JCS&T Vol. 5 No. 4

December 2005

Evolutionary Algorithms with Clustering for
Dynamic Fitness Landscapes

Victoria Aragén, Susana Esquivel

Lab. de Investigacién y Desarrollo en Inteligencia Computacional (LIDIC).

Dpto. de Informdtica - Universidad Nacional de San Luis
Ejército de los Andes 950 - 5700 - San Luis - Argentina

{esquivel, vsaragon} @Qunsl.edu.ar

Abstract

Interest on dynamic multimodal functions risen
over the last years since many real problems have
this feature. On these problems, the goal is no
longer to find the global optimal, but to track
their progression through the space as closely as
possible. This paper presents three evolutionary
algorithms for dynamic fitness landscapes. In or-
der to mantain diversity in the population they
use two clustering techniques and a macromuta-
tion operator. Besides, this paper compares two
crossover operators: arithmetic and multiparents
two points, respectively. Effectiveness and limita-
tions of each algorithm are discuss and analyzed.

Keywords: Dynamic Multimodal Functions,
Evolutionary Algorithms, Clustering Algorithms,
Macromutation.

1 INTRODUCTION

The dynamic multimodal fitness landscape is a
search space which topological features of the
cones could change over time. Dynamic multi-
modal fitness landscapes present a challenge to
any search technique due to the fact that the to-
tal or partial number of topological features or
problem constraints or both could change. So,
new cones could appear, and these should be lo-
cated quickly in order to avoid the lose of poten-
tial good solutions. Consequently, an evolution-
ary algorithm working on these landscapes must
be able quickly adapts localizing and keeping ac-
tual and new optimal solutions.

For the changes there may be a variety of dy-
namic properties. For example, the magnitude of
a change be small, large or chaotic and the speed
of a change can be rapid or slow.

196

When changes are large, abrupt or chaotic the
similarity between solutions found so far and
the new ones can be worthless. Even under
these hard environments Evolutionary Computa-
tion (EC) offers advantages, which are absent in
non-population-based heuristics, when we search
for solutions to non-stationary problems. The
main advantage lies in the fact that Evolutionary
Algorithms (EAs) keep a population of solutions.
Consequently, facing the change, they allow mov-
ing from one solution to another one to determine
if any of them are of merit in order to continue
the search from them instead of from scratch [2].

The main problem with EAs is that eventu-
ally they converge to an optimum and thereby
lose the diversity necessary for efficiently explor-
ing the search space and also their ability to react
to a change in the environment when such change
occurs. Then, it is necessary to complement EAs
with some strategy in order to mantain diversity
in the population. Niching has been developed
for this purpose. Niching tries to spread out the
population over multiple cones, they should man-
tain diversity in the population. Clustering algo-
rithms group similar elements from a set forming
subsets, each subset represents a niche.

Goldberg and Smith [5], Cobb [4] and Grefen-
stette [11] initiated the research related to the
behaviour of EAs on dynamic fitness landscapes
between 1987 and 1992. Recently the interest in
this area was increased dramatically [16], [12],
[21], [24], [14], [23], [22], [17], [15]. Some re-
search on evolutionary algorithms with clustering
are described in [19, 20].

The paper is organized as follows. Section 2
presents the techniques used to mantain diversity.
Section 3 describes the EAs characteristics. Sec-
tion 4 describes the dynamic test functions used.
Section 5 defines the metrics used. In section 6

JCS&T Vol. 5 No. 4

the experiments performed are explained. In sec-
tion 7 results are discussed and, finally section 8
shows our conclusions and future work.

2 TECHNIQUES TO KEEP
DIVERSITY IN THE
POPULATION

2.1 Clustering Algorithms

The goal of clustering algorithms (CA) is to group
data units in clusters in a way that data units
in a cluster are as similar as posible but clusters
are as different as posible. In the context of evo-
lutionary algorithms, individuals are data units
and clusters are niches or species.

A basic CA [7] is a partitioning algorithm (PA).
PAs construct a partition of a set D of n ob-
jects into a set of k clusters. %k is an input pa-
rameter for these algorithms. Specifically, center-
based PAs begin with a guess about the solution,
and then refine the positions of centers until a
local optimal is reached. K-Means and Hybrid
belong to the family of center-based clustering
algorithms. Each of them has its own objective
function, which defines how good a clustering so-
lution is. The goal of each algorithm is to mini-
mize its objective function. Since these objective
functions cannot be minimized directly, they use
iterative update algorithms which converge on lo-
cal minima.

We briefly describe the work of a general iter-
ative clustering technique: let X a d-dimensional
set of n data points X = {#,...,%,} as the data
to be clustered, let C' a d-dimensional set of k
centers C = {&,...,Ck} as the clustering solu-
tion that an iterative algorithm refines. A mem-
bership function m(¢;|¥;) defines the proportion
of data point Z; that belongs to center ¢; with
constrains m(c;|#;) > 0 and Zle m(&;|Z;) = 1.
A weight function w(#F;) defines how much influ-
ence data point Z; has in recomputing the center
parameters in the next iteration, with constrains
w(&;) > 0, this weight function was introduced
in [1]. The steps for a general iterative clustering
technique are:

1. Initialize the algorithm with k guess centers
C.

2. For each data point Z; compute its membership
m(C;|&;) in each center ¢; and its weight w(&;).
3. For each center ¢; recompute its location from

197

December 2005

all data points #; € X according to their mem-
. . L dor m(E|E)w (@)
berships and weights ¢; = S G)

4. Repeat steps 2. and 3. until convergence.

In this work we consider the following two cluster-
ing algorithms that show the features described
above.

e K-Means Algorithm (KM) [8]: Partitions
data into k sets. The solution is then a
set of k centers, each center is located at
the centroid of the data for which it is the
closer center. For the membership func-
tion, each data point belongs to its near-
est center. The objective function that the
KM algorithm optimizes is: KM(X,C) =
S minjeq,. .k} ||E — &l|*. This objec-
tive function gives an algorithm which mini-
mizes the squared distance between each cen-
ter and its assigned data points. The mem-
bership and weight functions for KM are:

1 if | = min, ||& — &
mKM(c”fi):{ 0 en otro casjo” 1 ol

wrm (i) =1

respectively. KM has a hard membership
function m(c;|#;) € {0,1} (every point be-
longs only to its closest center) and a con-
stant weight function that gives all data
points equal importance. KM is easy to un-
derstand and implement, making it a popular
algorithm for clustering.

e Hybrid Algorithm(H) [8]: Uses the hard
membership function of KM. But it uses a
varying weight function, which gives more
weight to points that are far from every cen-
ter. The membership and weight functions
for H are:

maldy < { 1 sil=min [1F - 3]
2= 0 en otro caso

k o = |—p—2
P

k
7. —C:l|—P)2
SRR

wH(ifi) =

respectively.

2.2 Macromutation Operator

Random Immigrants: This idea was proposed in
[10, 9]. The approach consists in replacing a per-
centage of the population by randomly generated
individuals. The technique is applied only when
a change in the environment was produced.

JCS&T Vol. 5 No. 4

3 CHARACTERISTICS OF
EVOLUTIONARY
ALGORITHMS

We choose three evolutionary algorithms, each
algorithm combines one clustering algorithm (K-
Means or Hybrid) with random immigrants and a
different crossover operator. All algorithms share
the representation, selection method and muta-
tion operator.

3.1 Representation

The population P is made of a constant number N
of chromosomes that depends on the dimension-
ality of each studied function. Each individual
consists of a single chromosome, where each gene
is a real value in the interval [—1.0, 1.0] represent-
ing a coordinate in the search space. That is the
ith individual in the population P, is represented
by the chromosome: P! =< 1, Zis, ..., Tir >,
where z;; denotes the jth coordinate of the ith
individual with j=1,...,r and r is the chromo-
some length.

3.2 Operators

e Selection: The parents for the mating pool
were selected by means of tournament selec-
tion [2].

e Mutation: Uniform mutation is used and it
is applied with a P,y probability. When
an individual undergoes mutation, each gene
has exactly the same chance of undergoing
mutation. As a result the mutated gene has
a new allele value randomly chosen from the
domain of the corresponding parameter.

e Arithmetic Crossover [2]: let two parents
¥, and %5, with a P,...ss probability, the
operator creates one descendent as average
from the parents: z; = 0.5z1; + 0.5z2; for
i=1,...,r.

e Multiparents [6]Two Points Crossover [2]: let
three parents Z, Zo and 3, with a P,
probability, it takes pairs of them (#; and Zs,
Z; and F3 and &> and #3) and it applies two
points crossover to them creating six descen-
dents. Only the child with the highest fitness
is selected to join the new population.

198

December 2005

3.3 Description of the EAs

The EAs proposed are:

o AEKM: uses K-Means with arithmetic
Crossover.

e AEH: uses Hybrid with arithmetic crossover.

o AEKMM: uses K-Means with multiparents
two points crossover.

All of them use random inmigrantes. All the algo-
rithms, except for the differences indicated above,
work in a similar manner: Clustering algorithm
splits population in so many subpopulations as
number of clusters exist. Clustering is applied
after population is initialized and after a change
occurs. The elitism strategy takes the best indi-
vidual of each cluster and from those picks the
best as global optimal. The population is gener-
ated by the selection, crossover and mutation op-
erators that correspond. These operators work on
subpopulations so interaction between subpopu-
lations and clusters does not exist. The algo-
rithms have a function called function_changes, it
is responsible for the detection of a change in dy-
namic fitness function. In our case, changes occur
at constant intervals, then this function only ver-
ifies if the generation number corresponds to one
where the change must occur. If a change must
occur then the apply_changes function is called
obtaining a new dynamic fitness function. An-
other function is the occured_function, it tests if a
change effectively has occured, in which case sub-
populations are re-evaluated with the new func-
tion, then subpopulations are unified and over it
clustering is applied in order to reagrup similar
individuals and finally elitism is applied. Ran-
dom immigrants are inserted when a change oc-
curs after subpopulations are unified but before
split them again. Algorithms finish when a fixed
amount of changes are reached.

4 DYNAMIC TEST
PROBLEMS

This Section describes the test problem generator
for the dynamic fitness landscapes used, named
DF1. It was proposed by R. Morrison and K. De
Jong [18]. The static function used in DF1 can
be specified for any number of dimensions and it
is defined as:

f(.’I:1, e ,xn) = maxq;zl,M[Hq; —R; *
\/(ivl —z13)?+ (2 —22:)2 + ...+ (xn —

xm)2]

JCS&T Vol. 5No. 4

where (z1,...,2,) are the genes of an individual,
M specifies the number of cones in the environ-
ment, and each cone is independently specified by
its location (Z14,--.,Zni), Zki € [-1.0,1.0] with &
= 1,...,n, its height H; and its slope R;. Every
of these independently specified cones is blended
together using the max function. Each time the
generator is called it produces a randomly gener-
ated morphology in which random values for each
cone are assigned based on user-specified ranges:
H; € [Hbase, Hbase + Hrango] and R; € |
Rbase, Rbase + Rrango).

DF1 permits to control the dynamic of each
change (i.e, how topological features on the land-
scape change) through an one-dimensional, non-
linear function that has simple bifurcation transi-
tions to progressively more complex behavior: the
logistics function V; = AxY (1—1)x(1-Y (i—1)),
where A is a constant, and Y; is the value at it-
eration i. As A is increased a more complicated
dynamic behavior emerges. DF1 uses Y values
produced on each iteration to select step a size
for the dynamic portions of the landscape. It re-
quires the values chosen for A to be greater than
one (small change) and less than four (chaotic
change). DF1 allows to change any topological
feature on the landscape. However, in our work
we just change the location of the highest cone
(global optimal).

4.1 Test Problems Used

We considered 3 static functions generated by
DF1. All of them were selected in order to vali-
date our algorithms, with respect to a small set of
landscapes. Each landscape has a different com-
plexity level. Table 1 provides the general param-
eters for each test function: height H, slope R,
maximum fitness of highest and sloppiest MaxH
and MaxR, respectively. For all functions, inde-
pendently of the number of cones, one of them
was initialized as global maximum (global opti-
mal) using MaxH and MaxR, the rest of the cones
were generated as specified in Section 4. Besides,
FD3 has a cone with height = slope = 7.0. Fol-
lowing is the description of the function features.

Table 1: Test Functions Parameters

Function | FD1 | FD2 | FD3
Hbase 60.0 60.0 5.0
Hrange 10.0 10.0 0.0
Rbase 50.0 50.0 4.0
Rrange 10.0 10.0 0.0
MaxH 70.0 80.0 | 10.0
MaxR 59.01 | 80.0 | 17.0

199

December 2005

On FD1 (see Figure 1 a and b), the highest cone
was fixed in 70.0, the next in 68.9 and the rest
height cones were fixed between 60.3 and 68.5.
Therefore, FD1 is considered the most complex
test function. On FD2 (see Figure 1 ¢ and d),
the highest cone was fixed in 80.0, the next in
68.9 and the rest height cones were fixed between
60.3 and 68.5. Thus, FD2 is considered the least
complex test function. Since local optimals may
not disorient the search process strongly. Finally,
on FD3 (see Figure 1 e and f) the highest cone was
fixed in 10.0, the next in 7.0 and the rest height
cones were fixed in 5.0. The 7.0-heigh cone should
act like an attractor in order to strongly disorient
search process.

A (4 ¢

Figure 1: a- FD1-2d10c. b- FD1-2d20c. c- FD2-
2d10c. d- FD2-2d20c. e- FD3-2d10c. f- FD3-
2d20c.

We worked on different functions, every static
function was scaled in dimensionality and multi-
modality, FD#f-#d#c indicates number of static
function, dimensions and the number of cones.
The number total of test functions is 12. All func-
tions have a characteristic: not one cone on the
landscape covers another cone on the same land-
scape, at least until the function starts to change.

5 PERFORMANCE
MEASURES

The goal of an evolutionary algorithm in dynamic
environments is not only to find one global opti-

JCS&T Vol. 5 No. 4

mal but rather a perpetual adjustment to chang-
ing environment conditions [13]. Besides the ac-
curacy of a solution at time ¢, the stability of a
solution is of interest too. Several measures are
proposed in [13]. This paper considers different
measures. These are:

e Accuracy [13]: accuracy for a sequence of K
changes is defined as:

1 K—1 F(best®)—Min®
Acc =% Ylico Maa®@—Fin®

where K is the number of changes suffered by
the fitness function, best?) is the best candi-
date solution in the population, Maz(® € R
and Min® € R are the best and worst val-
ues in the search space in the generation just
before ith change, with i € [0, K—1]. The ac-
curacy values range between 0 and 1. When
accuracy is 1, it means that the best individ-
ual in the population is found as the global
optimal in generation just before the change.

o Stability [13]: in the context of dynamic op-
timization, an adaptive algorithm is called
stable if changes in the environment do not
affect the optimization accuracy severely.
Even in the case of chaotic changes an al-
gorithm should be able to limit the fitness
drop. It is defined as:

Stab = max{0, Acct=1) — Acc®}

and ranges between 0 and 1. A value close
to 0 implies a high stability. This measure
should not serve as the only criterion since it
makes no statement on the accuracy level.

Measures based on fitness of one or more indi-
viduals could have some problems when they are
used in an isolated way. In some cases, individ-
ual fitness could be misleading. We use several
measures, some of them are based on fitness (ac-
curacy and stability) and the others are based in
the proximity to the global optimal. These can
only be used if, all the time, location, height and
slope of the cones contained in the landscape are
known. This is our case because DF1 allows us
to know these values.

So all the performance metrics that we used
are:

e Number of correct reactions to changes
(RC),

200

December 2005

e Average accuracy (Acc),
e Average stability (Stab),

e Average occupied cones (CC), we specified
that a cone is occupied if at least one indi-
vidual belongs to the cone and

e Average distance of the best individual to the
current optimal (DO).

Note: we indicated that EA reacts well or re-
acts acceptably when the best individual of the
population belongs to the global optimal cone.
All averages are taken from all runs.

6 EXPERIMENTS

Except population size, the parameter settings
for the EAs remained fixed throughout all exper-
iments and were determined as the best after a
series of initial trials. The population size was
set to 100 and 150 for 2 and 5 dimensions func-
tions, respectively. P.p,ss and P, were fixed at
0.6 and 0.5, respectively. Tournament size was 2.
The percentage of random immigrants was set to
30% of the population size. The individuals to be
replaced by immigrants were randomly selected
with equal probability. A number of experiments
were designed differing in the function selected
and in the severity of the changes to perform on
it. The number clusters was the number of cones
in the function. Changes were produced each 10,
50 and 70 generations for all functions. The main
goal here was to determine if the algorithms suc-
ceeded to faithfully tracking the changes in lo-
cation of the cone containing the optimum value
when the fitness landscape changes. The algo-
rithm was allowed to run as many generations
as changes were desired. For all experiments we
fixed at 20 the number of changes. For each of
these experiments 30 runs were performed with
distinct initial populations. Thus, a maximum of
600 changes could be detected. The change in the
location of the cone containing the optimum value
is the only change analyzed in the present work.
Parameter setting for severity of changes were for
large changes A=1.5 and Cstepscale=0.99 and
for chaotic changes A=3.8 and Cstepscale=0.5.
The severity of changes was selected because we
agree with Branke [3] in that small and frequent
changes should be accounted by creating robust
solutions for the algorithm, while large and infre-
quent changes should be handled by adaptation.
The Cstepscale constant is used to move each co-
ordinate on the range specified by the user.

JCS&T Vol. 5 No. 4

7 RESULTS

This paper considers that an EA has an accept-
able performance if it acceptably reacts at least
to 70% of the changes, that is, 420 changes. Func-
tions have been arranged in number of dimensions
and number of cones, 5-dimensional functions
are considered more complex than 2-dimensional
functions and 20-cone functions are considered
more complex than 10-cone functions. Ordering
functions from lower to higher complexity we ob-
tained: 2d-10c, 2d-20c, 5d-10c and 5d-20c. Tables
2 and 3 show the function to which the algorithm
has acceptably reacted , but also reacted to less
complex functions. For instance, if 5d-20c be-
longs to the Table for FD2 under AEKM each 10
generations then AEKM has reacted to 2d-10c,
2d-20c, 5d-10c and 5d-20c functions.

Table 2: Algorithms and number of correct re-
actions to change for large changes - Number be-
tween () indicates percentage of number of correct
reactions to change

[Interval | Function | AEKM | RC |
FD1 2d10c 493 (82.1%)
10 FD2 5d20c 491 (81.8%)
FD3 2d20c 600 (100%)
FD1 2d20c 577 (96.1%)
50 FD2 5d20c 600 (100%)
FD3 5d20c 460 (76.6%)
FD1 2d20c¢ 594 (99%)
70 FD2 5d20c¢ 599 (99.8%)
FD3 5d20c 499 (83.1%)
Interval | Function AEH RC
FD1 2d10c 492 (82%)
10 FD2 5d20c 500 (83.3%)
FD3 2d20c 600 (100%)
FD1 2d20c 574 (95.6%)
50 FD2 5d20c 598 (99.6%)
FD3 5d20c 455 (75.8%)
FD1 2d20c 598 (99.6%)
70 FD2 5d20c¢ 450 (75%)
FD3 5d20c 499 (83.1%)
Interval | Function | AFEKMM RC
FD1 2d10c 502 (83.6%)
10 FD2 5d20c 510 (85%)
FD3 2d20c 600 (100%)
FD1 2d20c¢ 586 (97.6%)
50 FD2 5d20c 600 (100%)
FD3 5d20c 513 (85.5%)
FD1 2d20c 598 (99.6%)
70 FD2 5d20c¢ 600 (100%)
FD3 5d20c¢ 562 (93.6%)

From Table 2 we observed that AEKMM has a
better performance that AEKM and AEH. This
is more evident when algorithms have more time
to evolve. For FD1, algorithms correctly react to
the 2d-10c function when changes occur every 10

201

December 2005

generations and to 2-dimensional functions when
changes occur every 50 and 70 generations. For
FD2, all algorithms acceptably achieve their pur-
poses for all functions and all intervals between
changes. On the other hand, for FD3, algorithms
only can to react to the 2d-10c¢ function when
changes occur each 10 generations and for all
functions when changes occur each 50 and 70 gen-
erations. Accuracy varies from 0.81 to 0.99 with
a stability from 0.05 to 0.09. Average occupied
cones vary from 9.3 to 9.7 for 10-cone functions
and from 17.9 to 19.5 for 20-cone functions. Aver-
age distance of the best individual to the current
optimal varies from 0.05 to 0.5.

Table 3: Algorithms and number of correct re-
actions to change for chaotic changes - Number
between () indicates percentage of number of cor-
rect reactions to change

[Interval | Function | AEKM | RC |
FD1 2d10c 474 (79%)
10 FD2 5d20c 454 (75.6%)
FD3 2d20c 600 (100%)
FD1 2d20c 569 (94.8%)
50 FD2 5d20c 553 (92.1%)
FD3 5d20c 437 (72.8%)
FD1 2d20c 589 (98.1%)
70 FD2 5d20c 564 (94%)
FD3 5d20c 441 (73.5%)
Interval | Function AFEH RC
FD1 2d10c 456 (76%)
10 FD2 5d20c 447 (74.5%)
FD3 2d20c 600 (100%)
FD1 2d20c 573 (95.5%)
50 FD2 5d20c 551 (91.8%)
FD3 5d20c 424 (70.6%)
FD1 2d20c 590 (98.3%)
70 FD2 5d20c 566 (94.3%)
FD3 5d20c 464 (77.3%)
Interval | Function | AEKMM RC
FD1 2d10c 407 (67.8%)
10 FD2 5d20c 462 (77%)
FD3 2d20c 600 (100%)
FD1 2d20c 570 (95%)
50 FD2 5d20c 595 (99.1%)
FD3 5d20c 454 (75.6%)
FD1 2d20c 590 (98.3%)
70 FD2 5d20c 594 (99%)
FD3 5d20c 494 (82.3%)

From Table 3 we observed that, AEKMM’s per-
formance overcomes AEKM and AEH’s perfor-
mance under FD2 and FD3, which is more evident
when algorithms have more time to evolve. How-
ever, for FD1, AEKM’s performance was better
than the other algorithms when changes occur ev-
ery 10 generations, and AEH’s performance was
better than the other algorithms when changes

JCS&T Vol. 5 No. 4

occur every 50 and 70 generations. Again, for
FD1, algorithms only achieve their purposes for
2d-10c function when changes occur each 10 gen-
erations and for 2-dimensional functions when
changes occur each 50 and 70 generations. For
FD2, all algorithms acceptably react to all func-
tions and all intervals between changes. On the
other side, for FD3, algorithms only correctly re-
act for 2-dimensional functions when changes oc-
cur each 10 generations and for all functions when
changes occur each 50 and 70 generations.

Accuracy varies from 0.8 to 0.99 with a stability
from 0.05 to 0.08. Average occupied cones varies
from 9.5 to 9.8 for 10-cone function and from 17.9
to 19.5 for 20-cone functions. Average distance of
the best individual to the current optimal varies
from 0.05 to 0.6.

Figure 2 shows average best individual per gen-
eration for every function when change occur ev-
ery 10 generations under large changes, for all the
EAs considered.

Figure 2: Average best individual per genera-
tion for a- FD1-2d10c b- FD2-5d20c¢ c- FD3-2d20c
when change occur each 10 generations under
large changes.

202

December 2005

8 CONCLUSION

The values of accuracy and stability metrics
should not be analyzed in an isolated way be-
cause they may be misleading as to the real per-
formance of the algorithms. In fact, if the differ-
ence between the heights of the landscape cones
is not meaningful, even when the best individual
of the population does not belong to the optimal
cone, the accuracy and stability values could still
be good and so they do not reflect the real ability
of the algorithms to react to changes. For this
reason we also used other significant metrics as
number of changes in which the algorithms re-
acted correctly, distance of the best individual
found by the EAs to the current optimal, among
others.

Accuracy values found were very good, between
0.8 and 0.9, so the quality of solutions found was
good, and the low stability values imply that this
good behavior was stable over the evolution. In
general, distance of the best individual to the cur-
rent optimal increases when functions are more
complex. However, these distances are not unac-
ceptable.

The performance of the clustering algorithms
was measured by the average occupied cones. In
general, average occupied cones were from 9 to
10 for 10-cone functions and 17 to 19 for 20-cone
functions when algorithms reacted well and when
they did not do it. Although these values are
acceptable, the fact that they remained accept-
able over good and bad performance of the algo-
rithm implies that the global optimal cone almost
was always occupied in both cases. Sometimes
global optimal cone was not occupied whereas
some other times the best individual of the popu-
lation did not belong to the global optimal cone.
However, the population was always well spread .
In average, more than 90% of the cones were oc-
cupied. Thus, mechanisms that work on subpop-
ulations achieved their goal: diversify the popu-
lation, that is, spread population in order to rep-
resent, different significant search subspaces.

For both clustering algorithms, we did not ob-
serve that one of them to be better than the other.
In some experiments one of them shows a better
performance than the other one and viceversa.

When the EAs did not appropriately react , it
was not a problem of the clustering algorithms.
The problem may have resulted eother from bad
quality of initial solutions or from the fact the
evolutionary operators did not perform a suf-

JCS&T Vol. 5No. 4

ficient exploration and explotation in order to
find great solutions. However, multiparents two
points crossover seemed to be better than arith-
metic crossover.

Crossover operators are responsible for exploit-
ing solutions. AEKMM uses a crossover that
involves three parents and it generates several
children. The best child is included in the next
generation. Results indicate that this crossover
is more effective than the arithmetic crossover
in order to exploit quality solutions. This may
be due to the fact that multiparents two points
crossover chooses the best child whereas arith-
metic crossover do not.

Future work will involve the improvement of
evolutionary operators in order to get a better
exploration and explotation.

References

[1] Zang B. Generalized k-harmonic means-boosting in
unsupervised learning. Technical report, Hewlett-
Packard Labs., 2000.

Fogel D. Back T. and Michalewicz Z. Handbook of
Evolutionary Computation. Oxford University Press,
new york, oxford edition, 1997.

J. Branke. FEwolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, 2002.

(2]

H. G. Cobb. An investigation into the use of hypernu-
tation as an adaptive operator in genetic algorithms
having continuous, time dependent non-stationary
environments. Technical Report 6760, Naval Re-
search Laboratory, USA, 1990.

Goldberg D. and Smith R. Nonstationary func-
tion optimization using genetic algorithms with dom-
inance and diploidy. In Proceedings of the Second In-
ternational Conference on Genetic Algorithms, pages
59-68. Lawrence Erlbaum Associates, 1987.

Rau’e P-E Eiben A. and Ruttkay Z. Genetic algo-
rithms with multi-parent recombination, 1994. Par-
allel Problem Solving From Nature (PPSN III), Lec-
ture Notes in Computer Science 866, Ed. Yu Davidor,
H-P. Schewefel and R. Manner, pp. 77-87.

Sander J. Ester M., Kriegel H. and Xu X. A density-
based algorithm for discovering clusters in large spa-
tial databases with noise. In Proceeding og 2nd In-
ternational Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, 1996.
AAAT Press.

Hamerly G. and Elkan C. Alternatives to the k-means
algorithm that find better clusterings. In Proceedings
of the ACM conference on information and knowl-
edge management (CIKM), November 2002.

J. Grefenstette. Optimization of control parameters
for genetic algorithms. IEEE Transaction on Sys-
tems, Man and Cybernetic, 16:122-128, 1986.

Cobb H. and Grefenstette J. Genetic algorithms for
tracking changing environments. In Proceeding of the
5th IEEE International Conference on Genetic Algo-
rithms, pages 523-530. Morgan Kauffman, 1993.

[10]

203

December 2005

[11] Grefenstette J. Genetic algorithms for changing en-
vironments, 1992. In Proceedings of Second Parallel
Problem Solving From Nature (PPSN-2), Brusse 28-
30 September, pages 137-144, 1992.

E. Hart. J. Lewis and G. Ritchie. A comparision of
dominance mechanism and simple mutation in non-
stationary problems. In Morgan Kaufmann, editor,
Proceeding 7th International Conference on Genetic
Algorithms, pages 138-148, 1997.

[12]

Weicker K. Performance measures for dynamic envi-
ronments, 2002. In J.J. Merelo, P. Adamidis, H.-G.
Beyer, J.L. Fernndez-Villacaas, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature, vol-
ume 2439 of LNCS, pages 64-73. Springer.

Z. Michalewicz K. Trojanoswky. Searching for optima
in non-stationary environments. In Proceeding of the
Congress on Evolutionary Computation, pages 1843~
1850, Washington DC, USA, IEEE Service Centre,
1999.

[15] R. Morrison. Designing Evolutionary algorithms for
Dynamic Environments. PhD thesis, George Mason

University, USA, 2002.

Mori N. Adaptation to changing environments by
means of the memory based thermodynamic genetic
algorithm. In Morgan Kaufmann, editor, Proceeding
Tth International Conference on Genetic Algorithms,
pages 299-306, 1997.

T. Nanayakkara et al. Adaptive optimization in a
class of dynamic environments using an evolutionary
approach, 1999.

[16]

[17]

[18] Morrison R. and De Jong K. A test problem generator
for non-stationary environments. In Proceeding of the
Congress on Evolutionary Computation, pages 2047—
2053, Washington DC, USA, IEEE Service Centre,

1999.

Tucker A. Sheng W. and Liu X. Clustering with nich-
ing genetic k-means algorithm. In GECCO (2), pages
162-173, 2004.

Stein G. Ulmer H. Streichert F. and Zell A. A clus-
tering based niching ea for multimodal search spaces.
In Proceedings of the 6th International Conference
on Artificial Evolution, Marseille, France, 27-30 Oc-
tober 2003. Springer Verlag.

Béack T. On the behavior of evolutionary algorithms
in dynamic fitness landscapes. In Proceeding of the
IEEE International Conference on Evolutionary Al-
gorithms, pages 446-451, IEEE Service Centre, 1998.

Liles W. and De Jong K. The usefulness of tag bits
in changing environments, 1999. IEEE, In Congress
on Evolutionary Computation, volume 3, pages 2054-
2060.

22]

[23] K. Wicker and N. Weicker. On evolutionary strategy
optimization in dynamic environments. In Proceed-
ing of the Congress on Ewvolutionary Computation,
pages 20392046, Washington DC, USA, IEEE Ser-

vice Centre, 1999.

C. O. Wile. Ewolutionary Dynamics in Time-
Dependent Environments. PhD thesis, Institut fir
Neuroinformatik, Ruhr-Universitdt, Bochum, Ger-
many, 1999.

[24]

