
On the behaviour of general-purpose applications on
cloud storages ?

Laura Bocchi1 and Hernán Melgratti2

1 Imperial College London
2 University of Buenos Aires

Abstract. Managing data over cloud infrastructures raises novel challenges with
respect to existing and well studied approaches such as ACID and long running
transactions. One of the main requirements is to provide availability and partition
tolerance in a scenario with replicas and distributed control. This comes at the
price of a weaker consistency, usually called eventual consistency. These weak
memory models have proved to be suitable in a number of scenarios, such as the
analysis of large data with Map-Reduce. However, due to the widespread avail-
ability of cloud infrastructures, weak storages are used not only by specialised
applications but also by general purpose applications. We provide a formal ap-
proach, based on process calculi, to reason about the behaviour of programs that
rely on cloud stores. For instance, one can check that the composition of a pro-
cess with a cloud store ensures ‘strong’ properties through a wise usage of asyn-
chronous message-passing.

1 Introduction

In the past decade, the emergence of the Service-Oriented paradigm has posed novel re-
quirements in transaction management. For instance, the classic notion of ACID trans-
action (i.e., providing Atomicity, Consistency, Isolation and Durability) proved to be
unsuitable in loosely coupled multi-organizational scenarios with long lasting activi-
ties. Both industry and academia found an answer to these requirements in a weaker
notion of transaction, Long Running Transactions (LRTs).

At present, the increasing availability of resources offered by cloud infrastructures
enables small and medium-sized enterprises to benefit from IT technologies on a pay-
per-use basis, hence with no need of high up-front investments. The range of available
resources, offered as services, includes e.g., applications (Software as a Service), de-
velopment platforms (Platform as a Service), hardware components (Infrastructure as
a Service), and data storage. Providing and managing data over cloud infrastructures
poses yet novel challenges and requirements to data management.

Whereas the main issue in LRTs, with respect to the ACID properties, is to minimise
resource locks by dropping isolation, the problematic properties in cloud databases are
durability and consistency. Durability is dropped in favour of a soft state (i.e., data is not

? This work has been partially sponsored by the project Leverhulme Trust award Tracing Networks, Ocean
Observatories Initiative, ANPCyT Project BID-PICT-2008-00319, EU 7FP under grant agreement no.
295261 (MEALS), and EPSRC EP/K011715/1, EP/G015635/1 and EP/G015481/1.

preserved unless its persistence is explicitly ‘renewed’ by the user), whereas consistency
is relaxed in order to guarantee availability. These requirements are summarised in [15]
with the acronym BASE (Basically Available, Soft State, Eventual Consistency), as
opposed to ACID. In this paper we focus on consistency, leaving the consideration of
soft state as a future work.

Cloud infrastructures provide data storages that are virtually unlimited, elastic (i.e.,
scalable at run-time), robust (which is achieved using replicas), highly available and
partition tolerant. It is known (CAP theorem [8]) that one system cannot provide at
the same time availability, partition tolerance, and consistency, but has to drop one of
these properties. Cloud data stores typically relax consistency, while providing a weaker
version called eventual consistency. Eventual consistency ensures that, although data
consistency can be at time violated, at some point it will be restored.

Although not appropriate in all scenarios, BASE properties are the most practicable
solution in some scenarios. In other words, eventual consistency is suitable sometimes.
In fact, some applications e.g., some banking applications, need consistency, whereas
some others can provide a satisfactory functionality also when consistency is relaxed
e.g., YouTube file upload.

In this paper we set the basis for a formal analysis of what ‘suitable’ and ‘some-
times’ means, so that general purpose applications can be safely run using these weaker
memory models. In fact, the widespread availability of Cloud infrastructures makes it
crucial to support cloud data storages, not only by specialised applications, such as the
analysis of large data using Map-Reduce, but also by general purpose applications.

We argue that it is crucial to provide modelling primitives and analysis tools that
suit the specific (BASE) properties. The aim of this paper is to offer the basis for a
testing theory, based on process calculi, that enables to verify that an application ‘works
fine’ when composed with a weak storage. In particular, we focus on distributed and
interoperable applications that can both communicate asynchronously, and use cloud
storages. We model applications as processes in CCS [14], a well known formalism for
concurrent and distributed systems.

The technical contributions are: one abstract (Section 2.1) and one operational (Sec-
tion 2.2) characterisation of stores, strong and weak consistency, and an approach (Sec-
tion 4) that allows us to model and compare applications on stores. This approach is
based on the value-passing CCS and on the operational characterisation of stores given
in Section 2.2, and uses a behavioural preorder that takes into account both the be-
haviour of the applications, modelled as processes, and the levels of consistency of
the stores they use. In Section 3 we provide three examples of stores with replicas,
and analyse the consistency properties they provide. More precisely, in Section 3.1 we
present a weak store that guarantees eventual consistency, in Section 3.2 we introduce
an asynchronous version of the store in Section 3.1 that cannot rely on an absolute
(time) ordering between versions and does not to guarantee eventual consistency, and
in Section 3.3 we introduce a strong store. These stores are also used to illustrate the
proposed approach in Section 4.

2

2 Strong and Weak consistency

This section presents a formal approach to modelling cloud storages, which we will sim-
ply refer to as stores. Firstly, Section 2.1 presents stores as abstract data types, whose
operations come equipped with a denotational semantics. Section 2.2, presents the op-
erational characterisation of stores that will be useful in the rest of this paper.

2.1 Stores as abstract data types

Let K be the set of names, ranged over by o, o′, o1, . . ., used to uniquely identify the
objects in a store (e.g., URIs). We interpret any state σ of a store as a total function that
associates keys o ∈ K to values v in some domain V, i.e., σ : K → V. We write Σ for
the set of all possible stores. We assume V to include ⊥, which denotes an undefined
value. Hereafter, we assume that any store contains a distinguished initial state σ0.

We characterise stores in terms of their operations (i.e., queries). A store is defined
in terms of a set O = W ∪R of operations, where elements inW denote write opera-
tions and those inR stand for read operations. We requireW ∩R = ∅. We assume any
operation to be equipped with an interpretation function I. In particular:

1. α ∈ W is interpreted as a function from states to states, i.e., I(α) : (K → V) →
K→ V.

2. α ∈ R is interpreted as a function from states to boolean values, i.e., I(α) : (K→
V) → {true, false}. We model in this way the fact that an action actually reads
the value that is stored for that key.

Example 1. A memory containing values in V can be modelled as follows, assuming
that σ0 associates ⊥ to all names.

1. W = {write(o,v) | o ∈ K ∧ v ∈ V}
2. R = {read(o,v) | o ∈ K ∧ v ∈ V}
3. I(write(o,v))σ = σ[o 7→ v] (with [] is the usual update operator)
4. I(read(o,v))σ = (v == σ(o)).

Example 2. A store σ handling data of type set can be defined as follows, assuming that
σ0 is defined such that σ0(o) = ∅ for all o.

1. W = {add(o,v) | o ∈ K ∧ v ∈ V}
2. R = {read(o,V) | o ∈ K ∧ V ∈ 2V}
3. I(add(o,v))σ = σ[o 7→ σ(o) ∪ {v}]
4. I(read(o,V))σ = (V == σ(o)).

Example 3. An alternative characterisation for sets can obtained by changing the inter-
pretation of action read as follows: I(read(o,V))σ = V ⊆ σ(o).

Definition 1. Let α ∈ W and o ∈ K. We say α modifies o iff there exists σ such that
σ(o) 6= (I(α)σ)(o), i.e., when α may modify the value associated with o. Similarly,
α ∈ R reads o ∈ K iff ∃v ∈ V, σ ∈ Σ s.t. I(α)σ 6= I(α)(σ[o 7→ v]), i.e., when α

3

actually depends on the value of o. We let objects(α) to be the objects read or written
by the action α, i.e.,

objects(α) =

{
{o |α modifies o} if α ∈ W
{o |α reads o} if α ∈ R

Example 4. Consider W , R and I defined in Example 1. Then, write(o,v) modifies
o′ iff o = o′. Similarly, read(o,v) reads o′ iff o = o′. Also, objects(read(o,v)) =
objects(write(o,v)) = {o}.

Definition 2 (Valid read). Given a read action α and a state σ, α is a valid read of σ,
written σ ./ α, when I(α)σ = true. We write σ ./ to denote the set of all valid reads
of σ, i.e., σ ./ = {α | σ ./ α}.

The following definition gives a characterisation for weak specifications, namely an
access to a weak store may not return the most recently written value. Formally, the
specification of a weak store admits any read action to be valid also after store modifi-
cations. In other words, the specification of a weak store does not require modifications
to have immediate effects.

Definition 3 (Weak consistent specification). An interpretation I is weak consistent
iff ∀α ∈ R, β ∈ W, σ ∈ Σ : σ ./ α =⇒ I(β)σ ./ α.

Example 5. The specification in Example 3 is a weak consistent specification. In fact,
we take α = read(o,V) and β = add(o′,v′). If σ ./ α, then V ⊆ σ(o). In addition,
σ′ = I(β)σ = σ[o′ 7→ σ(o′) ∪ {v′}]. It is straightforward to check that V ⊆ σ(o) =⇒
V ⊆ σ′(o). Hence, σ′ ./ α. Differently, the specifications in Examples 1 and 2 are
not weak consistent specifications. In fact, the interpretations for the read actions in
both specifications require the store to return exactly the last written value in the store.
Intuitively, this means that each update needs to be immediate and not deferred.

The following two definitions are instrumental to the formalisation of strong con-
sistent specifications.

Definition 4 (Last changed value). Given a state σ, a write action α ∈ W writes o
with v, written α ↓o 7→v

σ , whenever σ(o) 6= v and (I(α)σ)(o) = v.

Definition 5 (Read a particular value). Given a state σ, a read action α ∈ R reads
the value v for o in σ, written α ↑o7→v

σ , if o ∈ objects(α) implies

(σ[o 7→ v] ./) 6= (σ ./) =⇒ α ∈ (σ[o 7→ v] ./)\(σ ./)

The above definition requires that whenever the update [o 7→ v] of σ alters the set
of valid reads, then α is valid only with the modification [o 7→ v], i.e., α is enabled by
the modification [o 7→ v].

Definition 6 (Strong consistent specification). An interpretation I is strong consistent
if

∀α ∈ R, β ∈ W, σ ∈ Σ, o ∈ K : (β ↓o 7→v
σ ∧ I(β)σ ./ α) =⇒ α ↑o7→v

σ

4

In words, a specification is strong consistent when it requires every read action α of
an object o corresponds to the last changed value of o.

Example 6. It is easy to check that the specification in Example 1 is strong consistent.
For any pair of actions α = read(o,v) and β = write(o′,v′), if β ↓o′ 7→v′

σ then
I(β)σ = σ[o′ 7→ v′]. Then, σ[o′ 7→ v′] ./ α implies either (1) o 6= o′ or (2) o = o′

and α ∈ (σ[o′ 7→ v′] ./)\(σ ./). In both cases, α ↑o′ 7→v′

σ . Analogously, it can be shown
that the store in Example 2 is also a strong consistent specification. Differently, the
store in Example 3 is not a strong consistent specification. Consider α = read(o, ∅),
β = add(o,v) and σ = σ0[o 7→ ∅]. It is straightforward to check that β ↓o7→{v}σ and
I(β)σ ./ α. However, it is not the case that α ↑o 7→{v}σ because α ∈ σ ./.

We remark that Definitions 3 and 6 give an abstract characterization of the consis-
tency provided/expected from a store. Note that such notions are incomparable. Firstly,
a strong consistent specification is not a weak consistent specification because the first
requires updates to be immediate while the second may defer them. Analogously, a
weak consistent specification is not a strong consistent specification.

2.2 Stores as Labelled Transition Systems

In what follows we will find useful to rely on an operational characterisation of stores in
terms of labelled transitions systems. An operational implementation of a specification
〈O, I〉 is an LTS with a set of labels L = O ∪ S, where S are internal or silent actions.
We use τ, τ ′, . . . to range over S.

Given a sequence of actions t ∈ L∗ and a set of labels A ⊆ L, we write t ↓A
to denote the projection that removes from t all labels not in A. Moreover, for t =
α0 . . . αj . . . we will use the standard subindex notation, i.e., t[j] = αj , and t[i..j] =
αi . . . αj . Given a finite sequence of labels α0 . . . αj ∈ W∗ its interpretation is the
function accounting for the composition of all αi, i.e., I(α0 . . . αj) = I(αj)◦. . .◦I(α0).

Definition 7 (Trace). A sequence s ∈ L∗ is a trace from σ0 satisfying 〈O, I〉 when
s[i] ∈ R implies I(s[0..i] ↓W)σ0 ./ s[i], i.e., any read is valid with respect to the store
obtained after applying (in order) all preceding operations inW . We write tr(σ0) for
the set of all traces from σ0.

The definition above provides an operational characterisation for the basic consis-
tency criterion given in Definition 2. In order to refine the above notion to deal with
strong consistent stores, we need a finer notion that captures the dependencies between
read and write operations.

Definition 8 (Read-write dependency). The read-write dependency relation, written
↔⊆ R×W , is defined as follows

α↔ β iff objects(α) ∩ objects(β) 6= ∅.

Example 7. For the stores introduced in Examples 1–3, we have α ↔ β iff α =
read(o,v) and β = write(o,v′).

5

Definition 9 (Read follows a write). Given a trace t, a read action α = t[j] ∈ R and
a write action β = t[i] ∈ W s.t. α ↔ β, we say α follows β, written β α ∈ t, iff
i < j and ∀i < k < j.t[k] ∈ W =⇒ α 6↔ t[k].

Now, we are ready to formalise the definition of strong consistency given in [22],
that is: ‘Every read on a data item x returns a value corresponding to the result of the
most recent write on x’.

Definition 10 (Strong consistent trace and store). A trace t is strong consistent if for
all β α ∈ t, β ↓o 7→v

σ implies α ↑o 7→v
σ . A store is strong consistent if every trace is

strong consistent.

Lemma 1 establishes a correspondence between Definition 6 and the operational
definition of strong consistent trace/store in Definition 10.

Lemma 1. Let 〈O, I〉 be a strong consistent specification (by Definition 6). If t is a
trace satisfying 〈O, I〉, then t is a strong consistent trace.

Proof. Assume β α ∈ t. Then ∃i < j s.t. t[j] = α ∈ R and t[i] = β ∈ W . Let
σ′ = I(t[0..j − 1] ↓W)σ0. Since t satisfies 〈O, I〉, σ′ ./ α. Moreover, β α ∈ t
implies ∀i < k < j.objects(t [j]) ∩ objects(t [k]) = ∅ and hence I(t[0..i] ↓W)σ0 ./ α.
Consequently, I(β)(σ′) ./ α (1). Additionally, by Definition 6, it holds that

(β ↓o 7→v
σ′ ∧ I(β)(σ′) ./ α) =⇒ α ↑o 7→v

σ′ (2)

Finally, from (1) and (2) we conclude that β ↓o 7→v
σ′ =⇒ α ↑o 7→v

σ′ . ut

Now we take advantage of the operational characterisation of stores to state our
notion of eventual consistency.

Consider a scenario in which information is replicated, hence an older value may be
read for a key due to the temporary lack of synchronisation of some replicas. A widely
(e.g., [2, 23]) used formulation of eventual consistency is the one in [23]: ‘if no new
updates are made (...), eventually all accesses will return the last updated value’. We
consider here a slightly different notion (on the lines of [21]) which does not require
absence of outputs, namely: ‘given a write operation on a store, eventually all accesses
will return that or a more recent value’. We prefer this notion as it allows a more
natural testing of composition of an application with a store (e.g., not imposing that
the application stops writing on the store at a certain point in time allows us to test non-
terminating applications). In other words, we do not require that the store will stabilise,
but we require a progress in the synchronisation of the replicas. Notably, this property
entails that if no writes are done then all replicas will eventually be synchronised.

Definition 11 (Eventual consistency). A store σ is eventually consistent if ∀t ∈ tr(σ0)
the following holds: Let t[i] ∈ W then ∃k > i.∀j > k.t[j]↔ t[i] implies:

1. t[i] ↓o7→vσ and t[j] ↑o 7→vσ , i.e., t[j] reads the value written by t[i], or
2. ∃i < h < j s.t. t[h] ↓o7→vσ and t[j] ↑o7→vσ , i.e., t[j] reads a newer value.

The above definition of eventual consistency assumes a total order of write actions.
For the sake of the simplicity, we avoid the definition of even weaker notions as the
ones in which events are not globally ordered [6], which could also be recast in this
framework.

6

3 Two Weak and One Strong Stores

In this section we consider three examples of stores, two weak stores with replicas and
distributed control as, e.g., Amazon S3 [11] (although our model has a quite simpli-
fied API), and one strong store. In the weak stores we assume that, after a write, the
‘synchronisation’ of the replicas happens asynchronously and without locks.

In a replicated store, the ensemble of replicas can store different object versions for
the same key. Given a key o and a store σ, σ(o) is the set of versions of o in σ. We
model each version as a pair (v, n) where v is the object content (e.g., blob, record, etc)
and n is a version vector. The set of version vectors W is a poset with lower bound ⊥,
and version vectors range over n, n′, n1, We write n > n′ when n is a successive
version of n′, and we write n <> n′ when neither n > n′ nor n′ > n (i.e., n and n′

are conflicting versions). We say that n is fresh in σ(o) if ∀(v, n′) ∈ σ(o), n 6= n′. We
write n+ 1 to denote a fresh version vector such that n+ 1 > n. Similarly, given a set
of version vectors {n1, .., nm} we use the notation {n1, .., nm} + 1 to denote a fresh
version vector n′ such that n′ > ni for all i ∈ {1, ..,m}. Note that there is more than
one vector n + 1 for a given n, and that if two replicas create two (fresh) next version
numbers n1 = n+ 1 and n2 = n+ 1 we have n1 <> n2.

3.1 Weak Store

We first model a weak store σW in which replicas rely on a synchronisation mecha-
nism that enables them to choose, when handling a write action, a version vector that is
certainly greater than all version vectors associated to the same object. Such a mecha-
nism could be implemented, for instance, using timestamps as version vector, assuming
that replicas have a global notion of time which is precise enough to always distinguish
between the timestamp of a couple of events (i.e., actions happen at different times).

Definition 12 (Weak store). A (replicated, distributedly controlled) weak store is de-
fined as follows:

1. W = {write(o,v) | o ∈ K ∧ v ∈ V}
2. R = {read(o, (v, n)) | o ∈ K ∧ v ∈ V ∧ n ∈W}
3. I(write(o,v))σW = σW [o 7→ σW (o) ∪ {(v, n)}] (with n fresh)
4. I(read(o, (v, n)))σW = (v, n) ∈ σW (o)

The semantics of σW is given by the LTS in Fig. 1 using the labelsW ∪R∪ {τ}.

A read operation non-deteministically returns one version of an object, not neces-
sarily the most recent update with the greater version vector (rule [WREAD]). A write
is modelled by rule [WWRITE] that adds a new version associated with a newly created
version vector, that is greater than all version vectors of the existing versions of the
same object. A store propagation [WPRO] models the asynchronous communication
among the replicas to achieve a consistent view of the data.

7

(v, n) ∈ σW (o)

σW
read(o,(v,n))−−−−−−−−−−→ σW

[WREAD]

σW ′ = σW [o 7→ σW (o) ∪ {(v, n)}] n = {m | (v′,m) ∈ σW (o)}+ 1

σW
write(o,v)−−−−−−−→ σW ′

[WWRITE]

(vi, ni) ∈ σW (o) i ∈ {1, 2} n1 > n2 σW ′ = σW [o 7→ σW (o) \ {(v1, n1)}]

σW
τ−−→ σW ′

[WPRO]

Fig. 1. Labelled transition relation for the weak store σW

Weak store and strong consistency Proposition 1 shows that σW is not strong con-
sistent as it does not satisfy Definition 10.

Proposition 1. The weak store σW is not strong consistent.

Proof. Consider the initial store σW0(o) = {(⊥, n0)} for any o. Then, tr(σW0) in-
cludes

t = write(o, 10), read(o, (⊥, n0))
obtained by applying, in sequence, rule [WWRITE] and [WREAD] to σW0, i.e.,

σW0
write(o,10)−−−−−−−→ σW1

read(o,(⊥,n0))−−−−−−−−−−→ σW1

where σW1(o) = {(⊥, n0), (10, n1)} for some n1 = n0 + 1. Then, t[0] t[1], with
t[0] = write(o, 10) ∈ W , t[1] = read(o, (⊥, n0)) ∈ R, and t[0] ↓o7→{(⊥,n0),(10,n1)}

σW1
.

However, t[0] ↑o7→{(⊥,n0),(10,n1)}
σW1

does not hold since σW1 ./ 6= σW0 ./ but t[1] 6∈
((σW1 ./) \ σW0 ./). Namely, the read action in t[1] does not allow to read only the
most recent value (10, n1) when it takes place too early to allow the other replicas to
synchronise and restore consistency. ut

Weak store and eventual consistency We show below that σW ensures eventual con-
sistency (Definition 11), after a few auxiliary lemmas. First we observe that all version
vectors for the same object in a state σW are distinguished.

Lemma 2. ∀o ∈ K. (v1, n1), (v2, n2) ∈ σW (o) =⇒ n1 6= n2.

In fact, σ0 only has one value for each object, and the only transition rule that increments
the number of version numbers for the same object is [WWRITE] that choses n+1 > m
(hence fresh) for each stored version vector m.

Lemma 3. ∀o ∈ K. (v1, n1), (v2, n2) ∈ σW (o) =⇒ ¬(n1 <> n2).

In fact, the only rule that introduces new version vectors is [WWRITE] which introduces
n that is comparable with the existing vectors for the same object.

Next we observe that if there are no write actions on an object o then the number
of versions in subsequent states is monotonically non-increasing (Lemma 4) and will
eventually be just one (Lemma 5). Below we use the following notation: given a set
O ∈ K we writeWO for {α |α ∈ W ∧ objects(α) ∩O 6= ∅}.

8

Lemma 4. Consider the trace t[i..∞[↓(L\W{o}) with σWj
t[j+1]−−−−→ σWj+1 for all

j ≥ i. Then, ∀j ≥ i. |σWi(o)| ≥ |σWi+1(o)|.

Proof. Assume |σWj(o)| = mo for some j ≥ i,mo ≥ 1. Since by hypothesis tj+1 6∈
W{o}, then either

– tj+1 ∈ W but writes o′ 6= o, hence by [WWRITE] |σWj(o)| = |σWj+1(o)| = mo

– tj+1 ∈ R hence, by [WREAD] |σWj(o)| = |σWj+1(o)| = mo

– tj+1 ∈ S hence, by [WPRO] either |σWj(o)| = |σWj+1(o)| = mo or, if one
version of o is removed, |σWj+1(o)| − 1 = mo − 1.

Lemma 5. Consider the trace t[i..∞[↓(L\W{o}) with σWj
t[j+1]−−−−→ σWj+1 for all

j ≥ i. Then, ∃j ≥ i. |σWj(o)| = 1, assuming strong fairness in the LTS in Fig. 1.

Proof. Consider any j ≥ i, we have two cases: either |σWj(o)| = 1, or |σWj(o)| > 1.
In the first case, by Lemma 4, ∀l ≥ j. |σWl(o)| = 1. In the second case, σWj(o) 3
(v1, n1), (v2, n2). By Lemma 2 n1 6= n2 and by Lemma 3 it is never the case that
n1 <> n2, hence either n1 < n2 or n2 < n1. If n1 < n2 (resp. n2 < n1) then
transition [WPRO] is enabled and hence, by fairness, it will eventually execute so to
decrease the number of versions (which, again will not, in the meanwhile, increase by
Lemma 4). ut

Proposition 2. The weak store σW is eventually consistent (by Definition 11) assuming
strong fairness 3 in the LTS in Fig. 1.

Proof. Let t be an infinite trace and let t[i] ∈ W . By Definition 12, t[i] has the form
write(o,v) for some o, v. By Lemma 5, if we apply the actions in t[i..∞[↓(L\W{o})

to a state σW we obtain a trace t′ and there is a k such that |σWk(o)| = 1. Let k′ be
the position occupied in t by the action t′[k]. If there is no write action α ∈ t[k′..∞[
such that t[i]↔ α then the proposition is trivially true. If such α exists we let n be the
version vector introduced by α and assume, by contradiction, that (1) w 6= v (case 2 of
Definition 11), and (2) that there is no write action β = t[h] ∈ t[i, k′] such that β ↓o7→w

σWh
.

Then either v = ⊥ or there is a write action t[j] ↓o7→w
σWj

such that j < i. In both cases, by
rulename [WWRITE] the version vector associated to w is smaller than n. By [WPRO]
the smaller version numbers are eliminated, hence the read in k′ must return only one
value, which is the one written by t[i], namely v. ut

3.2 An Asynchronous Weak Store

We define the weak asynchronous store σA as a relation from keys to sets of versioned
objects. In this case replicas cannot rely on an absolute ordering of versions wrt the
global timeline. This is reflected in the rule for writing new versions, [AWRITE]: the
version vector of the newly introduced value is greater of the version vector of one
replica but possibly incomparable with the version vectors in the other replicas.

3 We rely on the following notion of fairness: “If any of the actions a1, ..., ak is ever enabled infinitely
often, then a step satisfying one of those actions must eventually occur” (for a formal definition see[12]).

9

(v′, n′) ∈ σA(o) σA′ = σA[o 7→ σA(o) ∪ {(v, n)}] n = n′ + 1

σA
write(o,v)−−−−−−−→ σA′

[AWRITE]

(vi, ni) ∈ σA(o) i ∈ {1, 2} n1 <> n2

σA′ = σA[o 7→ (σA(o) \ {(vi, ni) | i ∈ {1, 2}} ∪ {(v1, n3)})] n3 = {n1, n2}+ 1

σA
τ−−→ σA′

[ASOL]

Fig. 2. Labelled transition relation for the weak asynchronous store σA

The store σA is defined using the interpretation and labels in Definition 12 but
changing rule [WWRITE] in Fig. 1 with rule [AWRITE] and adding rule [ASOL], as
shown in Fig. 2. Rule [ASOL] is necessary to resolve conflicts arising when two version
vectors that are incomparable during replicas synchronisation:

With a similar argument as in Proposition 1 one can show that σA is not strong
consistent. Furthermore, σA is not eventually consistent, according to Definition 11.

Proposition 3. The asynchronous weak store σA is not eventually consistent.

Consider an initial store σA0 such that σA0(o) = {(⊥, n0)}, then traces(σA0) in-
cludes the following family of traces

t = write(o, 10),write(o, 5), τ, t′, read(o, (10, n1))

with t′ ↓W{o}= ∅. Any trace t in the family of traces above can be obtained as follows:

1. By [AWRITE], σA0
write(o,10)−−−−−−−→ σA1 where σA1(o) = {(⊥, n0), (10, n1)}.

2. By [AWRITE], σA1
write(o,5)−−−−−−−→ σA2 where σA2(o) = {(5, n2), (10, n1)} and

n1 <> n2.
3. By [ASOL], σA2

τ−−→ σA3 where σA3(o) = {(10, n3)} with n3 > n1, n2.

Any read of o after σA3 returns (10, n3). This violates Definition 11 as after no k a read
will return the value written by write(o, 5) or a more recently written one.

However, Lemmas 4 and 5 hold also for the σA. In fact, despite not ensuring even-
tual consistency, the weak asynchronous store still ensures the convergence of the repli-
cas to a consistent value if no new updates are made.

3.3 Strong Store

We now model a strong store σS (with version vectors) that satisfies strong consistency
(Definition 10); having one version for each key σS always return the last version.

Definition 13 (Strong store). The family of strong stores σS, containing values that
are pairs (v, n) where v is a value and n a version vector is defined as follows:

1. W = {write(o,v) | o ∈ K ∧ v ∈ V}
2. R = {read(o, (v, n)) | o ∈ K ∧ v ∈ V ∧ n ∈W}

10

(v, n) = σS(o)

σS
read(o,(v,n))−−−−−−−−−−→ σS

[SREAD]

(v′, n′) ∈ σS(o) σS′ = σS[o 7→ (v, n)] n = n′ + 1

σS
write(o,v)−−−−−−−→ σS′

[SWRITE]

Fig. 3. Labelled transition relation for strong stores

3. I(write(o,v))σS = σS[o 7→ (v, n+ 1)] with σS(o) = (v′, n)
4. I(read(o,v))σS = σS(o)

The semantics of σS is given by the LTS in Fig. 3 using the labelsW ∪R.

Proposition 4. The strong store σS (from Definition 13) is strong consistent.

Proof. Let t ∈ traces(σS0) with σS0(o) = (⊥, n0) for all o ∈ K. Let t[i] ∈ W
and t[j] ∈ R with t[i] t[j] (hence t[i] ↔ t[j]) with i < j. By t[i] ↔ t[j] and
by the form of reads and writes (which are defined on single objects) we have that
objects(t[i]) = objects(t[j]) = {o} for some o ∈ K. The proof is by induction on the
distance j − i between the write and read actions.

Base case (i = 1). The only possible transition from σSi−1 to σSi is by [SWRITE]

σSi−1
write(o,v)−−−−−−−→ σSi = σSi−1[o 7→ (v, n)]

Hence the only possible read action of o in state σSi is, by rule [SREAD]:

σSi(o) = (v, n)

σSi
read(o,(v,n))−−−−−−−−−→ σSi

hence t[i] ↓o 7→(v,n)
σSi

and t[i] ↑o 7→(v,n)
σSi

.

Inductive case (i > 1). We proceed by case analysis on the action t[j−1]: (1) if t[j−1]
is a read action that it will not affect the store (by [SREAD]) hence σSi−1 = σSi. By
induction we have that reading o in position j − 1 returns (v, n) hence it will return
(v, n) also in σSi. (2)if t[j − 1] is a write, then it writes o′ 6= o because t[i] t[j].
This case is similar to (1) observing that writing an object o′ does not affect the values
read in σSj for o. ut

4 The Calculus

We now focus on the model of programs that operate over stores. Our programs are
distributed applications that are able to perform read and write operations over a shared
store and communicate through message passing à la value-passing CCS [14].

11

4.1 Syntax

As usual, we let communication channel names be ranged over by x, x′, y, . . ., and
variables by v, v′, As in previous sections values in V are ranged over by v,v′, . . .
and keys in K by o, o′, We also assume that variables, values and objects can be
combined into larger expressions whose syntax is left unspecified. We use e, e′, . . . to
range over expressions. The syntax of programs is just an extension of value-passing
CCS with prefixes accounting for the ability of programs to interact with the store. We
do not restrict such prefixes to be just the actions α ∈ W∪R, because these are ground
terms and we would like to be able to write programs such as x(v).read(v, w).P that
reads from the store the value w associated with the key v that has been previously
received over the channel x. Similarly, we would like to consider programs such as
x(v).y(w).write(o, v + w), which updates the value associated to the key o with the
result of evaluating an expression. For this reason, program actions over stores are of
the following form operation name(e1, . . . , en). We use A for the set of program
actions over stores, and let ρ, ρ′ to range over A.

P ::= xe | x(v).P | ρ.P | if e then P else P | νx.P | P ||P | !P | 0

Process xe asynchronously sends along channel x the value obtained by evaluat-
ing expression e. Dually, x(v).P receives along channel x a value, used to instanti-
ate variable v in the continuation P . Process ρ.P stands for a process that performs a
store action ρ over the store and then continues as P . Processes if e then P else P ,
νx.P , P ||P , !P and 0 are standard conditional statement, name restriction, parallel
composition, replicated process and idle process, respectively. We will write fn(P)
(resp. bn(P)) to denote the set of free (resp. bound) variables of P (their definition is
standard). As usual, we will restrict ourself to consider closed programs.

A program P interacting with a store σ is called a system and it is denoted by [P]σ.

4.2 Operational Semantics

The labelled transition relation for systems uses the following labels:

µ ::= τ | xv | x(v) | α

We remark that our labels are the standard ones for CCS (τ, xv, x(v)) and the ground
store operations α ∈ W ∪R, i.e., stores perform concrete operations over the store. We
write obj (µ) to denote the set of objects of the label µ, which is defined as usual. We
rely on a reduction relation on expressions −→e that evaluates expressions to values
(omitted). For any program action ρ = a(e1, . . . , en) over the store and any ground
substitution θ, we will write ρ −→e

θ α if ∀i.eiθ −→e gi and a(g1, . . . , gn) = α, i.e.,
it denotes that ρ can be properly instantiated with θ to obtain a ground action α. For
instance, write(o, v) −→e

v 7→v write(o,v). We also rely on the LTS for stores, also
denoted with α−−→, as defined in previous sections.

The LTS for systems is defined by the inference rules in Fig. 4. All rules for pro-
cesses but [STORE] are standard. Rule [STORE] models a program P that performs a

12

e −→e v

xe
xv−−→ 0

[OUT] x(v).P
x(v)−−−→ P [IN]

ρ −−→e
θ α

ρ.P
α−−→ Pθ

[STORE]

P
xv−−→ P ′ Q

x(v)−−−→ Q′

P ||Q τ−−→ P ′||Q′[v/v]
[COM]

P
µ−−→ P ′ bn(µ) ∩ fn(Q) = ∅

P ||Q
µ−−→ P ′||Q

[PAR]

P
µ−−→ P ′

!P
µ−−→ P ′||!P

[REC]
P

µ−−→ P ′ x 6= obj(µ)

νx.P
µ−−→ νx.P ′

[NEW]

e −→e true P1
α−−→ P ′

1

if e then P1 else P2
µ−−→ P ′

1

[IF-THEN]
e −→e false P2

α−−→ P ′
2

if e then P1 else P2
µ−−→ P ′

2

[IF-ELSE]

σ
α−−→ σ′ P

α−−→ P ′

[P]σ
τ−−→ [P ′]σ′

[STORE-INT]
P

µ−−→ P ′ µ 6∈ L

[P]σ
µ−−→ [P ′]σ

[PROC]
σ

α−−→ σ′ α ∈ S

[P]σ
τ−−→ [P]σ′

[SYNC]

Fig. 4. Labelled Transitions for processes (top) and systems (bottom).

store action. The substitution θ models the values read from the store. Rules for net-
works model the interactions of the program with the store: [STORE-INT] stands for a
program P that writes to or read from the store σ; [PROC] stands for the computational
steps of a program that do not involve any interaction with the store, while [SYNC]
accounts for the synchronisation steps of the store.

4.3 Reasoning about programs

We rely on some behavioural preorder on systems (e.g., standard weak simulation),
denoted by - (and ∼ for the associated equivalence). We now characterise the consis-
tency level provided by a store σ relatively to the consistency level of other store σ′ by
comparing the behaviours of the systems [P]σ and [P]σ′ .

Definition 14. We say σ is stronger than σ′, written σ ≺ σ′, whenever [P]σ - [P]σ′

for all P . We write σ ∼= σ′ when σ ≺ σ′ and σ′ ≺ σ.

Then, the different consistency levels can be thought as the equivalence classes of
∼=. We write [σ]∼= for the representative of the equivalence class of σ.

Example 8. If we take - as weak simulation -ws, then we can show that the strong
consistent store σS (Section 3.3) is stronger than both the weak consistent store σW
(Section 3.1) and the asynchronous weak consistent store σA (Section 3.2). This can be
done by showing that the following relations are weak simulations

SS,W = {(σSi, σWi) | ∀o.σSi(o) ∈ σWi(o)}
SS,A = {(σSi, σAi) | ∀o.σSi(o) ∈ σAi(o)}

Analogously, it can be shown that σW ≺ σA using the following relation.

SW,A = {(σWi, σAi) | ∀o.σWi(o) ⊆ σAi(o)}

13

Additionally, it is easy to check that σW 6≺ σS. It is enough to consider the trace shown
in proof of Proposition 1, which cannot be mimicked by σS . Similarly, it can be shown
that σA 6≺ σS and σA 6≺ σW .

Let 0 be the store providing no operation. When considering - as weak simulation
-ws, we have 0 -ws σ for all σ. Hence, [P]0 -ws [P]σ for all P and σ. This means
that 0 is the strongest consistent store. More generally, all stores weak bisimilar to 0
are the smallest elements in the preorder ≺, and hence the ones providing the strongest
notion of consistency. However, these stores are non-available services, because they
are unable to perform any read or write operation. Hence, in what follows we will focus
on available store, i.e., stores in which write and read operations are always enabled.

Definition 15. σ is available whenever the following two conditions hold:

– ∀α ∈ W : σ
α−−→ , the store allows any write operation at any time.

– ∀ρ ∈ A s.t. ρ −→e
θ α ∈ R, i.e., if the action is a read, then there exists θ′ s.t.

ρ −→e
θ′ α and σ α−−→ , i.e., the store allows any non-ground read at any time.

The second condition states that a read of some particular values may not be possible
in some states, but a read operation is always possible.

Example 9. The three stores in Section 3 provide availability. In fact, from the LTSs,

we can conclude that for any pair of object o and value v, the transition σ
write(o,v)−−−−−−−→

can be derived. Similarly, for any object o there is always a pair (v, n) such that

σ
read(o,(v,n))−−−−−−−−−→ can be performed.

The following result states that the strong store in Section 3.3 is minimal w.r.t. ≺
when restricting to available services.

Lemma 6. Let σS the strong store defined by the transition rules in Fig. 3. Then, σ′ ≺
σS and σ′ available imply σS ≺ σ′.

Proof. By showing that the following relation is a weak simulation

S = {(σSi, σi) | σi -ws σSi ∧ σi available}

We proceed by case analysis on σSi
α−−→ σS′i

– α = read(o, (v, n)): Since σi is available, ∃α′ = read(o, (v′, n′)), s.t. σi
α′

−−→ σ′i.

Since σi -ws σSi, it holds that σSi
α′

−−→ σS′′i with σ′ -ws σS
′′
i . By definition of

σSi, it holds that ∀o there exists a unique (v, n) s.t. σSi
read(o,(v′,n))−−−−−−−−−→ σS′′i .

Therefore, v = v, n = n′ and σS′i = σSi. Hence, (σS′i, σ
′
i) ∈ S.

– α = write(o,v): Since σi is available, σi
α−−→ σ′i. Since, σi -ws σSi, there exists

σS′′i s.t. σSi
α−−→ σS′′i and σ′i -ws σS

′′
i . Since σSi is deterministic, S′′i = S′i.

Therefore, (σS′i, σ
′
i) ∈ S. ut

Finally, we can define the consistency level supported by a given program.

14

Definition 16. A program P supports the consistency level [σ]∼= iff [P]σ - [P]σ′ for
all σ′ ≺ σ.

The above definition states that a program P supports a particular consistency level
[σ]∼= when the behaviours of P running against σ are at most the behaviours that can
obtained when running P against any store σ′ providing stronger consistency property.
We remark that the above definition implies to consider just the minimal σ′ s.t. σ′ ≺ σ.
In fact, for all other σ′′ s.t. σ′ ≺ σ′′ ≺ σ it holds that [P]σ′ - [P]σ′′ for all P and
therefore [P]σ - [P]σ′ implies [P]σ - [P]σ′′ . Thanks to Lemma 6, we need just to
compare a particular consistency level σ against the strong store in Section 3.

Example 10. Consider the program P
4
= νx(PP | PC) where

PP
4
= write(o,v);x PC

4
=!x.read(o, (v, v′)); show(o, (v, v′))

When running P over the strong store σS defined in 3.3, the only possible execution
trace is the following (regardless of the initial state of the store)

[P]σS
τ−−→ τ−−→ τ−−→ show(o,(v,n))−−−−−−−−−→

whereas the weak store defined in 3.2 produces two additional traces (assume σW0(o) =
(v0,n0))

[P]σW
τ−−→ τ−−→ τ−−→ τ−−→ show(o,(v,n))−−−−−−−−−→

[P]σW
τ−−→ τ−−→ τ−−→ show(o,(v0,n0))−−−−−−−−−−→

The second trace models the case in which the process is reading a data that has not yet
been propagated to all replicas. In Example 11 this problem is solved by adding extra
communication in the processes.

Example 11. Consider the following variant of the program P in Example 10: P ′
4
=

νx(P ′P | P ′C)

P ′P
4
= read(o, (v′, n)).write(o,v);xn

P ′C
4
= y | x(v).!y.read(o, (v′, v′′)); if v < v′′ then show(o, (v′, v′′)) else y

Now, it is easy to check that [P ′]σW -ws [P
′]σS (note that all traces have the shape

τ−−→
∗ show(o,(v,n))−−−−−−−−−→). Thanks to the synchronization between producer and consumer on

x and about the last versioning number n, process P has the same behaviour both in the
weak and in strong memory model.

15

5 Compositionality and Applicability of the Framework

PER HERNAN: C’e’ una cosa che mi confonde qui. Quando parliamo di supportare σ
intendiamo due cose: l’LTS e il contenuto. Infatti chiamiamo σ, σS eccetera sia gli stati
che le semantiche dello store. Sarebbe pi’ chiaro avere 2 notazioni diverse: uno per la se-
mantica usata (tipo→σS) e uno per il contenuto. Quando poi definiamo (Definition16)
quando P supporta→σS lo intendiamo quantificato universalmente sui contenuti dello
store vero? O intendevamo che P supporta σS significa uno store con una semantica
precisa e un contenuto preciso? Se il contenuto e’ quantificato universalmente secondo
me abbiamo composizionalita’ (ma diventa anche piu difficile verificare il livello di
consistenza). Vedi ragionamento di sotto dove assumo la prima ipotesi.

Consider again process PP | PC from example 10 which we showed not to support
consistency level σS in 3.3. Noticeably, whereas PP alone supports consistency level
σS as it always produces τ−−→ x−−→, process PC does not support consistency level σS .
In fact, executing PC in σW produces additional traces wrt σS as the weak store can
return different values. These additional traces are produced even without the presence,
in parallel composition with PC , of the writer PP as Definition 16 universally quantifies
the possible contents of the store (hence implicitly including also the store resulting
after the write operation of PP).

Consider now P ′P | P ′C from example 11, which we showed to support consistency
level σS . Adding a writer (e.g., P ′P but also PP) in parallel composition with P ′P | P ′C
does not change the consistency level, e.g., both P ′P | P ′C | P ′P and P ′P | P ′C | PP
support consistency level σS .

In general, the presence of writers, in parallel with a process P , does not affect the
consistency level supported by P . This holds as long as the added process also supports
the same consistency level we want to prove for P (e.g., P ′P | P ′C | PC does not support
σS as PC does not).

As a second observation, if we add a parallel process that interferes with P and adds
visible actions, this interference would be observable both using store σW and σS .

Theorem 1. Assume P and Q support consistency level σ, then P | Q supports con-
sistency level σ.

Proof. By induction on P | Q, proceeding by case analysis on the possible structure of
Q. Let σ′ ≺ σ.

If Q = xe then [P | Q]σ
µ−−→ [P ′]σ with µ ∈ {xv, τ} and [P | Q]σ′

µ−−→ [P ′]σ′

with P ′ supporting consistency level σ by inductive hypothesis. The case for Q =
x(v)P ′ is similar.

6 Related Work

There is an extensive literature on hardware weak memory models (e.g., TSO-x86 [20]
and POWER [13]) and their properties that can be ensured, for instance, via reorder-
ing of memory operations made by the processor. Within this research thread, [18, 19]
focus on the correctness of x86 assembly code via verified compilers, [16] presents a

16

proof system for x86 assembly code based on a rely-guarantee assertion method, [13]
proposes an axiomatic model for POWER memory model, equivalent to the operational
specification given in [17], and illustrates how it can be used for verification using a SAT
constraint solver. A general account of weak memory models is given in [1], together
with a mechanism of memory fences (i.e., barriers located in the code) that preserve
properties such as sequential consistency, and an automatic generation of tests for pro-
cessors implementations. Existing work on memory models also addresses higher levels
of abstraction. For instance, [9] provides a static typing framework to reason on weak
memory models in Java, and in particular on the property happens-before. The work in
[6] studies a similar notion of store to the one we consider; it defines sufficient rules
for the correct implementation of eventually consistent transactions in a server using
revision diagrams. [5] proposes data types to ensure eventual consistency over cloud
systems.

With respect to the work on hardware memory models, we consider a higher level
of abstraction, focusing on consistency of replicated cloud stores. The main difference
with existing work is in the aim of our paper: albeit we provide a characterisation of
weak and strong storages, our aim is not to ensure that a store provides specific prop-
erties (e.g., strong consistency) but to check that a general purpose application will
execute correctly when composed with a store offering a given level of consistency.
Our notion of correctness depends from the specific applications.

A similar approach is followed in [3]: a characterisation of weak stores is given
together with a parametric operational semantics for Core ML (an imperative call-by-
value λ-calculus). In [3], the focus is on ensuring properties such as race-freedom on
shared memory with buffers using a precise operational characterisation of weak store.
The focus of our work is rather on the interplay of asynchronous communication of
processes and usage of cloud storages with several degrees of consistency.

7 Conclusion

In this paper we address the formal study of database consistency levels. We start by
proposing a general declarative way for specifying stores in terms of the operations
they provide. We show that we can characterise some basic properties of stores at this
abstract level. We show that we can relate these specifications with concrete opera-
tional implementations in terms of LTS. We also illustrate how to provide a more fine
grained specification of properties, e.g., eventual consistency. For simplicity, we just
consider eventual consistency under the assumption of total ordering of events. We
leave as future work to extend our approach to consider even weaker models, as the one
studied in [6, 24], which uses Revision Diagrams. We also analyse some concrete im-
plementations of stores with different consistency levels, by using idealised operational
models. The study of concrete real implementations such as Amazon key-value store
called Dynamo [7], Amazon SimpleDB or Apache CouchDB (which solves conflicts
non-deterministically, incremental Map Reduce) is left as future work.

Finally, we propose an approach for analysing the interaction between programs and
stores, in particular, to understand the consistency requirements of programs. Firstly, we
defined a preorder relation ≺ over stores in terms of their behaviour when interacting

17

with applications. The equivalence classes induced by the equivalence relation associ-
ated with ≺ corresponds exactly to the consistency levels. Then, we classify programs
in terms of the consistency levels they may allow. We use this classification to reason
about correctness or programs running over a particular store. Basically, the classifica-
tion can be used to show that an application supports weaker consistency levels; this is
done by showing that the observable behaviour of the application is the same as when
this application interacts with a strong consistent store.

The compositionality of process calculi enables one to define/verify middleware-
services (interfacing the weak data storage with the application) to provide strong prop-
erties in a transparent way to the application. Namely, it may be useful for understanding
how to “fix” an application that is supposed to run over a weak store but need stronger
properties. A practical example of this is given in [11] where architectures are built to
interface applications with weak stores to provide properties not originally satisfied by
these stores. Our framework is aimed at allowing the formal analysis of such proposals
by exploiting the compositional reasoning enabled by process calculi standard notions.

Acknowledgments We thank the anonymous reviewers of WS-FM 2013 and Emilio
Tuosto for their insightful and helpful comments on the previous version of this paper.

References

1. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak memory models (extended
version). Formal Methods in System Design, 40(2):170–205, 2012.

2. P. Bailis and A. Ghodsi. Eventual consistency today: limitations, extensions, and beyond.
Commun. ACM, 56(5):55–63, 2013.

3. G. Boudol and G. Petri. Relaxed memory models: an operational approach. In Z. Shao and
B. C. Pierce, editors, POPL, pages 392–403. ACM, 2009.

4. G. Boudol, G. Petri, and B. P. Serpette. Relaxed operational semantics of concurrent pro-
gramming languages. In B. Luttik and M. A. Reniers, editors, DCM, volume 89 of EPTCS,
pages 19–33, 2012.

5. S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types for eventual consis-
tency. In Proceedings of the 26th European conference on Object-Oriented Programming,
ECOOP’12, pages 283–307, Berlin, Heidelberg, 2012. Springer-Verlag.

6. S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually consistent transactions.
In H. Seidl, editor, ESOP, volume 7211 of Lecture Notes in Computer Science, pages 67–86.
Springer, 2012.

7. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-
ramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, Oct. 2007.

8. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

9. M. Goto, R. Jagadeesan, C. Ptcher, and J. Riely. Types for relaxed memory models. In
Proceedings of the 8th ACM SIGPLAN workshop on Types in language design and imple-
mentation, TLDI ’12, pages 25–38, New York, NY, USA, 2012. ACM.

10. R. Jagadeesan, G. Petri, C. Pitcher, and J. Riely. Quarantining weakness - compositional
reasoning under relaxed memory models (extended abstract). In M. Felleisen and P. Gard-
ner, editors, ESOP, volume 7792 of Lecture Notes in Computer Science, pages 492–511.
Springer, 2013.

18

11. D. Kossmann, T. Kraska, and S. Loesing. An evaluation of alternative architectures for
transaction processing in the cloud. In A. K. Elmagarmid and D. Agrawal, editors, SIGMOD
Conference, pages 579–590. ACM, 2010.

12. L. Lamport. Fairness and hyperfairness. Distributed Computing, 13(4):239–245, 2000.
13. P. Madhusudan and S. A. Seshia, editors. Computer Aided Verification - 24th International

Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of
Lecture Notes in Computer Science. Springer, 2012.

14. R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1982.

15. D. Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.
16. T. Ridge. A rely-guarantee proof system for x86-tso. In Proceedings of the Third inter-

national conference on Verified software: theories, tools, experiments, VSTTE’10, pages
55–70, Berlin, Heidelberg, 2010. Springer-Verlag.

17. S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding power multi-
processors. SIGPLAN Not., 47(6):175–186, June 2011.

18. J. Sevcı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell. Relaxed-memory
concurrency and verified compilation. In T. Ball and M. Sagiv, editors, POPL, pages 43–
54. ACM, 2011.

19. J. Sevcı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell. Compcerttso: A verified
compiler for relaxed-memory concurrency. J. ACM, 60(3):22, 2013.

20. P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-tso: a rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

21. M. Shapiro and B. Kemme. Eventual consistency. In M. T. Özsu and L. Liu, editors, Ency-
clopedia of Database Systems (online and print). Springer, Oct. 2009.

22. A. S. Tanenbaum and M. van Steen. Distributed systems - principles and paradigms (2. ed.).
Pearson Education, 2007.

23. W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, Jan. 2009.
24. K. von Gleissenthall and A. Rybalchenko. An epistemic perspective on consistency of con-

current computations. CoRR, abs/1305.2295, 2013.

19

