a bounded distributive lattice is dually isomorphic to the lattice of all
increasing closed subsets of the dual space. Under that isomorphism, any
filter T of a bounded distributive lattice A corresponds to the increasing
closed

YT = {S ∈ X(A) : T ⊆ S} =
⋂

{σA(a) : a ∈ T} (VI)

and any increasing closed subset Y of X(A) corresponds to the filter

TY = {a ∈ A : Y ⊆ σA(a)}. (VII)

A direct consequence of these last results is the well-known fact that there
exists a lattice isomorphism between the lattice of all filters of a Heyting
algebra A and the lattice of all congruences on A. Under that isomorphism,
any congruence θ on A corresponds to the filter Sθ = {a ∈ A : (a, 1) ∈ θ} and
any filter S of A corresponds to the congruence θS defined by (a, b) ∈ θS iff
(a → b)∧ (b → a) ∈ S. Therefore there exists a lattice isomorphism between
the lattice of all congruences determined by filters of a Heyting algebra A
and the lattice of all congruences on A.

It should be noted that the following characterization of subdirectly irre-
ducible Heyting algebras have been found useful for characterizing the finite
and complete subdirectly irreducible IKt-algebras.

Theorem 1.2. A Heyting algebra A is subdirectly irreducible if and only if
there is u ∈ A\{1}, such that a ≤ u, for all a ∈ A\{1}.

On the other hand, it is known that propositional logics, both classic or
nonclassic, do not incorporate the dimension of time. To obtain a tense logic,
we enrich the given propositional logic by new unary operators (called tense
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operators) which are usually denoted by G, H, F and P . Study of tense oper-
ators has originated in 1980’s [5,13]. Recall that for a classical propositional
calculus represented by means of a Boolean algebra B = 〈B,∨,∧,¬, 0, 1〉,
tense operators were axiomatized [16] by the following axioms:

G(1) = 1, H(1) = 1,

G(x ∧ y) = G(x) ∧ G(y), H(x ∧ y) = H(x) ∧ H(y),

x ≤ GP (x), x ≤ HF (x),

where P (x) = ¬H(¬x) and F (x) = ¬G(¬x).
In the last few years tense operators have been considered by different

authors for various classes of algebras. Some contributions in this area have
been the papers by Diaconescu and Georgescu [16], Botur et al. [3], Chiriţă
[14,15], Chajda [7], Chajda and Kolařik [9], Figallo and Pelaitay [20,23,
25,26], Chajda and Paseka [12], Botur and Paseka [4], Paseka [32], Menni
and Smith [31], Dzik et al. [17]. In particular, intuitionistic tense logic IKt
was introduced by Ewald [19] by extending the language of intuitionistic
propositional logic with the unary operators P (it was the case), F (it will
be the case), H (it has always been the case) and G (it will always be the
case). The Hilbert-style axiomatization of IKt can be found in [19] [p. 171].
It is well-known that the axiomatization of Ewald is not minimal because
several axioms can be deduced from the other axioms. Besides, in contrast
to classical tense logic, F and P cannot be defined in terms of G and H
(see [17,23]). In [26], Figallo and Pelaitay introduced the variety IKt of
IKt-algebras and proved that the IKt system has IKt-algebras as algebraic
counterpart. These algebras were defined as described below.

Definition 1.3. Let A = 〈A,∨,∧,→, 0, 1〉 be a Heyting algebra, let G, H,
F and P be unary operations on A satisfying:

(t1) G(1) = 1 and H(1) = 1,

(t2) G(x ∧ y) = G(x) ∧ G(y) and H(x ∧ y) = H(x) ∧ H(y),

(t3) x ≤ GP (x) and x ≤ HF (x),

(t4) F (0) = 0 and P (0) = 0,

(t5) F (x ∨ y) = F (x) ∨ F (y) and P (x ∨ y) = P (x) ∨ P (y),

(t6) PG(x) ≤ x and FH(x) ≤ x,

(t7) F (x → y) ≤ G(x) → F (y) and P (x → y) ≤ H(x) → P (y).

Then the algebra (A, G,H, F, P ) will be called an IKt-algebra and G, H,
F and P will be called tense operators.



Subdirectly Irreducible IKt-Algebras

Independently, in [17] (see also [31]), two algebraic models of the IKt
system were obtained in terms of Heyting algebras expanded with two Galois
connections verifying the Dunn’s axioms, in one case, and the Fisher-Servi’s
axioms, in another case. It is not difficult to check that all three algebraic
models of the IKt system are equivalent. In [17], a relational representation
theorem for IKt-algebras was obtained. In this paper, taking into account
the results obtained in [17], we give a topological duality for IKt-algebras.
By means of this duality, we characterize the IKt-congruences lattice which
allowed us to determine the simple and subdirectly irreducible IKt-algebras.

The paper is organized as follows: In Section 1, we briefly summarize the
main definitions and results needed throughout this article. In Section 2, we
describe a topological duality for IKt-algebras, extending the one obtained
in [17] for Heyting algebras. For this purpose we introduce the category IKtS
whose objects are IKt-spaces and whose morphisms are increasing continu-
ous functions verifying certain additional conditions and we prove that this
category is equivalent to the dual of the category IKtA, whose objects are
IKt-algebras and whose morphisms are IKt-homomorphisms. In Section 3,
which is the core of this paper, the results of Section 2 are applied. Firstly,
we characterize congruences on IKt-algebras by means of the mentioned d-
uality and certain closed and increasing subsets of the space associated with
them. This enables us to obtain a new characterization of congruences on
IKt-algebras. This result allows us to describe the subdirectly irreducible
IKt-algebras and in particular the simple IKt-algebras. Finally in this sec-
tion, we describe the simple and subdirectly irreducible IKt-algebras in the
cases of finite algebras and complete algebras.

2. Topological Duality for IKt-Algebras

In this section, we will develop a topogical duality for IKt-algebras taking
into account the results established by Dzik et al. [17]. In order to determine
this duality, we introduce a topological category whose objects and their
corresponding morphisms will be describe below.

Definition 2.1. An IKt-space is a system (X, ≤, R) where (X, ≤) is a
Heyting space, R is a binary relation on X and R−1 is the converse of R
such that the following conditions are satisfied:

(tS1) for each x ∈ X, R(x) and R−1(x) are closed subsets of X,

(tS2) for each x ∈ X, R(x) =↓ R(x) ∩ R(↑ x),
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(tS3) for each x ∈ X, R(↑ x) and R−1(↑ x) are increasing and closed

subsets of X,

(tS4) for each U ∈ D(X), GR(U), HR−1(U), FR(U), PR−1(U) ∈ D(X),

where GR, HR−1 , FR and PR−1 are operators on P(X) defined

for all Y ⊆ X as follows:

GR(U) = {x ∈ X | R(↑ x) ⊆ U},

HR−1(U) = {x ∈ X | R−1(↑ x) ⊆ U},

FR(U) = {x ∈ X | R(x) ∩ U �= ∅},

PR−1(U) = {x ∈ X | R−1(x) ∩ U �= ∅}.

Definition 2.2. An IKt-function from an IKt-space (X1,≤1, R1) into an-
other one, (X2,≤2, R2), is a p-function f : X1 −→ X2, which satisfies the
following conditions:

(tf1) f(R1(x)) ⊆ R2(f(x)),

(tf2) R2(↑ f(x)) = f(R1(↑ x)),

(tf3) R2
−1(↑ f(x)) = f(R1

−1(↑ x)).

The category that has IKt-spaces as objects and IKt-functions as mor-
phisms will be denoted by IKtS. By IKtA, we denote the category of IKt-
algebras and IKt-homomorphisms. Our next task will be given to determine
that the category IKtS is naturally equivalent to the dual category of IKtA.

Now we shall show a characterization of IKt-functions which will be
useful later.

Lemma 2.1. Let (X1,≤1, R1) and (X2,≤2, R2) be two IKt-spaces. Then,
the following conditions are equivalents:

(i) f : X1 −→ X2 is an IKt-function,

(ii) f : X1 −→ X2 is a p-function such that:

(tf1′) (x, y) ∈ R1 implies (f(x), f(y)) ∈ R2 for any x, y ∈ X1,
(tf2′) f−1(GR2(U)) = GR1(f

−1(U)) for any U ∈ D(X2),
(tf3′) f−1(HR−1

2
(U)) = HR−1

1
(f−1(U)) for any U ∈ D(X2).

Proof. (i) ⇒ (ii):
(tf1′): Assume that (x, y) ∈ R1. So, f(y) ∈ f(R1(x)). Then, by (tf1), we
have that f(y) ∈ R2(f(x)), i.e., (f(x), f(y)) ∈ R2.
(tf2′): Let x ∈ f−1(GR2(U)). Hence, R2(↑ f(x)) ⊆ U . By (tf2), we have
that f(R1(↑ x)) ⊆ U . Since R1(↑ x) ⊆ f−1(f(R1(↑ x))) we obtain R1(↑
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x) ⊆ f−1(U). Thus, x ∈ GR1(f
−1(U)). On the other hand, suppose that

x ∈ GR1(f
−1(U)). Hence, R1(↑ x) ⊆ f−1(U). Since f(f−1(U)) ⊆ U we

obtain f(R1(↑ x)) ⊆ U . By (tf2), we have that R2(↑ f(x)) ⊆ U . Thus,
x ∈ f−1(GR2(U)). (tf3′) can be proved in a similar way.

(ii) ⇒ (i):
(tf1): Let z ∈ f(R1(x)). Then, there exists y ∈ R1(x) such that f(y) = z.

Since (x, y) ∈ R1, by (tf1), we have that (f(x), z) ∈ R2. Thus, z ∈ R2(f(x)).
(tf2): Let y ∈ R2(↑ f(x)). Suppose that for any z ∈ R1(↑ x) it is verified

that f(z) �≤2 y. Then for any z ∈ R1(↑ x) there exists Uz ∈ D(X2) such
that f(z) ∈ Uz and y �∈ Uz. As X1 is an IKt-space we infer that R1(↑ x)
is compact in X1. Since f is a continuous function we have that f(R1(↑ x))
is compact in X2. Consequently, there exists U ∈ D(X2) such that f(R1(↑
x)) ⊆ U and y �∈ U . Hence, we obtained that f(x) �∈ GR2(U) and therefore
x �∈ f−1(GR2(U)). By (tf2′), we have that x �∈ GR1(f

−1(U)). From this
statement there exists z ∈ R1(↑ x) such that z �∈ f−1(U). Thus, f(R1(↑
x)) �⊆ U , which is a contradiction. The inclusion f(R1(↑ x)) ⊆ R2(↑ f(x))
follows by (tf1′) and the fact that f is an increasing function. (tf3) can be
proved in a similar way.

Next, we will describe some properties of IKt-spaces which will be quite
useful for determining the duality for IKt-algebras that we are interested.
For this purpose, recall the notion of IKt-frame, which was introduced in
[26] (see also [17]) as we indicate below:

Definition 2.3. A structure 〈X, ≤, R〉 is an IKt-frame if 〈X, ≤〉 is a quasi-
ordered set, R is a binary relation on X, and R−1 is the converse of R such
that:

(K1) R(↓ x) ⊆↓ R(x) for any x ∈ X,

(K2) R−1(↓ x) ⊆↓ R−1(x) for any x ∈ X.

Remark 2.1. In every IKt-frame 〈X, ≤, R〉 the following conditions are
satisfied:

(K3) ↑ R−1(x) ⊆ R−1(↑ x) for any x ∈ X,

(K4) ↑ R(x) ⊆ R(↑ x) for any x ∈ X.

Proposition 2.1. If (X, ≤, R) is an IKt-space, then 〈X, ≤, R〉 is an IKt-
frame.

Proof. We will only prove (K1). Let x, z ∈ X such that z ∈ R(↓ x).
Suppose that z /∈↓ R(x). Then, for all y ∈ R(x), z �≤ y. As X is a Priestley
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space, for each y ∈ R(x) there exists Uy ∈ D(X) such that y �∈ Uy and
z ∈ Uy. Then R(x) ⊆ ⋃

y∈R(x)(X\Uy). Since R(x) is compact, from the
preceding assertion we infer that there is U ∈ D(X) such that z ∈ U and
R(x) ∩ U = ∅. But as z ∈ R(↓ x), then there exists w ∈ X such that
w ≤ x and z ∈ R(w). It follows that z ∈ R(w) ∩ U, i.e., w ∈ FR(U). Since
FR(U) is an increasing set we have that x ∈ FR(U), which is a contradiction.
Similarly, we can prove that (X, ≤, R) satisfies (K2).

Next we will define a contravariant functor from IKtS onto IKtA.

Lemma 2.2. Let (X, ≤, R) be an IKt-space. Then,

Ψ(X) = (D(X), GR, HR−1 , FR, PR−1)

is an IKt-algebra.

Proof. By virtue of the results established in [18], D(X) is a Heyting
algebra. Besides, from (tS4), D(X) is closed under the operations GR, HR−1 ,
FR and PR−1 . From the definition of the operations GR, HR−1 , FR and PR−1

we infer that (t1), (t2), (t4) and (t5) hold. Then, we only have to prove that
D(X) satisfies the following remaining axioms:
(t3): It is verified that U ⊆ GR(PR−1(U)). Indeed, let x, y ∈ X such that
x ∈ U and y ∈ R(↑ x). Then, there exists z ∈↑ x such that (z, y) ∈ R.
Since U ∈ D(X) we have that z ∈ U and since z ∈ R−1(y), we obtain that
R−1(y) ∩ U �= ∅, that is, y ∈ PR−1(U). In a similar way, we can prove that
U ⊆ HR−1(FR(U)). Therefore, (t3) holds.
(t6): We have that PR−1(GR(U)) ⊆ U . Indeed, let x ∈ PR−1(GR(U)). Then,
R−1(x)∩GR(U) �= ∅. Hence, there exists z ∈ R−1(x) such that R(↑ z) ⊆ U .
Since ≤ is reflexive we have that (z, x) ∈ (≤ ◦R), i.e., x ∈ R(↑ z). Therefore,
x ∈ U . In a similar way, we can prove that FR(HR−1(U)) ⊆ U . Then, (t6)
holds.
(t7): Suppose that x ∈ FR(U → V ), x ≤ z and z ∈ GR(U). Let us to prove
that z ∈ FR(V ), i.e. , R(z)∩V �= ∅. Since x ∈ FR(U → V ) then there exists
y ∈ R(x) ∩ (U → V ), z ≥ x, (x, y) ∈ R, and so from (K3) we have that
(z, v) ∈ R and v ≥ y for some v ∈ X. Since v ∈ R(z) ⊆ R(↑ z) ⊆ U , y ≤ v
and y ∈ U → V then v ∈ V . Therefore, R(z) ∩ V �= ∅. In a similar way we
can prove PR−1(U → V ) ⊆ HR−1(U) → PR−1(V ). Finally, (t7) holds.

Lemma 2.3. Let f : (X1,≤1, R1) −→ (X2,≤2, R2) be a morphism of IKt-
spaces. Then, Ψ(f) : D(X2) −→ D(X1), defined by Ψ(f)(U) = f−1(U) for
all U ∈ D(X2), is an IKt-homomorphism.

Proof. It follows from the results established in [18] and Lemma 2.1.
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The previous two lemmas show that Ψ is a contravariant functor from
IKtS to IKtA. To achieve our goal we need to define a contravariant functor
from IKtA to IKtS.

Lemma 2.4. ([17]) Let (A, G,H, F, P ) be an IKt-algebra and let RA be the
relation defined on X(A) by the prescription:

(S, T ) ∈ RA ⇐⇒ G−1(S) ⊆ T ⊆ F−1(S). (VIII)

Then, for all S, T ∈ X(A),

(S, T ) ∈ RA ⇐⇒ H−1(T ) ⊆ S ⊆ P−1(T ). (IX)

Lemma 2.4 means that we have two ways to define the relation RA, either
by using G and F , or by using H and P .

Lemma 2.5. Let (A, G,H, F, P ) be an IKt-algebra and X(A) be the associ-
ated Priestley space of A. Then,

(i) for all S ∈ X(A), RA(S) is closed in X(A),

(ii) RA is closed in X(A) × X(A),

(iii) for all S ∈ X(A), RA−1(S) is closed in X(A),

(iv) RA−1 is closed in X(A) × X(A).

Proof. We will only prove (i) and (ii). Similarly we can prove (iii) and (iv).
(i): Suppose that T /∈ RA(S). Then, by definition of the relation RA, there
exists x ∈ G−1(S) such that x /∈ T , or there exists y ∈ T such that y /∈
F−1(S). In the first case, T �∈ σA(x) and G−1(S) ∈ σA(x). Then taking into
account that σA(x) is an increasing set we infer that RA(S) ⊆ σA(x). From
this assertion we deduce that T ∈ σA(x)c and σA(x)c ⊆ RA(S)c. In the
second case, T ∈ σA(y) and F−1(S) ∈ σA(y)c. Since σA(y)c is a decreasing
set we infer that RA(S) ⊆ σA(y)c. So, T ∈ σA(y) and σA(y) ⊆ RA(S)c and
the proof is complete.
(ii): Let S, T ∈ X(A) such that (S, T ) �∈ RA. So, T �∈ RA(S). Then, by (i)
we have that:
(a) there exists x ∈ A such that S ∈ σA(G(x)), T ∈ σA(x)c and σA(x)c ∩
RA(S) = ∅ or
(b) there exists y ∈ X such that T ∈ σA(y), S ∈ σA(F (y))c and σA(y) ∩
RA(S) = ∅.

In the case (a), we have that (S, T ) ∈ σA(G(x)) × σA(x)c and RA ∩
(σA(G(x))×σA(x)c) = ∅. In the case (b), we have that (S, T ) ∈ σA(F (y))c×
σA(y) and RA ∩ (σA(F (y))c × σA(y)) = ∅.



A. V. Figallo et al.

Therefore, from the last assertions in both cases we can conclude that
RA is closed in X(A) × X(A).

Lemma 2.6. Let (A, G,H, F, P ) be an IKt-algebra and X(A) be the associ-
ated Priestley space of A. Then,

(i) for all closed subset M of X(A), RA(M) is closed in X(A).

(ii) for all closed subset M of X(A), RA−1(M) is closed in X(A).

Proof. (i): Let M ⊆ X(A) closed. Then, RA(M) = p2(RA ∩ (M × X(A))),
where p2 : X(A) × X(A) → X(A) is the function defined by p2(x, y) = y for
all (x, y) ∈ X(A)×X(A). From Lemma 2.5 we have that RA∩(M×X(A)) is a
closed subset of X(A)×X(A). Since X(A) is a compact and Hausdorff space,
we have that p2 is a closed function, from which it follows that p2(RA ∩
(M × X(A))) is closed in X(A), i.e., RA(M) is closed in X(A). (ii) can be
proved in a similar way to (i).

Corollary 2.4. Let (A, G,H, F, P ) be an IKt-algebra and X(A) be the
associated Priestley space of A. Then, for all S ∈ X(A), RA(↑ S) and
RA−1(↑ S) are closed subsets of X(A).

Proof. Since ↑ S is a closed subset of X(A), by Lemma 2.6, we have that
RA(↑ S) and RA−1(↑ S) are closed in X(A).

The following lemma, whose proof can be found in [17, Lemma 4.5], will
be essential for the proof of Lemma 2.10.

Lemma 2.7. Let (A, G,H, F, P ) be an IKt-algebra and (X(A),⊆, RA) be the
IKt-space associated with (A, G,H, F, P ). Then, for all S, T ∈ X(A), the
following properties are verified:

(a) (S, T ) ∈ (⊆ ◦RA) ⇐⇒ G−1(S) ⊆ T,

(b) (S, T ) ∈ (RA◦ ⊇) ⇐⇒ T ⊆ F−1(S),

(c) (S, T ) ∈ (RA◦ ⊇) ⇐⇒ H−1(S) ⊆ T,

(d) (S, T ) ∈ (⊆ ◦RA) ⇐⇒ T ⊆ P−1(S).

Lemma 2.8. Let (A, G,H, F, P ) be an IKt-algebra and let S ∈ X(A) and
a ∈ A. Then,

(i) G(a) /∈ S iff there exists T ∈ X(A) such that (S, T ) ∈ (⊆ ◦RA) and
a /∈ T ,

(ii) H(a) /∈ S iff there exists T ∈ X(A) such that (S, T ) ∈ (⊆ ◦RA−1) and
a /∈ T ,
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(iii) F (a) ∈ S iff there exists T ∈ X(A) such that (S, T ) ∈ (RA◦ ⊇) and
a ∈ T,

(iv) P (a) ∈ S iff there exists T ∈ X(A) such that (S, T ) ∈ (RA−1◦ ⊇) and
a ∈ T.

Proof. (i):
(⇒): Suppose that G(a) /∈ S. Then, (a] ∩ G−1(S) = ∅. So, by the Birkhoff–
Stone theorem, there exists T ∈ X(A) such that G−1(S) ⊆ T and a /∈ T .
Hence, by Lemma 2.7, (S, T ) ∈ (⊆ ◦RA).
(⇐): Suppose that (S, T ) ∈ (⊆ ◦RA) and a /∈ T , for some S ∈ X(A). By
Lemma 2.7, we have that G−1(S) ⊆ T . It follows that G(a) /∈ S. In a similar
way, we can prove (ii).
(iii):
(⇒): Suppose that F (a) ∈ S. Then, [a)∩F−1(S)c = ∅. So, by the Birkhoff–
Stone theorem, there exists T ∈ X(A) such that T ⊆ F−1(S) and a ∈ T .
Hence, by Lemma 2.7, (S, T ) ∈ (RA◦ ⊇).
(⇐): Suppose that (S, T ) ∈ (RA◦ ⊇) and a ∈ T, for some S ∈ X(A). From
Lemma 2.7, we have that T ⊆ F−1(S). We conclude that F (a) ∈ S. In a
similar way we can prove (iv).

Lemma 2.9. Let (A, G,H, F, P ) be an IKt-algebra. Then, Φ(A) = (X(A),⊆,
RA) is an IKt-space and σA : A −→ D(X(A)) is an IKt-isomorphism.

Proof. From the duality for Heyting algebras, we have that (X(A),⊆) is a
Heyting space. First, we will prove that the following assertions hold for all
a ∈ A:

(∗) GRA(σA(a)) = σA(G(a)); FRA(σA(a)) = σA(F (a));

HRA−1(σA(a)) = σA(H(a)); PRA−1(σA(a)) = σA(P (a)).

GRA(σ(a)) = σA(G(a)): Let us take a prime filter S such that G(a) /∈ S. By
Lemma 2.8, there exists T ∈ X(A) such that (S, T ) ∈ (⊆ ◦RA) and a /∈ T .
Then, RA(↑ S) �⊆ σA(a). So, S /∈ GRA(σA(a)) and, therefore, GRA(σ(a)) ⊆
σA(G(a)). Moreover, it is immediate that σA(G(a)) ⊆ GRA

(σA(a)).
FRA(σA(a)) = σA(F (a)): Suppose that S ∈ FRA(σA(a)). From this there
exists T ∈ X(A) such that (S, T ) ∈ RA and a ∈ T . Since G−1(S) ⊆
T ⊆ F−1(S), we have that F (a) ∈ S, that is, S ∈ σA(F (a)) and therefore
FRA(σA(a)) ⊆ σA(F (a)). On the other hand, suppose that S ∈ σA(F (a)),
that is, F (a) ∈ S. Then, by Lemma 2.8, there exists T ∈ X(A) such
that (S, T ) ∈ (RA◦ ⊇) and a ∈ T . Hence, there exists Z ∈ X(A) such
that (S,Z) ∈ RA and T ⊆ Z. From which it follows that Z ∈ RA(S) ∩
σA(a). Therefore, S ∈ FRA(σA(a)), from which we conclude σA(F (a)) ⊆
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FRA(σA(a)). In a similar way we can prove that HRA−1(σA(a)) = σA(H(a))
and PRA−1(σA(a)) = σA(P (a)). Next, we will show that (X(A),⊆, RA) sat-
isfies the axioms (tS1), (tS2), (tS3) and (tS4).
(tS1): By Lemma 2.5, RA(S) and RA−1(S) are closed subsets of X(A) for
all S ∈ X(A).
(tS2): For any S ∈ X(A), RA(S) =↓ RA(S) ∩ RA(↑ S). Indeed, since
RA(S) ⊆↓ RA(S) and RA(S) ⊆ RA(↑ S) we have that RA(S) ⊆↓ RA(S) ∩
RA(↑ S). On the other hand, let T ∈ RA(↑ S)∩ ↓ RA(S). Then, there ex-
ists S1, S2 ∈ X(A) such that S ⊆ S1, S1R

AT , SRAS2 and S2 ⊇ T . Hence,
G−1(S) ⊆ G−1(S1) ⊆ T and T ⊆ S2 ⊆ F−1(S). Therefore, T ∈ RA(S).
(tS3): By Corollary 2.4 it is verified that for each S ∈ X(A), RA(↑ S) and
RA−1(↑ S) are closed subsets of X(A). Then, we only need to prove that
RA(↑ S) and RA−1(↑ S) are increasing subsets of X(A) for all S ∈ X(A).

Let T ∈ RA(↑ S) and W ∈ X(A) such that T ⊆ W . Then, there exists
V ∈ X(A) such that S ⊆ V and T ∈ RA(V ). From this we obtain that
W ∈↑ RA(V ). By (K4) we have that W ∈ RA(↑ V ). On the other hand, we
infer that ↑ V ⊆↑ S and in consequence RA(↑ V ) ⊆ RA(↑ S), from which
we conclude that W ∈ RA(↑ S). Therefore, RA(↑ S) is an increasing subset
of X(A).
(tS4): For any U ∈ D(X(A)) there exists a ∈ A such that U = σA(a).
Then, the equalities (∗) allow us to affirm that GRA(U), FRA(U), HRA−1

(U), PRA−1(U) ∈ D(X(A)). So, (X(A),⊆, RA) is an IKt-space. By Lem-
ma 2.2 we have that D(X(A)) is an IKt-algebra. By virtue of the results
established in [18, Proposition 5.8] and the assertions (∗) we conclude that
σA is an IKt-isomorphism.

Lemma 2.10. Let (A1, G1, H1, F1, P1) and (A2, G2, H2, F2, P2) be IKt-
algebras and h : A1 −→ A2 be an IKt-homomorphism. Then, the application
Φ(h) : X(A2) −→ X(A1), defined by Φ(h)(S) = h−1(S) for all S ∈ X(A2),
is an IKt-function.

Proof. From the duality for Heyting algebras, it holds that the application
Φ(h) : X(A2) → X(A1) is a p-function. We will only prove (tf1) and (tf2);
(tf3) can be proved in a similar way to (tf2).
(tf1): Let S, T ∈ X(A2). Let us prove that if (S, T ) ∈ RA2 , then G−1(h−1(S))
⊆ h−1(T ) ⊆ F−1(h−1(S)). Suppose that a ∈ G−1(h−1(S)). Then we have
that h(G(a)) = G(h(a)) ∈ S, from which it follows that h(a) ∈ S, i.e.,
a ∈ h−1(S). In a similar way we can prove h−1(T ) ⊆ F−1(h−1(S)).
(tf2): Let S ∈ X(A1) and T ∈ X(A2) such that (h−1(S), T ) ∈ (⊆ ◦RA2). By
Lemma 2.7, G−1(h−1(S)) ⊆ T. Suppose that h(T c) ∩ [G−1(S)) �= ∅. Then,



Subdirectly Irreducible IKt-Algebras

there exists a, b ∈ A such that a /∈ T , G(b) ∈ S and b ≤ h(a). From this
last assertion we obtain that G(b) ≤ Gh(a) = h(G(a)). Since, G(b) ∈ S we
have that h(G(a)) ∈ S. So, a ∈ G−1(H−1(S)) ⊆ T, which is a contradiction.
Therefore, h(T c) ∩ [G−1(S)) = ∅. Then, by the Birkhoff–Stone Theorem,
there is a Z ∈ X(A1) such that [G−1(S)) ⊆ Z and Z ∩ h(T c) = ∅. From
which we conclude G−1(S) ⊆ Z and h−1(Z) ⊆ T. Then, (S, Z) ∈ (⊆ ◦RA1)
and h−1(Z) ⊆ T, which completes the proof.

Lemmas 2.9 and 2.10 show that Φ is a contravariant functor from IKtA
to IKtS.

The following characterization of isomorphisms in the category IKtS will
be used to determine the duality we were looking for.

Proposition 2.2. Let (X1,≤1, R1) and (X2,≤2, R2) be two IKt-spaces.
Then, for every function f : X1 −→ X2 the following conditions are equiv-
alents:

(i) f is an isomorphism in the category IKtS,

(ii) f is a bijective p-function such that for all x, y ∈ X1:

(itf) (x, y) ∈ R1 ⇐⇒ (f(x), f(y)) ∈ R2.

Proof. It is routine.

The application εX : X −→ X(D(X)) defined by the prescription III
leads to another characterization of IKt-space, which also allow us to assert
that this application is an isomorphism in the category IKtS, as we will
describe below:

Lemma 2.11. Let (X, ≤, R) be an IKt-space, εX : X −→ X(D(X)) defined
the prescription III and let RD(X) be the relation defined on X(D(X)) by
means of the operators GR and FR as follows:

(εX(x), εX(y)) ∈ RD(X) ⇐⇒ G−1
R (εX(x)) ⊆ εX(y) ⊆ F−1

R (εX(x)). (X)

Then, the following property holds:

(tS5) (x, y) ∈ R implies (εX(x), εX(y)) ∈ RD(X).

Proof. Let us consider x, y ∈ X such that (x, y) ∈ R and prove that
G−1

R (εX(x)) ⊆ εX(y) ⊆ F−1
R (εX(x)). Let U ∈ D(X) such that GR(U) ∈

εX(x). Then, R(↑ x) ⊆ U . Since R(x) ⊆ R(↑ x) we have that R(x) ⊆ U . This
last assertion allows us to infer that U ∈ εX(y). Therefore, G−1

R (εX(x)) ⊆
εX(y). Conversely, let us consider V ∈ εX(y). Then, y ∈ R(x) ∩ V. So x ∈
FR(V ), i.e., FR(V ) ∈ εX(x). Therefore, we have that εX(y) ⊆ F−1

R (εX(x)).
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Proposition 2.3. Let (X, ≤, R) be an IKt-space and let RD(X) be the re-
lation defined on X(D(X)) by the prescription X. Then, the condition (tS2)
can be replaced by the following one:

(tS6) (εX(x), εX(y)) ∈ RD(X) ⇐⇒ (x, y) ∈ R.

Proof. (tS2) ⇒ (tS6): Let x, y ∈ X such that y /∈ R(x). From (tS2) we
have that y /∈ R(↑ x) or y /∈↓ R(x). In the first case, by (tS3), we obtain that
R(↑ x) ⊆ U and y /∈ U for some U ∈ D(X). Then, x ∈ GR(U) and it follows
that U ∈ G−1

R (εX(x)) and U �∈ εX(y). Therefore, (εX(x), εX(y)) �∈ RD(X).
In the other case, we have that y ∈ U and R(x)∩U = ∅ for some U ∈ D(X).
So, x /∈ FR(U). This last assertion allows us to infer that U �∈ F−1

R (εX(x))
and U ∈ εX(y). Therefore, (εX(x), εX(y)) �∈ RD(X).
(tS6) ⇒ (tS2): We have to prove ↓ R(x) ∩ R(↑ x) ⊆ R(x); the other
inclusion always holds. Suppose that y ∈ ↓ R(x) ∩ R(↑ x). Then there
exists z1, z2 ∈ X such that x ≤ z1, z1 R y, x R z2 and z2 ≥ y. Hence, by
the property (tS5) in Lemma 2.11, εX(x) ⊆ εX(z1), εX(z1) RD(X) εX(y),
εX(x) RD(X) εX(z2) and εX(z2) ⊇ εX(y). So G−1

R (εX(x)) ⊆ G−1
R (εX(z1)) ⊆

εX(y) and εX(y) ⊆ εX(z2) ⊆ F−1
R (εX(x)). Hence, (εX(x), εX(y)) ∈ RD(X),

and so by assumption it follows that (x, y) ∈ R.

Corollary 2.5. Let (X, ≤, R) be an IKt-space. Then, the application εX :
X −→ X(D(X)) is an isomorphism in the category IKtS.

Proof. It follows from the results established in [18], Lemma 2.11, Propo-
sitions 2.2 and 2.3.

Then, from the above results and using the usual procedures we can prove
that the functors Φ ◦ Ψ and Ψ ◦ Φ are naturally equivalent to the identity
functors on IKtS and IKtA, respectively, being the families {σA(a) : a ∈ A}
and {εX(x) : x ∈ X} the natural equivalence in each case, from which we
conclude

Theorem 2.6. The category IKtS is naturally equivalent to the dual of the
category IKtA.

3. Simple and Subdirectly Irreducible IKt-Algebras

In this section, our first objective is the characterization of the congruence
lattice on an IKt-algebra by means of certain closed and increasing subsets
of its associated IKt-space, which allows us to describe the congruences on
IKt-algebras. Later, this result will be taken into account to obtain simple
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and subdirectly irreducible IKt-algebras. With this purpose, we shall start
by introducing the following notion.

Definition 3.1. Let (X, ≤, R) be an IKt-space. A subset Y of X is an
IKt-subset if it satisfies the following conditions for all y, z ∈ X:

(IKt1) if y ∈ Y and z ∈ R(↑ y), then, there is w ∈ Y such that

w ∈ R(↑ y) and w ≤ z,

(IKt2) if y ∈ Y and z ∈ R−1(↑ y), then, there is v ∈ Y such that

v ∈ R−1(↑ y) and v ≤ z.

The notion of an increasing IKt-subset of an IKt-space has several e-
quivalent formulations, which will be useful later:

Proposition 3.1. Let (X, ≤, R) be an IKt-space. If Y is an increasing
subset of X, then, the following conditions are equivalent:

(i) Y is an IKt-subset,

(ii) for all y ∈ Y , the following conditions are satisfied:

(IKt3) R(↑ y) ⊆ Y ,
(IKt4) R−1(↑ y) ⊆ Y ,

(iii) Y = GR(Y ) ∩ Y ∩ HR−1(Y ), where GR(Y ) = {x ∈ X : R(↑ x) ⊆ Y }
and HR−1(U) = {x ∈ X : R−1(↑ x) ⊆ Y }.

Proof. (i) ⇒ (ii): Let y ∈ Y and z ∈ R(↑ y), then by (IKt1) there is
w ∈ Y such that w ∈ R(↑ y) and w ≤ z. Since Y is increasing, it follows
that z ∈ Y and therefore R(↑ y) ⊆ Y . The proof that R−1(↑ y) ⊆ Y is
similar

(ii) ⇒ (i): It is immediate
(ii) ⇔ (iii): It is immediate

The closed and increasing IKt-subsets of the IKt-space associated with
an IKt-algebra perform a fundamental roll in the characterization of the
IKt-congruences on these algebras as we shall show next.

Theorem 3.2. Let (A, G,H, F, P ) be an IKt-algebra, and X(A) be the IKt-
space associated with A. Then, the lattice CIT (X(A)) of closed and increasing
IKt-subsets of X(A) is isomorphic to the dual lattice ConIKt(A) of IKt-
congruences on A, and the isomorphism is the function ΘIT defined by the
same prescription as in Theorem 1.1.

Proof. By the results established in Theorem 1.1, for the completion of the
proof it remains to show that ΘIT is an application from CIT (X(A)) onto
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ConIKt(A). Let Y ∈ CIT (X(A)), then, from Theorem 1.1 it follows that
ΘIT (Y ) is a Heyting congruence. In what follows we only prove that this
congruence preserves the operations G and F . Let a, b ∈ A such that (a, b) ∈
ΘIT (Y ), then (1) σA(a) ∩Y = σA(b) ∩Y . Suppose that S ∈ σA(G(a)) ∩Y .
Since σA is an IKt-isomorphism, we get that S ∈ GRA

G
(σA(a)) ∩ Y , from

which it follows that RA(↑ S) ⊆ σA(a). Also, taking into account that
S ∈ Y , the fact that Y is an increasing IKt-subset and Proposition 3.1,
we obtain that RA(↑ S) ⊆ Y . Therefore, RA(↑ S) ⊆ σA(a) ∩ Y . This last
assertion and (1) allow us to infer that RA(↑ S) ⊆ σA(b) and consequently,
S ∈ GRA(σA(b)). Since GRA(σA(b)) = σA(G(b)), we conclude that S ∈
σA(G(b)) ∩ Y , and so σA(G(a)) ∩ Y ⊆ σA(G(b)) ∩ Y . The proof of the other
inclusion is similar, which implies that (G(a), G(b)) ∈ ΘIT (Y ). Now suppose
that Q ∈ σA(F (a)) ∩ Y . Since the application σA is an IKt-isomorphism,
then Q ∈ FRA(σA(a)) ∩ Y , and so RA(Q) ∩ σA(a) �= ∅, from which it
follows that there is T ∈ σA(a) ∩ RA(Q). Then, taking into account that
Y is an increasing IKt-subset, Q ∈ Y , T ∈ RA(Q) and Proposition 3.1,
we obtain that T ∈ Y . Consequently, T ∈ σA(a) ∩ Y , and from (1) we
have that T ∈ σA(b) ∩ Y . Therefore, T ∈ RA(Q) ∩ σA(b), which implies
that Q ∈ FRA(σA(b)) ∩ Y . Since FRA(σA(b)) = σA(F (b)), we conclude that
σA(F (a)) ∩Y ⊆ σA(F (b)) ∩Y . The other inclusion is proved in a similar way,
which implies that (F (a), F (b)) ∈ ΘIT (Y ). Analogously, ΘIT (Y ) preserves
H and P and so ΘIT (Y ) ∈ ConIKt(A). Conversely, let ϕ ∈ ConIKt(A)
and h : A −→ A/ϕ be the natural epimorphism. Since ϕ is a Heyting
congruence on A, then by Theorem 1.1, Y = {h−1(M) : M ∈ X(A/ϕ)} is a
closed and increasing subset of X(A) and ϕ = ΘI(Y ). Then, it only remains
to prove that Y is IKt-subset of X(A). More precisely, by Proposition 3.1,
we only have to prove that Y satisfies the following conditions:

(IKt3) For all S ∈ Y , RA(↑ S) ⊆ Y : Indeed, let S, T ∈ X(A) such that
S ∈ Y and T ∈ RA(↑ S). Also let Φ(h) : X(A/ϕ) −→ X(A) be the
application defined by Φ(h)(Q) = h−1(Q) for all Q ∈ X(A/ϕ). Hence
Y = Φ(h)(X(A/ϕ)) and T ∈ RA(↑ Φ(h)(Q)) for some Q ∈ X(A/ϕ). Besides,
by Lemma 2.10, Φ(h) is an IKt-function. From the preceding assertions and
the property (If2) of the IKt-functions, we infer that T ∈ Φ(h)(↑ RA/ϕ(Q)).
Consequently, since Φ(h)(↑ RA/ϕ(Q)) ⊆ Y , we conclude that T ∈ Y and
therefore RA(↑ S) ⊆ Y .

(IKt4) For all S ∈ Y , RA−1(S) ⊆ Y : it can be proved in a similar way to one
used in the proof of (IKt3). Finally, we conclude that Y = {h−1(M) : M ∈
X(A)/ϕ)} is a closed and increasing IKt-subset of X(A) and ϕ = ΘIT (Y ).
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Next, we shall use the results already obtained in order to determine the
simple and subdirectly irreducible IKt-algebras

Corollary 3.3. Let (A, G,H, F, P ) be an IKt-algebra, and (X(A),⊆, RA)
be the IKt-space associated with A. Then, the following conditions are
equivalent:

(i) (A, G,H, F, P ) is a simple IKt-algebra,

(ii) CIT (X(A)) = {∅,X(A)}.
Proof. It is a direct consequence of Theorem 3.2.

Corollary 3.4. Let (A, G,H, F, P ) be an IKt-algebra, and (X(A), RA) be
the IKt-space associated with A. Then, the following conditions are equiva-
lent:

(i) (A, G,H, F, P ) is a subdirectly irreducible IKt-algebra,

(ii) there is Y ∈ CIT (X(A))\{X(A)} such that Z ⊆ Y for all

Z ∈ CIT (X(A))\{X(A)}.
Proof. It is a direct consequence of Theorem 3.2.

The characterization of increasing IKt-subsets given in Proposition 3.1
suggests us to introduce the following definition:

Definition 3.5. Let (X, ≤, R) be an IKt-space and let the function dX :
P(X) −→ P(X), defined for all Z ∈ P(X), by:

dX(Z) = GR(Z) ∩ Z ∩ HR−1(Z), (XI)

For each n ∈ ω, let dn
X : P(X) −→ P(X), defined for all Z ∈ P(X), by:

d0X(Z) = Z, dn+1
X (Z) = dX(dn

X(Z)). (XII)

By using the above aplications dX , dn
X , n ∈ ω, we obtain another equiv-

alent formulation of the notion of increasing IKt-subset of an IKt-space.

Lemma 3.1. Let (X, ≤, R) be an IKt-space. If Y is an increasing IKt-subset
of X, then the following conditions are equivalent:

(i) Y is an IKt-subset,

(ii) Y = dn
X(Y ) for all n ∈ ω,

(iii) Y =
⋂

n∈ω dn
X(Y ).

Proof. It is an immediate consequence of Definition 3.5 and Proposition 3.1.
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Taking into account that the restrictions to D(X) of the functions defined
in XI and XII are functions from D(X) into D(X), we obtain the following
lemma:

Lemma 3.2. Let (X, ≤, R) be an IKt-space and (D(X), GR, HR−1 , FR, PR−1)
be the IKt-algebra associated with X. Then for all n ∈ ω and for all
U, V ∈ D(X), the following conditions are satisfied:

(d1) dn
X(X) = X and dn

X(∅) = ∅,
(d2) dn+1

X (U) ⊆ dn
X(U),

(d3) dn
X(U ∩ V ) = dn

X(U) ∩ dn
X(V ),

(d4) U ⊆ V implies dn
X(U) ⊆ dn

X(V ),

(d5) dn
X(U) ⊆ U ,

(d6) dn+1
X (U) ⊆ GR(dn

X(U)) and dn+1
X (U) ⊆ HR−1(dn

X(U)),

(d7)
⋂

n∈ω dn
X(U) ∈ CIT (X) and therefore d(

⋂
n∈ω dn

X(U)) =
⋂

n∈ω dn
X(U).

Proof. From Definition 3.5 and the fact that GR, HR−1 and dn
X , n ∈ ω, are

monotone operations it follows immediately that the properties (d1), (d2),
(d3), (d4), (d5) and (6) hold.
(d7): Let U ∈ D(X) and n ∈ ω, then dn

X(U) is an increasing and closed
subset of X and therefore,

⋂
n∈ω dn

X(U) is an increasing and closed subset of
X. If

⋂
n∈ω dn

X(U) = ∅, then
⋂

n∈ω dn
X(U) ∈ CIT (X). Suppose now that there

is y ∈ ⋂
n∈ω dn

X(U), then y ∈ dn
X(U) for all n ∈ ω, and so from (d5) it follows

that y ∈ GR(dn−1
X (U)) and y ∈ HR−1(dn−1

X (U)) for all n ∈ ω. Therefore R(↑
y) ⊆ dn−1

X (U) and R−1(↑ y) ⊆ dn−1
X (U) for all n ∈ ω and consequently R(↑

y) ⊆ ⋂
n∈ω dn

X(U) and R−1(↑ y) ⊆ ⋂
n∈ω dn

X(U). From these last assertions
and Proposition 3.1, we have that

⋂
n∈ω dn

X(U) ∈ CIT (X), from which we
conclude, by Lemma 3.1, that d(

⋂
n∈ω dn

X(U)) =
⋂

n∈ω dn
X(U).

As a consequence of Lemma 3.2 and the duality for IKt-algebras we
can define d : A −→ A and dn : A −→ A, n ∈ ω, by the prescriptions:
d(a) = G(a) ∧ a ∧ H(a), d0(a) = a and dn+1(a) = d(dn(a)), respectively. It
should be noted that these operators were previously defined by Diaconescu
and Georgescu in [16] for tense MV -algebras.

Corollary 3.6. ([23]) Let (A, G,H, F, P ) be an IKt-algebra. Then, for all
n ∈ ω and for all a, b ∈ A, the following conditions are satisfied:

(d1) dn(1) = 1 and dn(0) = 0,

(d2) dn+1(a) ≤ dn(a),
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(d3) dn(a ∧ b) = dn(a) ∧ dn(b),

(d4) a ≤ b implies dn(a) ≤ dn(b),

(d5) dn(a) ≤ a,

(d6) dn+1(a) ≤ G(dn(a)) and dn+1(a) ≤ H(dn(a)).

Proof. It is a direct consequence of Lemmas 2.9 and 3.2.

Lemma 3.3. Let (A, G,H, F, P ) be an IKt-algebra. If
∧

i∈I ai exists then:

(i)
∧

i∈I G(ai) exists and
∧

i∈I G(ai) = G(
∧

i∈I ai),

(ii)
∧

i∈I H(ai) exists and
∧

i∈I H(ai) = H(
∧

i∈I ai),

(iii)
∧

i∈I d(ai) exists and
∧

i∈I d(ai) = d(
∧

i∈I ai).

Proof. (i): Assume that ai ∈ A for all i ∈ I and
∧

i∈I ai exists. Since∧
i∈I ai ≤ ai, we have by (t2) that G(

∧
i∈I ai) ≤ G(ai) for each i ∈ I. Thus

G(
∧

i∈I ai) is a lower bound of the set {G(ai) : i ∈ I}. Assume now that b
is a lower bound of the set {G(ai) : i ∈ I}. By (t5) and (t6) we have that
P (b) ≤ PG(ai) ≤ ai for each i ∈ I. So, P (b) ≤ ∧

i∈I ai. Besides, the pair
(G,P ) is a Galois connection, this means that x ≤ G(y) ⇐⇒ P (x) ≤ y,
for all x, y ∈ A. So, we can infer that b ≤ G(

∧
i∈I ai). This proves that∧

i∈I G(ai) exists and
∧

i∈I G(ai) = G(
∧

i∈I ai).
(ii): Analogously it can be proved for the operator H.
(iii): It is a direct consequence of (i) and (ii).

For invariance properties we have:

Lemma 3.4. Let (X, ≤, R) be an IKt-space and (D(X), GR, HR−1 , FR, PR−1)
be the IKt-algebra associated with X. Then for all U, V ∈ D(X) such that
U = dX(U) and V = dX(V ), the following properties are satisfied:

(i) U ∩ V = dX(U ∩ V ),

(ii) U ∪ V = dX(U ∪ V ),

(iii) dX(U → V ) = U → V .

Proof. (i): It follows immediately from the definition of the function dX

and the property (t2) of the IKt-algebras.
(ii): Taking into account that U = dX(U) and V = dX(V ) and the fact that
the operations GR and HR−1 are monotone we infer that U ∪V ⊆ GR(U ∪V )
and U ∪ V ⊆ HR−1(U ∪ V ), which imply that U ∪ V = dX(U ∪ V ),
(iii): It is sufficient to prove that U → V ⊆ GR(U → V ) and U → V ⊆
HR−1(U → V ). Let x ∈ U → V , then (1) ↑ x ∩ U ⊆ V . Let’s assume
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that y ∈ R(↑ x) and z ∈↑ y ∩ U . Since R(↑ x) is increasing it follows that
↑ y ⊆ R(↑ x) and thus (2) z ∈ R(↑ x) ∩ U . Therefore there is t ∈↑ x such
that (3) z ∈ R(t). From (2) and the hypothesis that U ⊆ HR−1(U) we get
that z ∈ HR−1(U), and so by (3), t ∈ U . Therefore t ∈↑ x∩U , which implies,
by (1), that t ∈ V . From this last assertion and the fact that V ⊆ GR(V ),
we infer that t ∈ GR(V ) and so R(t) ⊆ V , from which we have, by (3), that
z ∈ V . Therefore, ↑ y ∩ U ⊆ V , and hence y ∈ U → V . This preceding
assertion allows us to set that R(↑ x) ⊆ U → V and so we conclude that
U → V ⊆ GR(U → V ). It can be proved that U → V ⊆ HR−1(U → V ) in a
similar way. Therefore, U → V = dX(U → V ).

Corollary 3.7. Let (A, G,H, F, P ) be an IKt-algebra. Then for all a, b ∈
A, such that a = d(a) and b = d(b), the following properties are satisfied:

(i) d(a ∧ b) = a ∧ b,

(ii) d(a ∨ b) = a ∨ b,

(iii) d(a → b) = a → b.

Proof. It is a direct consequence of Lemmas 2.9 and 3.4.

Proposition 3.2. Let (A, G,H, F, P ) be an IKt-algebra. Then, for all a ∈
A, the following conditions are equivalent:

(i) a = d(a),

(ii) a = dn(a) for all n ∈ ω.

Proof. It follows immediately from Corollary 3.6.

In what follows if (A, G,H, F, P ) is an IKt-algebra we will denoted by
C(A) = {a ∈ A : d(a) = a}.

Lemma 3.5. Let (A, G,H, F, P ) be an IKt-algebra. Then, 〈C(A),∧,∨,→, 0, 1〉
is a Heyting algebra.

Proof. It is a direct consequence of Corollary 3.7 and the property (d1) in
Lemma 3.2.

Taking into account Theorem 3.2 and Priestley duality we can say that
the congruences on an IKt-algebra are the lattice congruences associated
with certain filters of this algebra. So our next goal is to determine the
conditions that a filter of an IKt-algebra must fulfill for the associated
lattice congruence to be an IKt-congruence.

Theorem 3.8. Let (A, G,H, F, P ) be an IKt-algebra. If S is a filter of A,
then, the following conditions are equivalent:
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(i) Θ(S) ∈ ConIKt(A),

(ii) d(a) ∈ S for all a ∈ S,

(iii) dn(a) ∈ S for all a ∈ S and for all n ∈ ω.

Proof. (i) ⇒ (ii): Let S be a filter of A such that Θ(S) ∈ ConIKt(A).
Then, from Priestley Duality and Theorem 3.2 it follows that Θ(S) =
ΘIT (YS), where Θ(S) is the lattice congruence associated with S, YS =
{x ∈ X(A) : S ⊆ x} =

⋂
a∈S σA(a) is an increasing and closed IKt-subset.

From these last assertions, Lemmas 3.1 and 3.6, the fact that σA is an IKt-
isomorphism and the application dX(A) is monotone, we infer that YS =
dX(A)(YS) = dX(A)(

⋂
a∈S σA(a)) ⊆ ⋂

a∈S dX(A) (σA(a)) =
⋂

a∈S σA(d(a)) ⊆⋂
a∈S σA(a). Hence, YS =

⋂
a∈S σA(d(a)), from which we conclude that

d(a) ∈ S for all a ∈ S. Indeed, suppose that a ∈ S, then a ∈ x for all
x ∈ YS , from which it follows that x ∈ ⋂

a∈S σA(d(a)) and thus d(a) ∈ x
for all x ∈ YS . Therefore, d(a) ∈ ⋂

x∈YS
x, and taking into account that

S =
⋂

x∈YS
x, we obtain that d(a) ∈ S.

(ii) ⇒ (i): By Priestley duality and VI we have that YS = {x ∈ X(A) : S ⊆
x} =

⋂
a∈S σA(a) is an increasing and closed subset and Θ(S) = Θ(YS). By

Theorem 3.2, it remains to show that YS is an IKt-subset of X(A). From
the hypothesis (ii), it follows that for a ∈ A, d(a) ∈ x for all x ∈ YS

and therefore, YS ⊆ ⋂
a∈S σA(d(a)). Consequently, by Lemma 3.6, YS =⋂

a∈S σA(d(a)). Then, taking into account that σA(d(a)) = dX(A)(σA(a)) and⋂
a∈S dX(A)σA(a) = dX(A)(

⋂
a∈S σA(a)), we obtain than YS = dX(A)(YS),

and so, from Lemma 3.1 and the fact that Y is increasing, we infer that
YS is an IKt-subset of X(A). Finally, since Y is an increasing and closed
IKt-subset of X(A) and Θ(S) = ΘIT (YS), we conclude, from Theorem 3.2,
that Θ(S) ∈ ConIKt(A).
(ii) ⇔ (iii): It is trivial.

Theorem 3.8 leads us to introduce the following definition:

Definition 3.9. Let (A, G,H, F, P ) be an IKt-algebra. A filter S of A is
an IKt-filter iff for all a ∈ S, d(a) ∈ S, or equivalently dn(a) ∈ S for all
n ∈ ω.

We shall denote by FIKt(A) to the set of all IKt-filters of an IKt-algebra
(A, G,H, F, P ).

Proposition 3.3. Let (A, G,H, F, P ) be an IKt-algebra. Then, the follow-
ing conditions are equivalent for all ϕ ⊆ A × A:

(i) ϕ ∈ ConIKt(A),
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(ii) there is S ∈ FIKt(A) such that ϕ = Θ(S), where Θ(S) is the lattice
congruence associated with the filter S.

Proof. It follows from Theorems 3.2 and 3.8 and Definition 3.9.

Corollary 3.10. Let (A, G,H, F, P ) be an IKt-algebra. Then,

(i) (A, G,H, F, P ) is a simple IKt-algebra iff FIKt(A) = {A, {1}}.
(ii) (A, G,H, F, P ) is a subdirectly irreducible IKt-algebra iff there is

T ∈ FIKt(A), T �= {1} such that T ⊆ S for all S ∈ FIKt(A), S �= {1}.
Proof. It is a direct consequence of Proposition 3.3.

Finally, we shall describe the simple and subdirectly irreducible IKt-
algebras.

In the proof of the following proposition we shall use the finite intersection
property of compact spaces, which establishes that if X is a compact topo-
logical space, then for each family {Mi}i∈I of closed subsets in X satisfying⋂

i∈I Mi = ∅, there is a finite subfamily {Mi1 , . . . , Min} with
⋂j=n

j=1 Mij = ∅.

Proposition 3.4. Let (A, G,H, F, P ) be an IKt-algebra and the IKt-space
associated with A, (X(A),⊆, RA). Then, the following conditions are equiv-
alent:

(i) (A, G,H, F, P ) is a simple IKt-algebra,

(ii) for all U ∈ D(X(A))\{X(A)}, ⋂
n∈ω dn

X(A)(U) = ∅,
(iii) for every U ∈ D(X(A))\{X(A)} there is n ∈ ω such that dn

X(A)(U) = ∅,
(iv) FIKt(D(X(A))) = {D(X(A)), {X(A)}}.
Proof. (i) ⇒ (ii): Let U ∈ D(X(A))\{X(A)}. Then, from Lemma 2.9
and (d7) in Lemma 3.2 we have that

⋂
n∈ω dn

X(A)(U) ∈ CIT (X(A))\{X(A)}.
From this last assertion, the hypothesis (i) and Corollary 3.3, we conclude
that

⋂
n∈ω dn

X(A)(U) = ∅.
(ii) ⇒ (iii): Let U ∈ D(X(A))\{X(A)}. Then, from the hypothesis (ii) it
is verified that (1)

⋂
n∈ω dn

X(A)(U) = ∅. Since for all n ∈ ω, dn
X(A)(U) is

a closed subset of X(A) and dn
X(A)(U) =

⋂n
j=1 dj

X(A)(U), then considering
(1), the fact that X(A) is compact and the finite intersection property of
compact spaces, we conclude that there is n ∈ ω such that dn

X(A)(U) = ∅.
(iii) ⇒ (iv): Assume that S ∈ FIKt(D(X(A))), S �= {X(A)}, then there is
V ∈ D(X(A)), V �= X(A) such that V ∈ S. From the preceding assertion,
Definition 3.9 and the hypothesis (iii), we deduce that ∅ ∈ S, which implies
that S = D(X(A)).
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(iv) ⇒ (i): It follows immediately from Corollary 3.10 and the fact that
(A, G,H, F, P ) is isomorphic to (D(X(A)), GR, HR−1 , FR, PR−1).

Corollary 3.11. Let (A, G,H, F, P ) be an IKt-algebra. Then, the follow-
ing conditions are equivalent:

(i) (A, G,H, F, P ) is a simple IKt-algebra,

(ii) for every a ∈ A\{1} there is n ∈ ω such that dn(a) = 0,

(iii) FIKt(A) = {A, {1}}.
Proof. It is a direct consequence of Proposition 3.4 and the fact that σA

is an IKt-isomorphism (Lemma 2.9).

Corollary 3.12. If (A, G,H, F, P ) is a simple IKt-algebra, then C(A) =
{0, 1} and therefore 〈C(A),∨,∧,→, 0, 1〉 is a simple Heyting algebra.

Proof. It is a direct consequence of Proposition 3.2 and Corollary 3.11.

Proposition 3.5. Let (A, G,H, F, P ) be an IKt-algebra and (X(A),⊆, RA)
be the IKt-space associated with A. Then, the following conditions are e-
quivalent:

(i) (A, G,H, F, P ) is a subdirectly irreducible IKt-algebra,

(ii) there is V ∈ D(X(A))\{X(A)}, such that for all U ∈ D(X(A))\{X(A)},⋂
n∈ω dn

X(A)(U) ⊆ V ,

(iii) there is V ∈D(X(A))\{X(A)}, such that for each U ∈D(X(A))\{X(A)},
there is nU ∈ ω such that dnU

X(A)(U) ⊆ V ,

(iv) there is T ∈ FIKt(D(X(A)), T �= {X(A)}, such that T ⊆ S for all
S ∈ FIKt(D(X(A))), S �= {X(A)}.

Proof. (i) ⇒ (ii): From the hypothesis (i) and Corollary 3.4 we infer that
there is Y ∈ CIT (X(A))\{X(A)} such that for all Z ∈ CIT (X(A))\{X(A)},
(1) Z ⊆ Y . Therefore, there is x ∈ X(A)\Y , and since Y is an increasing
and closed subset of X(A) and hence it is compact, then we can assert
that there is V ∈ D(X(A)), such that (2) Y ⊆ V and x �∈ V and so V ∈
D(X(A))\{X(A)}. On the other hand, if U ∈ D(X(A))\{X(A)}, then by
Lemma 3.2,

⋂
n∈ω dn

X(A)(U) ∈ CIT (X(A))\{X(A)}, from which we conclude,
by (1) and (2), that

⋂
n∈ω dn

X(A)(U) ⊆ V .
(ii) ⇒ (iii): From the hypothesis (ii), there is V ∈ D(X(A))\{X(A)}, such
that (1)

⋂
n∈ω dn

X(A)(U) ⊆ V for all U ∈ D(X(A))\{X(A)}. Suppose that
there is U ∈ D(X(A))\{X(A)} such that for all n ∈ ω, dn

X(A)(U) �⊆ V , then
for each n ∈ ω there is (2) xn ∈ dn

X(A)(U) and xn �∈ V . Hence (xn)n∈ω
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is a sequence in X(A)\V and since X(A)\V is compact, then there is (3)
x ∈ X(A)\V such that (xn)n∈ω accumulates at x. In addition, by (1) and (3),
we have that x �∈ ⋂

n∈ω dn
X(A)(U), and therefore there is n0 ∈ ω such that x ∈

X(A)\dn0
X(A)(U). Since x is an accumulation point of (xn)n∈ω, then the pre-

ceding assertion and the fact that X(A)\dn0
X(A)(U) is an open subset of X(A)

allow us to infer that for all n ∈ ω there is mn ∈ ω such that n ≤ mn and
xmn

∈ X(A)\dn0
X(A)(U). Hence xmn0

∈ X(A)\dn0
X(A)(U) and n0 ≤ mn0 . As a

consequence of Lemma 3.2 we have that X(A)\dn0
X(A)(U) ⊆ X(A)\dmn0

X(A)(U)
and so xmn0

∈ X(A)\dmn0
X(A)(U), which contradicts (2). Therefore, for each

U ∈ D(X(A))\{X(A)} there is n ∈ ω such that dn
X(A)(U) ⊆ V .

(iii) ⇒ (iv): V ∈ S for all S ∈ FIKt(D(X(A))), S �= {X(A)}. Indeed, let
U ∈ S, then by the hypothesis (iii), there is nU ∈ ω such that dnU

X(A)(U) ⊆ V .
Since dnU

X(A)(U) ∈ S, we infer that V ∈ S, and so V ∈ ⋂
S∈FIKt(D(X(A)))

S �={X(A)}
S.

Therefore, considering T =
⋂

S∈FIKt(D(X(A)))
S �={X(A)}

S, we get that T ∈ FIKt(D(X

(A))), T �= {X(A)} and T ⊆ S, for all S ∈ FIKt(D(X(A))), S �= {X(A)}.
(iv) ⇒ (i): It follows immediatly from Corollary 3.10 and the fact that
(A, G,H, F, P ) is isomorphic to (D(X(A)), GR, HR−1 , FR, PR−1).

Corollary 3.13. Let (A, G,H, F, P ) be an IKt-algebra. Then, the follow-
ing conditions are equivalent:

(i) (A, G,H, F, P ) is a subdirectly irreducible IKt-algebra,

(ii) there is b ∈ A\{1} such that for all a ∈ A\{1}, there is n ∈ ω such that
dn(a) ≤ b,

(iii) there is T ∈ FIKt(A), T �= {1} such that T ⊆ S for all S ∈ FIKt(A),
S �= {1}.

Proof. It is a direct consequence of Proposition 3.5 and the fact that σA

is an IKt-isomorphism (Lemma 2.9).

Corollary 3.14. Let (A, G,H, F, P ) be a subdirectly irreducible IKt-algebra
such that for all a ∈ A\{1}, dn(a) = dna(a) for all n ∈ ω, na ≤ n for some
na ∈ ω. Then, 〈C(A),∨,∧,→, 0, 1〉 is a subdirectly irreducible Heyting alge-
bra.

Proof. From Corollary 3.13 it follows that there is b ∈ A\{1} such that for
all a ∈ A\{1}, there is n′

a ∈ ω such that dn′
a(a) ≤ b. Also, from hypothesis we

have that there is nb ∈ ω such that dn(b) = dnb(b) for all n ∈ ω, nb ≤ n and
so considering u = dnb(b), then u ∈ C(A), u �= 1. In addition, let c ∈ C(A),



Subdirectly Irreducible IKt-Algebras

c �= 1, then c = dn(c) for all n ∈ ω, and thus c = dn′
c(c) ≤ b, from which

we infer that c = dnc(c) ≤ dnb(b) = u. Consequently, by Theorem 1.2 and
Lemma 3.5, it results that 〈C(A),∨,∧,→, 0, 1〉 is a subdirectly irreducible
Heyting algebra.

In the sequel we shall describe the finite simple and subdirectly irreducible
IKt-algebras.

Theorem 3.15. Let (A, G,H, F, P ) be a finite IKt-algebra Then, the fol-
lowing conditions are equivalent:

(i) (A, G,H, F, P ) is a simple IKt-algebra,

(ii) C(A) = {0, 1},
(iii) 〈C(A),∨,∧,→, 0, 1〉 is a simple Heyting algebra.

Proof. (i) ⇒ (iii): It follows directly from Corollary 3.12.
(ii) ⇔ (iii): It follows immediately from Lemma 3.5 and the fact that a
Heyting algebra B is simple iff, B = {0, 1}.
(ii) ⇒ (i): Since A is finite set, then for all a ∈ A\{1}, there is na ∈ ω
such that dn(a) = dna

(a) < a for all n ∈ ω, na ≤ n. Therefore, d(dna
(a)) =

dna
(a), which implies that dna

(a) ∈ C(A)\{1}, and so by the hypothesis (ii)
we infer that dna

(a) = 0. From the preceding assertion and Corollary 3.11
we obtain that (A, G,H, F, P ) is a simple IKt-algebra.

Theorem 3.16. Let (A, G,H, F, P ) be a finite IKt-algebra. Then, the fol-
lowing conditions are equivalent:

(i) (A, G,H, F, P ) is a subdirectly irreducible IKt-algebra,

(ii) there is u ∈ C(A)\{1}, such that c ≤ u, for all c ∈ C(A)\{1},
(iii) 〈C(A),∨,∧,→, 0, 1〉 is a subdirectly irreducible Heyting algebra.

Proof. (i) ⇒ (iii): Since A is finite set, then for all a ∈ A\{1}, there is
na ∈ ω such that dn(a) = dna

(a) for all n ∈ ω, na ≤ n. Therefore, from
this last assertion, the hypothesis (i) and Corollary 3.14, we conclude that
〈C(A),∨,∧,→, 0, 1〉 is a subdirectly irreducible Heyting algebra.
(ii) ⇔ (iii): It is a direct consequence of Theorem 1.2 and Lemma 3.5.

(ii) ⇒ (i): Since A is finite set, then for all a ∈ A\{1}, there is na ∈ ω
such that dna

(a) ∈ C(A)\{1}, and so by the hypothesis (ii) we infer that
dna

(a) ≤ u, u �= 1. The preceding assertion and Corollary 3.13 allow us to
set that (A, G,H, F, P ) is a subdirectly irreducible IKt-algebra.

Now, we are interested in the characterization of the complete simple and
subdirectly irreducible IKt-algebras whose filters are complete. To this end,
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we recall that if A is a complete lattice whose filters are complete, then for
all S ⊆ A, σA(

∧
a∈S a) =

⋂
a∈S σA(a).

Proposition 3.6. Let (A, G,H, F, P ) be a complete IKt-algebra. Then, the
following conditions are equivalent:

(i) a = d(a),

(ii) a = dn(a) for all n ∈ ω,

(iii) a =
∧

n∈ω dn(a),

(iv) a =
∧

n∈ω dn(b) for some b ∈ A.

Proof. It follows from Proposition 3.2, the fact that
∧

n∈ω dn(a) ∈ A, and
Lemma 3.3.

Theorem 3.17. Let (A, G,H, F, P ) be a complete IKt-algebra whose filters
are complete. Then, the following conditions are equivalent:

(i) (A, G,H, F, P ) is a simple IKt-algebra,

(ii) C(A) = {0, 1},
(iii) 〈C(A),∨,∧,→, 0, 1〉 is a simple Heyting algebra.

Proof. (i) ⇒ (iii): It follows directly from Corollary 3.12.
(ii) ⇔ (iii): It follows immediately from Lemma 3.5 and the fact that a
Heyting algebra B is simple iff, B = {0, 1}.
(ii) ⇒ (i): Taking into account that A is complete and Proposition 3.6, we
have that C(A) = {∧

n∈ω dn(a) : a ∈ A}. Then, from the hypothesis (ii),
we obtain that for all a ∈ A\{1},

∧
n∈ω dn(a) = 0. In addition, from the

hypothesis, it follows that σA(
∧

n∈ω dn(a)) =
⋂

n∈ω σA(dn(a)). Consequent-
ly

⋂
n∈ω σA(dn(a)) = ∅ and thus

⋂
n∈ω dn

X(A)(σA(a)) = ∅ for all a ∈ A such
that σA(a) �= X(A). Taking into account that σA is an IKt-isomorphism,
and Proposition 3.4 the proof is complete.

Theorem 3.18. Let (A, G,H, F, P ) be a complete IKt-algebra whose filters
are complete. Then, the following conditions are equivalent:

(i) (A, G,H, F, P ) is a subdirectly irreducible IKt-algebra,

(ii) there is u ∈ C(A)\{1}, such that c ≤ u, for all c ∈ C(A)\{1},
(iii) 〈C(A),∨,∧,→, 0, 1〉 is a subdirectly irreducible Heyting algebra.

Proof. (i) ⇒ (ii): From the hypothesis (i), Proposition 3.6 and Corol-
lary 3.13, we can assert that there is b ∈ A\{1} such that (1) c ≤ b, for all
c ∈ C(A), c �= 1. Since A is complete, we have that

∧
n∈ω dn(b) ∈ C(A),
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∧
n∈ω dn(b) �= 1. In addition, from (1) and the fact that for all c ∈ C(A),

c �= 1, c =
∧

n∈ω dn(c), we conclude that c ≤ ∧
n∈ω dn(b). Therefore, consid-

ering u =
∧

n∈ω dn(b), the proof is complete.
(ii) ⇒ (i): Taking into account that A is complete and Proposition 3.6,

we have that C(A) = {∧
n∈ω dn(a), a ∈ A}. Then, from the hypothesis

(ii), we obtain that there is b ∈ A, b �= 1, such that
∧

n∈ω dn(b) �= 1 and∧
n∈ω dn(a) ≤ ∧

n∈ω dn(b), for all a ∈ A\{1} and so
∧

n∈ω dn(a) ≤ b. There-
fore, considering that σA(

∧
n∈ω dn(a)) =

⋂
n∈ω σA(dn(a)), the fact that

σA : A → D(X(A)) is an IKt-isomorphism and the preceding assertion
we infer that

⋂
n∈ω dn

X(A)(σA(a)) ⊆ σA(b) ⊂ X(A), and this implies that for
all U ∈ D(X(A)), U �= X(A),

⋂
n∈ω dn

X(A)(U) ⊆ σA(b) and hence Proposi-
tion 3.5 allows us to conclude the proof.
(ii) ⇔ (iii): It is a direct consequence of Theorem 1.2, Lemma 3.5 and Corol-
lary 3.13.
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[8] Chajda, I., R. Halaš, and J. Kühr, Semilattice structures, in Research and Exposi-

tion in Mathematics, Heldermann, Lemgo, 2007, p. 30.
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