
Journal of King Saud University – Engineering Sciences xxx (xxxx) xxx
Contents lists available at ScienceDirect

Journal of King Saud University – Engineering Sciences

journal homepage: www.sciencedirect .com
Original article
A technical and economic approach to multi-level optimization models
for electricity demand considering user-supplier interaction
https://doi.org/10.1016/j.jksues.2021.02.005
1018-3639/� 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: sbragagnolo@frc.utn.edu.ar (S.N. Bragagnolo).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Please cite this article as: S.N. Bragagnolo, J.C. Vaschetti and F. Magnago, A technical and economic approach to multi-level optimization models f
tricity demand considering user-supplier interaction, Journal of King Saud University – Engineering Sciences, https://doi.org/10.1016/j.jksues.2021
Sergio N. Bragagnolo a,⇑, Jorge C. Vaschetti a, Fernando Magnago b

aCentro de Investigación, Desarrollo y Transferencia de Ingeniería en Energía Eléctrica, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz
Roja Argentina S/N, CP 5016 Córdoba, Córdoba, Argentina
b Facultad de Ingeniería, Universidad Nacional de Rio Cuarto, Ruta Nac. 36 - Km. 601, CP 5804 Río Cuarto, Córdoba, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 August 2020
Accepted 4 February 2021
Available online xxxx

Keywords:
Demand side management
Smart grids
Demand response
Multilevel optimization
Genetic algorithm
Indirect control
One-level optimization methods have been proposed to optimize a single user’s load profile or a cluster of
users in the smart grids. In this work, two two-level optimization methods are studied, one case consid-
ering technical requirements (case 1) and another considering economic criterion (case 2). In the upper
level, the supplier optimizes the objective function. Meanwhile, at the lower level, users optimize their
electrical costs. The proposed methods are based on Genetic Algorithmmethods. In this sense, an indirect
control is established in which users react to a price signal. Simulation results illustrate that both cases
improve the demand profile and increase the retailer profit concerning an unscheduled case. However,
when the supplier tries to maximize the profit, some users receive benefits to detriment of others, con-
cluding that the technical approach is preferable to the economic one.
� 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Historically, power systems have been vertically governed by
clearly defined subsystems: generation, transmission, and distribu-
tion. However, how energy is consumed, transported, and pro-
duced is drastically modified by incorporating new technologies
such as Distributed Generation (DG), distributed storage, and elec-
tric cars. In consequence, control and operation systems and
demand-side management (DSM) are spread over the distribution
networks (Bragagnolo et al., 2020; Subasic, 2015). In these con-
texts, the smart grid (SG) concept emerges and, although it is still
in development, it is becoming a reality in the world’s electric sce-
nario. SG represents the union of computation, automation, and
communication technologies applied to the monitoring, control,
and maintenance of electrical grids. It enables a more sustainable,
reliable, and secure electrical power supply. However, its imple-
mentation requires modifications in the current network such as
the installation of sensors, data processors, communication ser-
vices, and changes in the energy market. Its main functions are
to motivate customer participation, increase service quality, inte-
grate DG, and energy storage (Vidal et al., 2014). The SG collects
information via modern communication technologies that provide
efficiency, reliability, and cost-saving energy generation and distri-
bution. SG comprises generation, distributed generation, transmis-
sion, distribution, and consumption (Belhaiza and Baroudi, 2015).

Electric power systems deal with different challenges, such as
reliability problems, low efficiency, high energy losses, high emis-
sions, and high market power. On the demand side, the traditional
flat electricity tariff represents a disconnection between the whole-
sale electricity market price and retail tariffs. It leads to inefficient
use of resources, as consumers have no motivation to adjust their
use (Jordehi, 2019; Mahmoud et al., 2010). Moreover, partly driven
by the need for decarbonization, the use of electric heatingwith heat
pumps, electric vehicles, and the incorporation of DG will increase
considerably. Besides, the demand becomes more fluctuating and
with higher peaks, reducing generation efficiency, increasing grid
losses, and the associated electrical costs (Gardumi, 2016;
Kassakian et al., 2011; Molderink et al., 2010). Based on these
changes, supply–demand balancing in electricity grids, to ensure
reliability and quality, becomes a more complex problem. To deal
with these challenges, there is great interest in DSM, as well as in
the storage of excess power generation (Yilmaz et al., 2019). The
DSM allows flatting the demand curve, reducing losses due to
energy dissipation produced by power system lines.
or elec-
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Nomenclature

A State Matrix
E Energy Consumption Vector
X User demand strategy
P Price Vector ($/Wh)
B Electricity bill ($)

Epc Energy consumption of all users
DE Flattening factor
gi Supplier constraint function
C Cost of electricity supply
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There are two main DSM approaches: indirect control or direct
control. The former is implemented through incentives such as
prices, energy trading, and even social interaction encouraging
proactive consumer participation. In this method, the supplier
can employ a high tariff if the system’s reliability is compromised
(Siano, 2014). Furthermore, some pricing schemes used are time of
use (ToU), critical peak pricing (CPP), peak load pricing, real-time
pricing (RTP), and variations thereof (Antunes et al., 2020). Regard-
ing multi-level optimization, a strategy often used is day-ahead
pricing, in which the consumer receives tariff information one
day or some hours before (Carrasqueira et al., 2017). In the direct
control method, the operator acts directly on the loads. Although
direct control allows a better demand profile, it intervenes on
users, making it unfeasible (Bragagnolo et al., 2020). Hence, a
multi-level optimization is proposed in which the utility optimizes
its pricing scheme to provide incentives for load shifting without
direct intervention. Multilevel optimization is an NP-complex
problem, where lower-level agents (users) can give multiple
answers to the same proposition of the upper-level agent (sup-
plier). Some authors propose the application of Karush-Kuhn-
Tucker (KKT) conditions to convert the multilevel problem to a
single-level problem and thus find the optimal solution. This trans-
formation guarantees that the response of the set of users at the
lower level is the optimal one for the supplier. As a disadvantage,
it requires a considerable computational effort that only makes it
applicable on a small scale (Antunes et al., 2020; Carrasqueira
et al., 2017; Kovács, 2019). Moreover, cooperation between the dis-
tributor and the users is required (Antunes et al., 2020) and/or
direct control over the users, with the need for computing concen-
trated on a single computer. However, in real life, the problems are
often non-cooperative and users want to maintain their privacy
(Antunes et al., 2020; Bragagnolo et al., 2020). For this reason,
the transformation to a single level is not convenient, and the
two levels are maintained. Additionally, these two levels allow tak-
ing advantage of the distributed computing resources on the users’
side.

This article proposes a dual optimization method based on GA
to optimize both the supplier objective function and the user cost.
At the supplier level, two cases are proposed, and at the user level,
the energy cost is minimized. In case 1, the demand profile is opti-
mized based on grid energy conditions by modifying the pricing
scheme; the supplier’s goal is to obtain a flat demand, allowing
better use of the infrastructure and generation resources. Case 1
is a novel approach and it follows technical conditions. In case 2,
the supplier’s objective is to maximize their profit by changing
their pricing scheme, similarly to Meng and Zeng (2016). The users,
who want to pay the least possible cost for the energy used, act on
their shiftable loads. In both cases, a price scheme with time-
variant pricing is proposed specifically, the day-ahead pricing will
be used. Furthermore, several users with loads of different charac-
teristics are modeled. Finally, the results achieved show the flat-
tening of the demand curve.

The rest of the article is organized as follows: The related works
are introduced in Section 2. Section 3 shows the theoretical frame-
work and the user-supplier interaction model. To that end, the user
consumption scheme is detailed, and the objective function for
2

each level is discussed. The problem simulation and its results
are shown in Section 4. Finally, the main conclusions are presented
and future research is mentioned in Section 5.
2. Related works

On one side, the most recent demand management researches
are based on indirect control. They are: 1) In Anvari-Moghaddam
et al. (2015) a smart multi-objective residential homemanagement
system is performed to reduce consumption and improve user’s
comfort. 2) While Bertineti et al. (2019) use a greedy search algo-
rithm to minimize the electrical cost and peak average ratio of a
single user. 3) Essiet et al. (2019) propose an improved evolution-
ary differential algorithm that minimizes the electrical cost of a
residential unit considering the user’s comfort. 4) Whereas,
Janocha et al. (2016) use a Mixed Integer Linear Programming
(MILP) to manage the demand to minimize the cost. 5) Javaid
et al. (2013) present a systematic review of various home energy
management schemes. 6) Another approach was developed in
Karami et al. (2014) where distributed energy resources are man-
aged considering minimum operation cost. 7) Shaikh et al. (2018)
develop an intelligent multi-objective system using an evolution-
ary genetic algorithm to optimize users’ comfort and energy con-
sumption. 8) Finally, Yang et al. (2015) develop a particle swarm
optimization method (PSO) based on ToU, CPP, and demand
response signals from the supplier to minimize cost while satisfy-
ing the constraints set by the user. In the direct control method, the
operator acts directly on the loads. They are: 1) Batista and Batista
(2018) propose an exact multi-objective methodology to optimize
three different areas. 2) Gupta et al. (2016) develop a PSO applied
to the demand of a residential area to minimize their peak con-
sumption and their cost. 3) While Jung et al. (2020) perform the
optimization of a microgrid under 4 different conditions and eval-
uate the effectiveness of each condition. (4)) In Li et al. (2015) two
scheduling algorithms based on real-time price with renewable
generation are proposed to control a large number of shiftable
loads to minimize the electrical cost. 5) In Logenthiran et al.
(2012) an evolutionary algorithm was proposed to minimize the
cost of three different areas (residential, commercial, and indus-
trial). 6) Nguyen and Le (2014) propose the optimization of a res-
idential area to decrease the cost, considering the user comfort
and they include the electric vehicle as a battery. 7) Rahate and
Kinhekar (2017) use the PSO to optimize the demand of 200 users
whereas the users define the priority of the shiftable loads. 8)
Finally, Vidal et al. (2014) use an evolutionary algorithm and each
user proposes the maximum load to be displaced.

On another side, multi-level optimization is a novel approach in
DSM. 1) In Antunes et al. (2020), a literature review on multi-level
optimization is presented. Most of the articles analyzed apply an
economic standard on the supplier’s side, i.e., the supplier wants
to maximize its profit. Users can have one single objective, which
is to minimize their cost or, additionally, maximize their comfort.
The different techniques used to solve this problem are also men-
tioned, which cover the use of Karush-Kuhn-Tucker (KKT) condi-
tions and traditional algorithms, as well as the use of heuristic
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algorithms. 2) Carrasqueira et al. (2017) propose a multilevel opti-
mization to maximize supplier’s profit and reduce electric bill,
including user’s comfort. To solve the optimization, they propose
two heuristic algorithms and show that traditional algorithms do
not provide an acceptable solution. 3) In Kovács (2019) a multilevel
optimization is proposed, configured as a Stackelberg competition,
the supplier wants to maximize its profit while the consumers
reduce their costs. The problem is transformed into a single-level
one employing a quadratic function, with quadratic constraints.
In their literature review, most authors propose an economic
approach for the supplier and they transform the two optimization
levels into a single-level problem using the KKT conditions. In
Besancon et al. (2020) a multilevel optimization is presented, con-
figured as a Stackelberg competition with a time and level of use
(TLOU) tariff scheme, where the supplier optimizes its profit and
the consumers’ reserve energy capacity. 4) In Meng and Zeng
(2014), the game theory of Stackelberg (Leader-follower) is used.
The supply uses a Genetic Algorithm (GA) to solve its optimal prob-
lem, while users use a linear programming method. 5) Finally, in
Meng and Zeng (2016), a bi-level optimization is proposed, using
a GA for the supplier and a linear programming method for the
users. Both papers have the same goals: to minimize users’ cost
with load displacement and to maximize suppliers’ profit by
changing the pricing scheme. However, this situation does not
guarantee the correct distribution of demand. Moreover, the us e
of linear programming limits the modeling of different types of
loads.

From the literature reviewed, researches using traditional algo-
rithms optimize user’s demand under a given pricing scheme
through an indirect control approach. While heuristic algorithms
were used for more complex loads or optimization of a large num-
ber of users. Furthermore, two approaches were used to optimize a
large number of users, one requiring direct control over interrupt-
ible user loads or multi-level optimization. If multi-level optimiza-
tion is transformed into a single-level optimization, the approach
will be similar to the direct control. While maintaining both opti-
mization levels mean an indirect control with supplier-users inter-
action. The interaction occurs because in each round if the supplier
does not satisfy its objective, it will send new pricing schemes to
the users who will propose their new strategy. As a summary of
the analysis, it is concluded that: 1) The optimization of a single
residential unit is an indirect control and it does not consider the
risks of new peaks due to the concentration of loads in low-cost
hours. 2) The direct control of a large number of users does not
produce new peaks in the gird. But it is difficult to apply since it
affects the users’ privacy. 3) Multilevel optimization is generally
transformed to a single level and it has an economic criterion.
For these reasons, this article performs a multilevel optimization
comparing a new technical approach with an economic one, which
keeps the two levels of optimization to enable user-supplier inter-
action, uses the distributed computing resources, and does not
affect the users’ privacy.
3. DSM proposed method

This section describes the user model and the interaction with
the supplier.
Fig. 1. Classic strategies used for DSM (Vidal et al., 2014).
3.1. DSM and load Classification.

DSM consists of the automated control of the loads to operate
the system and improve its sustainability (Vidal et al., 2014). Users’
consumption patterns can be altered by changing their demand
profile. In this sense, the DSM is an active approach that allows
two major action categories: 1) reduce consumption; and 2) shift
3

consumption (Belhaiza and Baroudi, 2015). Fig. 1 shows different
actions that can be performed for the demand.

Appliances and equipment in residential units can be classified
according to their consumption characteristics:

- Shiftable loads: these loads can be shifted from the moment
that the peak demand occurs to any other desired moment or val-
ley demand. Examples of these loads are washing machines, heat-
ing systems, etc.

- Interruptible loads: those that can be interrupted momentarily.
Compensation may be required after the finalization of a
demand response event. In this sense, the users may interrupt
load use without affecting their life quality, considering that
the operations will be completed within an appropriate period
and produce financial benefits.

- Adjustable loads: are those in which the power demand is a
continuous variable and can be controlled by the system, for
example, an electric vehicle.

- Critical or non-interruptible loads: those that cannot be oper-
ated; for instance, a refrigerator that remains powered up all
day. The operations of these applications are strictly dominated
by comfort and necessity; therefore, their interruption threat-
ens the user’s life quality (Huang et al., 2016) (Zhu et al.,
2015) (Bian et al., 2015).

According to this classification, Bragagnolo et al. (2020) pre-
pared a table with loads found in a residential unit. The residential
demand profile obtained in Celiz et al. (2018) for five users was
used, in which 28 loads were assigned to each user. Three of them
were proposed as shiftable loads with operation time range
defined while all other loads are critical loads. Compared to Celiz
et al. (2018), only the shiftable loads parameters are modified.
Finally, a random assignment function was used to get ten users.
3.2. Definition and loads modeling

Table 1 shows three shiftable loads, defining type, operation
time range, power, and duration.

The operation time range of shiftable loads is the variable con-
straint that handles the user’s GA. Since the GA modifies the start-
ing time of the shiftable load, this constraint fixes boundary values
for this variable. To simplify the method, all users have the same
restrictions in the hourly range of use.
3.3. Optimization

As the proposal is to establish the best supplier’s pricing strat-
egy as a response to the demand daily cost optimization, the opti-
mization process of each user, as well as the supplier optimization
process, are defined.



Table 1
Shiftable Loads.

Type Operation time range [h] Energy
[Wh]

Duration
[h]

Electric steam iron 8:00 – 24:00 600 0,5
Washing machines All day 182 1,5
Dishwasher All day 1050 1

Fig. 3. Algorithm 1 for user optimization.
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Each customer is considered to be equipped with a Smart Home
Energy Management System (HEMS). The customer–supplier inter-
actions are facilitated by a two-way communication infrastructure
like the one shown in Fig. 2. In this process, the supplier sends sev-
eral price signals to users in each round. Subsequently, the supplier
gets the users’ consumption strategy. If the supplier’s goal is
achieved, then the optimization process ends. This will be shown
in Figs. 3 and 4 of section 4 which represent the user-supplier
interaction algorithms.

A GA is used for each optimization level. The GA is a stochastic
search method. In general, the evolutionary mechanism proceeds
as follows: some individuals are selected to reproduce in a popula-
tion, and those that are best adapted have more opportunities.
During reproduction, new individuals in the population result from
modifications and genetic exchange of the parents. Once the pop-
ulation is renewed, the process starts again (Ison et al., 2005). A
heuristic algorithm is selected due to the flexibility to deal with
different kinds of functions. Moreover, it can use discrete variables
and it allows using functions of different nature. Finally, the GA
algorithm is used because it has a random and probabilistic
methodology and its computational cost to obtain a good solution.
Fig. 4. Algorithm 2 for supplier optimization.
3.3.1. User objective function
A user was modeled with 28 loads. The Au matrix of binary

states [0, 1] was used to indicate that the loads, of user u, are
switched on or off. Intervals of 15 min were used as the measure-
ment interval; then, 96 intervals represent a daily simulation time.
Eu is the energy consumption vector of user u, and its element ei
represents the energy consumed by load i.

Xu ¼ Au � Eu with Xu 2 R96�1 ^ Eu 2 R28x1 ð1Þ
By multiplying Au by Eu, (1) is obtained. The vector Xu repre-

sents the user’s u strategy, where the element (xj)u is the energy
consumed by all loads switched on during the time interval j.
Fig. 2. Bilevel Model (Meng and Zeng, 2016).

4

The supplier suggests a pricing scheme P with a defined electri-
cal price for each interval, where the element pj is the price pro-
poses by the supplier during the time interval j

Bu ¼ PTXu with B 2 R ^ P 2 R96x1 ð2Þ
The energy consumption cost of user u per day (Bu) is obtained

by performing the dot product between PT and Xu. Equation (2) is
the electricity bill per day, and it is the objective function that each
user seeks to minimize. This is done for each user through a HEMS.
A GA was used to optimize (2) with the load constraints shown in
Table 1. This differs from Meng and Zeng (2016) which uses a lin-
ear optimization algorithm on the user side.

3.3.2. Supplier objective function
Two supplier objective functions were modeled and their

results were compared. Case 1: a novel technical criterion was pro-
posed; therefore, the supplier modifies its rate system to flatten
the demand curve. Case 2: an economic standard was chosen fol-
lowing Meng and Zeng (2016) in which the supplier’s goal is to
increase its profit by modifying the pricing scheme.

Given the technical criterion, the supplier has to compare -at
each iteration- the length of each slot of demand made by all users
with respect to the desired value in response to a day-ahead pric-
ing scheme. Then, it chooses the selling price that produces a more
flattened curve.

EPC ¼
P96

j¼1

Pn
u¼1 xj
� �

u

96
with EPC 2 R ^ xj

� �
u 2 Xu ð3Þ

The desired value EPC is calculated as (3). It is a scalar that rep-
resents the energy consumption of all users per defined period
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through the day. n is the number of users. Note that Xu is the strat-
egy of the user u to optimize their cost.

DE ¼
X96
j¼1

Xn
u¼1

xj
� �

u � EPC

 !2

with DE 2 R ^ xj
� �

u 2 Xu ð4Þ

The demand flattening factor DE (4) is based on (3). DE is zero if
the profile demand is flattened otherwise it will have a positive
value. For this reason, (4) is the supplier’s objective function when
it considers technical issues. As the vector Xu changes when the
price is modified, DE changes.

gj xj
� �

u;pj

� � ¼ bþ Epc �
Xn
u¼1

xj
� �

u

 !
� pj � 3
� �

P 0 with gj 2 G

ð5Þ
Finally, the supplier has to optimize (4) subject to (5). This con-

straint function is included to get a better pricing scheme. If (5)
does not exist, the price could not match the demand in some
intervals; this could affect the convergence of the GA.

Equation (5) implies three conditions for it to be positive:

1- pj P 3y
Pn
u¼1

xj
� �

u P Epc the price is high if the demand

exceeds the desired value Epc.

2- pj < 3y
Pn
u¼1

xj
� �

u < Epc the price is low when there is lower

than the desired value Epc.
3- pj ¼ 3 this produces that the second term is zero.
3 ¢/kWh is chosen in the price because the price can vary

between 1 and 5 ¢/kWh. Where 3 is the intermediate value. Fur-
thermore, a constant term b is added to (5) where b = 1 because
users could choose a different strategy for the same pricing
scheme. Without this addition, procedures that satisfied a GA iter-
ation may not satisfy the next one. After several simulations, the
value of b = 1 was chosen considering that it gave a flexible band
for cases where the second term of equation (5) was close to zero,
and it was verified that the strategies that met this restriction were
feasible in the following iteration.

Cj Lj
� � ¼ ajL

2
j þ bjLj þ cj ð6Þ

For case 2, the supplier has to determine its profit - its revenue
subtracting the energy cost. The cost function (6) proposed in
Meng and Zeng (2016) was used. This indicates the cost of electric-
ity supply per interval and Lj represents the amount of power pro-
vided to all customers at interval j. This function is analogous to
that used to determine the cost of a thermal generating machine.
Where aj > 0, bj � 0 and cj � 0 at each interval.

Profit ¼ PT
Xn
u ¼ 1

Xu - CT
Xn
u ¼ 1

Xu ð7Þ

Equation (7) shows the retailer’s profit that is calculated from
(1), (2), and (6).

Revenue ¼ PT
Xn
u ¼ 1

Xu 6 Rmax ð8Þ

The revenue constraint (8) was added in Meng and Zeng (2016)
due to the market characteristics and to improve the acceptability
of the retailer’s pricing strategies.

As a result, the supplier optimizes (7) subject to (8). In (8), Rmax

is the total revenue cap. If (8) does not exist, the prices will
increase to a level that is unacceptable by customers, energy regu-
lators, and/or the government (Meng and Zeng, 2016). Moreover,
the upper bound of the problem space is limited to a maximum
price pj � 5. The lower bound is pj � 0 due to the selling price is
always positive. A negative value means that the supplier is pur-
5

chasing energy. The lower limit differs from Meng and Zeng
(2016) because it is not necessary to fix it with the supplier’s elec-
trical cost and it gives more flexibility in the pricing scheme.

3.3.3. Existence of optimal solutions of the bilevel model
First, consider the following bilevel model with one upper-level

agent and ‘‘N” independent lower-level agent. Second, the sup-
plier’s objective is to reduce (4).

min
P; X1 ;...; Xn

F P; X1; . . . ; Xnð Þ

Subject to: Subject to

X1; . . . ; Xnð Þ 2 argmin f Pn
u¼1

Bu ðP; XuÞg
G P; X1; . . . ; Xnð Þ 6 0G P; X1; . . . ; Xnð Þ P 0

ð9Þ

Finally, (9) is expressed, and theorem 1 is established to prove
that Case 1 converges toward a solution. In Meng and Zeng
(2016) , the proof of case 2 is described.

Theorem 1.. Consider the model with one upper-level decision agent
(supplier) and n independent lower-level decision agents (users)
shown in (9). Since there is a price of the available energy lower than
the peak energy -and because each user has shiftable loads-, they will
move some of the peak energy to the available energy sector. Then
both the supplier and the user achieve their respective goals so the
solution converges.
Proof.. For each decision variable pj (j = 1, . . ., 96) in the decision
variable vector P at the upper-level problem, it only takes high values
if the demand is high and as the user’s objective is to reduce theirs bills
and the displaceable energy is less or equal to the available energy,
hence:

1- For the same energy value, the cost of displacing the energy
for the user is lower compared to the peak cost.

Zt2
t1

Pt2
t1
Et2
t1
dt 6

Ztm
tn

Ptm
tn E

tm
tn dt with Pt2

t1
6 Ptm

tn ð10Þ

The interval [tn, tm] represents the peak time.
2- Each user has displaced energy and each one moves this to

reduce their bill.
3- From 1 and 2 there is at least one solution in the considered

bi-level optimization.

4. Experimental result

A detailed explanation of the implemented model and the
required parameters are described in this section. The results
obtained for both cases are compared against each other and a case
without optimization that uses a flat pricing scheme.

4.1. Simulation parameters.

The data set, described in Table 1, was used for shiftable loads.
Each appliance was switched on only once and an average energy
value was calculated every 15 min, with no variation during the
entire cycle of use.

pn ¼ pnþ1 ¼ pnþ2 ¼ pnþ3 for n ¼ 1;5; . . . ; 93 ð11Þ
The supplier proposed a pricing scheme with the limitation that

the price may vary every 4 intervals (11). This avoids price fluctu-
ations due to the inelasticity of a great portion of the demand.

Each user’s demand profile was assigned according to a random
function. The same seed was always used for this purpose, which
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allowed new simulations to get the same results. Besides, all users
will have the same Eu consumption vector.

Profiles ¼ A1; A2; A3;A4;A5f g ð12Þ
Useru ¼ Profiles Random 1;5ð Þð Þforu ¼ 1; . . . ; 10 ð13Þ
The function is represented by (12) and (13) where A1, . . ., A5

corresponds to the profiles for 5 users and Random is the function
with integers between 1 and 5.

For the cost of the energy provided to users by the retailer the
cost function shown as (6) was used. The values of aj, bj y cj were:
aj = 0.04 and bj = 0.25 from 12 AM to 10 AM, aj = 0.055 and bj = 0.5
from 10 AM to 12 AM, cj = 0.5 from 11 PM to 5 AM, cj = 0.75 from 5
AM to 6 PM and cj = 1 from 6 PM to 11 PM. These coefficients were
developed following Meng and Zeng (2016) and the tariff scheme
of EPEC [WWW Document], (2020).

Since there were two sequential optimization processes, two
independent and coupled algorithms were proposed, one for the
supplier and one for the user, following the structure represented
by Fig. 3 and Fig. 4. In Fig. 4, the supplier can calculate (4) or (7)
according to its goal.

If Algorithm 1 is not used, different pricing schemes will be sent
to users, and they will be able to optimize their cost without the
guarantee of avoiding new demand peaks. It arises from the anal-
ysis of Algorithm 2 that the supplier does not know either the loads
that can be moved nor their operating times. It only knows the
resultant expected demand profiles. The exact value will be mea-
Fig. 5. Unscheduled demand profil

Fig. 6. Demand profile obtained after optimiza

Fig. 7. Demand profile obtained after optimiza
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sured afterward using smart meters. For these reasons, this
method can be used for users that are concerned about their
privacy.
4.2. Simulation results

Fig. 5 shows the demand profile of 10 users without optimiza-
tion based on Celiz et al. (2018), with a flat pricing scheme. A con-
stant price was decided throughout the day because this is the
typical tariff scheme for residential users of Argentina’s electricity
distribution companies. The red bars represent the demand in
kWh. The blue dashed line is the proposed price in ¢/kWh. The
green line accounts for the calculated Epc, and the black dash-dot
line is the cost of electricity supply.

Fig. 6 shows the demand profile obtained after the supplier
optimization. In this case, the supplier’s goal was to flatten the
demand, according to (4) with the constraint (5). The price has
similar behavior to the demand. It is usually less than 3 when
the demand is less than the desired value and higher if the demand
exceeds the desired value. Moreover, the displacement of demand
from peak to off-peak hours can be appreciated.

The second case, in which the supplier’s goal was to increase its
profit, is shown in Fig. 7. The supplier optimized (7) with constraint
(8). The price in Fig. 7 is usually higher than the price in Fig. 6 given
the supplier’s goal.

In both cases, the price of kWh could vary once every four con-
secutive elements of the vector, and the load was displaced for the
e based on (Celiz et al., 2018).

tion with function objective (4) - Case 1.

tion with function objective (7) - Case 2.



Table 2
Simulation Results.

Simulation DE Average electricity bill
[¢]

PAR

Unscheduled 163.30 64.45 2.97
Case 1 88.36 60.92 2.50
Case 2 95.22 64.44 2.50

Table 3
Simulation Results.

Simulation Revenue
[¢]

Cost
[¢]

Profit
[¢]

Unscheduled 644.50 426.06 218.44
Case 1 609.20 350.71 258.49
Case 2 644.44 351.43 293.01

Fig. 8. Electricity bill per user.
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peak hours to a place with less price. However, Fig. 6 shows more
intervals with lower prices.

The electricity bill per user is observed in Fig. 8. Blue bars rep-
resent users without optimization, red bars users in case 1 (Fig. 6),
and green bars users in Case 2 (Fig. 7). The cost for the user in Case
1 was always lower than the original situation whereas in Case 2,
some users obtained a worse cost. This is the aim of the supplier’s
goal, to increase profits and the best situation has the same rev-
enue as the unscheduled case. As a result, some users improved
their costs at the expense of other users.

Table 2 and Table 3 summarize the comparison between the
unscheduled users (Fig. 5) and the two bi-level optimization cases
proposed (Fig. 6 and Fig. 7). Table 2 compares the flattening factor,
the average electrical cost of ten users, and the peak to average
ratio (PAR). Table 3 shows the revenue, cost, and profit in the three
cases.

On the one hand, in Table 2 it is evident that in Case 1 the aver-
age cost of the ten users was less than the cost obtained before
optimization. In this sense, the optimization result gives a
DEopt = 88.36. This value was lower than the flattening factor of
the unscheduled case. Although Case 2 presented the same peak
to average ratio (PAR), the supplier had an upper flattening factor.
Moreover, the users’ average electric bill is similar to unscheduled
simulation. In both cases, Table 2 shows a reduction of the PAR
close to 16% (from 2.97 to 2.50).

On the other hand, Case 2 shows the best profit in Table 3. This
increases up to 30% in comparison to the unscheduled case. Fur-
thermore, both cases had a similar cost, lower than the unsched-
uled case. Case 1 had the lowest revenue. However, it had a
better profit than the unscheduled simulation. This was a conse-
quence of a better location of the loads and because all users
7

improved their electric bill as shown in Fig. 8. Note that the Rmax

for Case 2 was fixed as the revenue reached in the unscheduled
case.
5. Conclusions

This paper shows that the technical criterion has advantages
over the economic one. It could reduce the flattening factor and
increase the supplier profit while all users reduce their electricity
bills.

In the economic criterion, the utility achieves its highest profit
and has a relatively good demand profile. However, some users
suffer an increase in their bills. Therefore, it is not easy to encour-
age more users to participate in this market if they do not get any
benefits from it.

Future works may analyze the trade-off between technical and
economic criteria. On the user’s side, comfort will be included in
the objective function and other types of loads will be added to
users. Finally, it will be complemented with a discussion about
the cost function of the electricity supply, the convergence of the
multilevel optimization process, and the type of solution found
in the proposed technical approach.
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