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1. Introduction

In many research areas, it is important to assess the distributional effects of policy variables
and key covariates. From a policy maker perspective, an intervention that helps to raise the
lower tail of an income or wage distribution is often more appreciated than an intervention
that shifts the upper tail of the distribution, even if the average effect is the same. Also an
intervention that generates inequality in the distribution of income may be judged inferior to
another one that produces less dispersion, even when the average effect may favor the former.
This paper analyzes two econometric tools that are used to evaluate these effects, conditional
quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective
is to shed light on the interpretation of these two methods from the perspective of an applied
practitioner, and to focus on the similarities and differences between these two methodologies.

As a starting point, let’s specifically define the nomenclature used in the literature (see Fortin
et al., 2011). On the one hand, the Conditional Quantile Partial Effect (CQPE) refers to the
effect of a covariate (ceteris paribus) on a conditional quantile of an outcome variable, while
the same concept on the unconditional distribution is the Unconditional Quantile Partial Effect
(UQPE). Conditional here means that we are controlling for the effect of other covariates. On
the other hand, CQR and UQR refer to two regression methodologies to estimate CQPE and
UQPE, respectively. Sometimes the acronym of the method is informally interchanged with the
parameter of interest and therefore can be somewhat confusing if read lightly.

Quantile regression (QR) (see Koenker and Hallock, 2001; Koenker, 2005, for a comprehensive
analysis of QR) is a useful way to represent heterogeneity using a set of parameters to characterize
the entire conditional distribution of an outcome variable given a list of observable covariates.
Let us consider a Mincer equation as a canonical example, i.e. wages as a function of observable
workers’ characteristics (see Arias et al., 2001, for an illustrative application of QR to this case).
The conditional quantiles refer to the salary ranking generated by unobserved characteristics
of the individuals (usually ability, motivation, etc.), controlling for the effect that comes from
the observables or rather conditional on those observables (experience, educational level, gender,
employment sector, etc.). The τ ∈ (0,1) index refers to a particular position or rank in the
conditional distribution of unobservables, such that τ proportion is below and 1− τ is above, i.e.
for high ability (τH) vs. low ability (τL). In a simple analysis of the gender gap on wages, QR
provides a tool to study heterogeneity in the gender differences across wages in the conditional
distribution. Thus the effect at the τth-quantile refers to the wage difference between female
and male workers that share the same level of observables covariates and that are located in the
same position of the conditional ranking. In another example, say the effect of age on wages, the
CQR coefficients estimate the impact of changing from a value x to x + t (where t is small) for
the subpopulation that is located in the τ part of the conditional distribution and that also share
the same values of other covariates (CQPE). Again we may have a different effect depending on
the ranking of unobservables. Note that in this context, x is a particular value of the covariate
of interest.

The combination of QR with simulation exercises is usually implemented to evaluate distri-
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butional effects. While it is feasible to calculate the unconditional distribution of wages using
QR (see Autor et al., 2005; Machado and Mata, 1995; Melly, 2005), this task is not obvious, at
least compared to OLS for the conditional mean. Since the law of iterated expectations does
not hold in the case of quantiles, the conditional QR analysis cannot be used directly to analyze
unconditional quantiles (see the discussion in Fortin et al., 2011). The unconditional quantiles
refer to the location in the distribution of the entire wage distribution, making the emphasis in
high or low wage values, not necessarily for individuals with the same value in the covariates. It
could be the case that those in the η quantile location of the unconditional distribution have cer-
tain endowments that makes the comparison with the CQR unclear. In the gender gap example,
most high wage earners (let’s say ηH) are probably mostly males. Moreover, there are female
workers with a high conditional τH (talented or motivated workers) but most of them located in
the low quantile region (say ηL).

Firpo et al. (2009) propose an implementation of a known statistical tool, the influence func-
tion, to evaluate the impact of changes in the covariates on a statistic that depends on the
unconditional distribution. Those authors defined that method recentered influence function
(RIF) regression where a regression of the RIF on covariates allow to study the marginal effect of
a “change” in those covariates. The potential simplicity and flexibility the methodology offers for
the analysis of any distributional statistics also motivated subsequent research to expand the use
of RIFs in the framework of regression analysis. After its introduction, UQR, i.e. RIF applied
to studying the effect of covariates on the unconditional quantiles, became a popular method for
analyzing and identifying the distributional effects on outcomes in terms of changes in observed
characteristics in areas such as labor economics, income and inequality, health economics, and
public policy.

This paper is motivated by the necessity of providing an interpretation of CQPE and UQPE,
and also for better understanding the connection between both concepts. We show that the
interpretation is as follows. First, for a continuous covariate, the UQPE is determined by a
location shift in the entire distribution of a covariate, where the shift corresponds to changing
from a random variable X to another X + t, where t is small. In the age covariate example, this
means evaluating an intervention where the entire labor force is older by one year. Depending
on the joint distribution of wages and age, this movement may have an impact that is different
at ηL than at ηH . Suppose that a relative higher proportion of conditional high ability (indexed
by τH) are located in the high ηH part of the unconditional distribution, and that age has a
CQR higher impact on high ability than in low ability. Then the UQPE of age on wages should
have a larger effect on ηH vis-à-vis ηL. Second, for binary covariates, say D, while the CQPE
was clearly understood using regression type tools, for UQPE is not. The key is that the RIF
exercise proposes to move the probability of D = 1 instead of a particular value D. Then, for the
gender gap example, the UQPE should be interpreted as marginally shifting the propensity score
of female vs. male, i.e. the proportion of each type. That is, uniformly changing the gender
proportion in the sample.

An interesting theoretical derivation to connect CQPE and UQPE is that, for the effect of a
continuous covariate, the UQPE is a weighted average of the CQPE. This imposes clear bounds
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on the values that UQR coefficients can take and provides a clear connection between CQR
and UQR. The key here is a match between CQR whose predicted values are the closest to the
unconditional quantile. In fact, the connection of both concepts for the continuous case is useful
as a guide to evaluate the correct specification of the regression model. Unfortunately, a similar
relationship for a binary covariate does not exist in the literature. We derive a new theoretical
result that allows a comparison of the two effects. The analytical results presented here may
serve as a guide for understanding the reason of the observed CQR and UQR effects.

This paper is organized as follows. Section 2 discusses CQR models. Section 3 presents UQR.
Then Section 4 presents a comparison of this two methods. Section 5 applies this estimators
to the study of age and gender effects in wages for Argentina using 2019 and 2020 household
surveys. Section 6 concludes. The Appendix A contains mathematical proofs and Appendix B
a brief introduction to empirical implementation in STATA and R.

2. Conditional Quantile Regression

Let Y be the response variable and X be a p× 1 dimensional vector of covariates. The mean
and quantile linear regression models are two well known models to estimate the effect of certain
covariates on a response variable.

Mean regression (MR) considers the effect of X on Y through the conditional mean model

E(Y ∣X) =X ′βM , (1)

where in this model βM is p × 1 dimensional vector of coefficients.
In quantile regression (QR) the conditional quantiles of Y are of interest through the models

QY (τ ∣X) =X ′β(τ) for τ ∈ (0,1). (2)

In this simple linear model, the parameters β(τ) measure the conditional quantile partial
effect (CQPE) of increasing X, that is:

CQPE(τ) = ∂QY (τ ∣X)
∂X

= β(τ). (3)

Therefore, β(τ) measures the effect of marginally changing X within the group of individuals
characterized by the same conditional level of response, indexed by τ . Note that equation
(2) implies that the right-hand side is monotone increasing in τ . In theory, the monotonicity
requirement should be satisfied for all realizations of X or for some specified subspace of interest,
i.e. X ∈ X (this is discussed in Koenker, 2005, p. 59). In practice, however, the monotonicity
may not be satisfied for some values of X, a problem known as the quantile crossing problem:
the conditional quantile curves xz→ QY (τ ∣x) may cross for different values of τ (He, 1997).

Chernozhukov et al. (2009, 2010) studies this monotonicity requirement and proposes a rear-
rangement procedure of the estimated quantile curves. He (1997) proposed to impose a location-
scale regression model, which naturally satisfies monotonicity. Furthermore, Koenker and Xiao
(2006) shows that integrating out the quantiles over (0,1) should provide the mean effects, i.e.

∫(0,1)β(τ)dτ = βM .
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The results in Koenker and Bassett (1982) establish that, under regularity conditions, the esti-
mated conditional quantile function is a strongly consistent estimator of the population quantile
function. Thus the process {Y,X} can be partially recovered from the marginal distributions,
that is, the conditional distribution Y ∣X can be described by its conditional quantiles based
on τ ∈ (0,1). The QR analysis constructs a model Y ∗ = Y (X, τ) in which Y ∗, depends on
endowments X and its location in the conditional distribution given by τ . The linear QR model
determines that the coefficients β(τ) are the pricings of those endowments in the market (this is
further developed in the next section). Here variation in β(.) completely absorbs the role of the
unobservables in regression models. This method has been applied for the analysis of inequality
by Autor et al. (2005), Machado and Mata (1995), Montes-Rojas et al. (2017), and others.

For a dummy variable (say D), the CQPE should not be obtained by partial derivatives but
instead

CQPED(τ) = QY (τ ∣D = 1,X) −QY (τ ∣D = 0,X). (4)

This is the difference in the τ quantiles for the population group with D = 1 vis-à-vis those
withD = 0, in this case controlling for other covariatesX. This type of estimator is the same used
in the quantile treatment effects literature (Chernozhukov and Hansen, 2005, 2006; Firpo, 2007),
where we compare treated and non-treated were each group is calculated at a given ranking. If
the CQR models are linear, then CQPED(τ) = βD(τ), i.e. the QR coefficient of the dummy
variable.

3. Unconditional Quantile Regression

Consider now the case of studying the unconditional quantiles, defined as

QY (η) for η ∈ (0,1). (5)

We are interested in a multivariate case where we consider the joint distribution of (Y,X).
In particular, to find a framework to study changes in the distribution of X on the quantiles of
Y . This is first a matter of definition, i.e., what is a change in X.

A well know result is that quantiles are non-linear operators. As such, while the law of
expected iterations can be applied to the conditional mean, this is not valid in general for
conditional and unconditional quantiles,

QY (η) ≠ E [QY (η∣X)] = E[X]′β(η) for η ∈ (0,1). (6)

Therefore, the CQPE cannot be used directly to study effects in QY (η).
Our interest lies in defining the unconditional quantile partial effect (UQPE), but this requires

to review influence function theory (see Huber and Ronchetti, 2009 for an introduction).
Consider functionals v(F ) defined on the distribution function FY of a real valued random

variable Y . Typical functionals that have been extensively used in income distribution analysis
are inequality, poverty or polarization measures, which are an essential tool to study distri-
butional impacts. Of particular relevance is the use of the influence function (IF) of v, that
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summarizes the marginal impact of a particular observation or group in the value of the func-
tional. Moreover it provides a unified approach for computing variances and covariances for
general functionals.

The IF is the directional derivative of v(FY ) at FY and it measures the effect of a small
perturbation in FY . In other words, let y be an additional data point in a large sample that
adds a perturbation to the distribution with probability mass δy. HY is then HY (y) = 1[Y ≥ y]
and hY (y) is a density function with value 0 except at y. Then,

IF (y; v;FY ) = lim
t→0

v [tδy + (1 − t)FY ] − v(FY )
t

. (7)

The IF of a distributional statistic (and hence of a social evaluation function) measures the
relative effect of a small perturbation in the underlying outcome distribution on the statistic
of interest. Within that approach and under the assumption that the distributional change in
question is due to policy implementation, the IF of a social evaluation criterion may be viewed
as a local measure of the distributional impact of policy. For most cases the IF can be computed
analytically for a large family of functionals to study inequality and poverty (such as quantiles,
variance, Gini, etc.).

The IF is a key tool to study the distributional impact of changes in covariates. The re-
centered influence function (RIF) is defined as

RIF (Y, v,FY ) = v(FY ) + IF (Y, v,FY ), (8)

which is motivated by the fact that EY [IF (Y, v,FY )] = 0, and then

v(FY ) = EY [RIF (Y, v,FY )]. (9)

For the particular case of the η-quantile, v(FY ) = QY (η) = F −1
Y (η), we have (see Essama-Nssah

and Lambert, 2015 for a derivation)

RIF (y;QY (η), FY ) = QY (η) + η − 1[y ≤ QY (η)]
fY (QY (η)) . (10)

Note that property of the RIF in eq. (9) is very interesting because it allows to compute
any indicator v(FY ) as an expectation and therefore enables us to use the Law of Iterated
Expectations

v (FY ) = E {E [RIF (Y, v,FY ) ∣X]} . (11)

The conditional expression E [RIF (Y, v,FY ) ∣X = x] is an unknown function m(x), then
v (FY ) = E [m(X)].

Now suppose an small location-shift of the distribution of one covariate X, that is X +t where
t is small. For simplicity, consider a single covariate, but the analysis should be interpreted as a
change in one covariate keeping the others unaltered. This shift affects the entire unconditional
distribution of Y , moving it towards a new distribution GY . Note here the mechanism: the
distribution of X is shifted, which has an impact on the joint distribution of (Y,X), for which
we want the effect on the distribution of Y . Compute the marginal change from v(FY ) to v(GY ):

lim
t→0

v (GY ) − v (FY )
t

= lim
t→0

E[m(X + t)] −E[m(X)]
t

= E [lim
t→0

m(X + t) −m(X)
t

] ,
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where the last equality uses the continuity of the limit.
If m(x) is differentiable at any point x, then

lim
t→0

v (GY ) − v (FY )
t

= E [∂m(x)
∂x

] = E [∂E [RIF (Y, v,FY ) ∣X = x]
∂x

] .

This is the main equation in Firpo et al. (2009), which is an application of the IF theory and
the Law of Iterated Expectations.

Consider now the example of a dummy variable D. In this case, the UQPE and CQPE cannot
be compared using the formulas above because we need to consider discrete change. To simplify
notation we only consider a model m(D,X) for the conditional expectation of the RIF, where
D is a binary covariate and X is a continuous covariate. Then

v (FY ) = E [m(D,X)] = E [m(1,X)PF (D = 1,X) +m(0,X)PF (D = 0,X)] . (12)

Then consider the following shift:

PG(D = 1, x) = PF (D = 1, x) + t (13)

and
v (GY ) = E [m(D,X)] = E [m(1,X)PG(D = 1,X) +m(0,X)PG(D = 0,X)] . (14)

Note that when t is small the change in eq. (13) is close to PG(D = 1) = PF (D = 1) + t.
Compute the difference and use some linear properties of the expectation

lim
t→0

v (GY ) − v (FY )
t

= lim
t→0

E {m(1,X) [PG(D = 1,X) − PH(D = 1,X)] +m(0,X) [PG(D = 0,X) − PH(D = 0,X)]}
t

Note that PG(D = 1,X) − PH(D = 1,X) = t and PG(D = 0,X) − PH(D = 0,X) = −t, then

lim
t→0

v (GY ) − v (FY )
t

= lim
t→0

E {m(1,X)t +m(0,X)(−t)}
t

.

Finally,

lim
t→0

v (GY ) − v (FY )
t

= E {m(1,X) −m(0,X)} = E {∆DE [RIF (Y, v,FY ) ∣X]} ,

where

∆DE [RIF (Y, v,FY ) ∣X] ≡ E [RIF (Y, v,FY ) ∣D = 1,X] −E [RIF (Y, v,FY ) ∣D = 0,X] , (15)

is the partial difference taken on the conditional expectation of the RIF.
When v(FY ) = QY (η), the above procedure is defined as Unconditional Quantile Regression

(UQR) and thus,

UQPEX(η) = E {∂E [RIF (Y,QY (η), FY ) ∣X = x]
∂x

} (16)
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for the continuous case and

UQPED(η) = E {E {∆DE [RIF (Y, v,FY ) ∣X]}} , (17)

for the dummy variable case.
Firpo et al. (2009) develop a simple regression framework that is similar to a standard re-

gression except that the dependent variable, Y , is replaced by the re-centered influence function
(RIF) of the statistic of interest. They propose m(X) =X ′b as an approximation to the func-
tional form of the RIF conditional expectation. The parameters b correspond to a change in
the covariates on v that can be interpreted as above. In particular, as explained in Fortin et al.
(2011), the RIF-regression allows for using regression type tools, such as Oaxaca-Blinder type
decompositions. Note however, that this is only an approximation to a potentially nonlinear
function, m(X), and as such it may fail to appropriately describe the marginal effects.

4. Comparison of UQR and CQR

We have established that QR measures the partial effects of moving X on the conditional
distribution (CQPE), while RIF regressions do the same with the unconditional distribution
(UQPE). Proposition 1 in Firpo et al. (2009) is very useful to understand the relationship between
both statistics. Define the following matching function:

ξη(x) ≡ {τ ∶ QY [τ ∣X = x] = QY (η)} .

This function finds the τ quantile in the CQPE model that is the “closest” to the η quantile
in the UQPE model. It plays a central role in the following analysis.

4.1 Continuous Covariate Case

Consider first the case of a continuous covariate. Figure 1 shows a very simple example of how
ξη(x) works for the case of a one dimensional covariate. Suppose we are positioned at the median

Figure 1. Matching function.
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Table 1
Matching function.

Intersection η X ξη(X)

1 0.50 x1 0.90
2 0.50 x2 0.80
3 0.50 x3 .
4 0.50 x4 .
5 0.50 x5 0.40

of the unconditional distribution, that is, at η = 0.50. This value matches with the quantile 0.90
conditional on X = x1, but also with the quantile 0.80 conditional on X = x2, and so on. Then,
the function ξη(x) indicates intersections such as points 1, 2, 3, ... generating a correspondence
as shown in Table 1.

A relationship between UQPE and CQPE can be established using the following equation
(Proposition 1 (ii) in Firpo et al., 2009):

UQPE(η) = E [ωη(X) ⋅CQPE (ξη(X),X)] , (18)

where the weight has the following form ωη(X) ≡ fY ∣X(QY (η)∣X)

fY (QY (η)) and we allow the CQPE to
depend on the value of the covariates. That is, the UQPE(η) is a weighted average of all the
CQPE(τ,x) that are intersected by QY (η). Following the example of Figure 1, the UQPE is
the average of the slopes of points 1, 2, 3,... weighted by ωη(x). If we make this calculation more
explicit we can see all the factors that link UQPE with CQPE:

UQPE(η) = ∫ ωη(x) ⋅CQPE (ξη(x),x) ⋅ fX(x)dx.

Note that in fact, the comparison of the two models is similar to the one used in binary regres-
sion models (i.e. probit or logit) to get the average marginal effects on the probability. This is be-
cause we need to calculate the conditional expectation of E[1[y ≤ QY (η)]∣X] = P [y ≤ QY (η)∣X].
When we compute the marginal effect, the derivative of the cumulated probability becomes the
density function (i.e. fY ∣X (QY (η)∣X)) multiplied by the corresponding beta coefficient (i.e.
CQPE).

Although both the marginal and joint distributions of (Y,X) intervene in the weighting
factor, the heterogeneity of the weights is affected by fY ∣X(.) and fX(.). Let’s consider two
simple examples with a location-shift model where:

i) QY [τ ∣X = x] is linear and the QR coefficients are constant across quantiles as in Figure
2, then trivially UQPE(η) = CQPE(η) for any weighting structure;

ii) QY [s∣X = X] is non-linear and quadratic as in Figure 3 with X ∼ Uniform and Y ∣X ∼
Uniform (such that weights are constant), then it is easy to see that CQPE(η) ≠
UQPE(η) = 0 for all η since the partial effects of the conditional distribution are off-
set in the tails of the distribution of X, dissappearing the effects on the unconditional
distribution.
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Figure 2. Linear location-shift model.

Figure 3. Nonlinear quadratic location-shift model.

In practice, all these calculations are not really necessary since we can directly estimate
CQPE(η) and UQPE(η) separately using CQR and UQR-RIF-regression, respectively. How-
ever, the relationship discussed in this section is useful to understand the origin of the differences
between the two estimates.

It also suggests a way to evaluate model misspecification. In particular, if the UQPE het-
erogeneity exceeds that of CQPE, that is, if the effects from UQPE exceeds (in absolute values)
that of CQPE, then the models are misspecified. This is a relevant issue as quantile and RIF
regression are usually implemented as linear models, which could be a poor approximation to
the true data generating process.

4.2 Binary Discrete Covariate Case

For the binary discrete covariate case, the function above linking UQR and CQR does not
apply. However, a comparison of the eqs. (4) and (17) can be studied in the following proposition.
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Proposition 1 Consider a model that only has one dummy covariate D. Then, we have the
following representation

UQPE(η) = E {
fY ∣D[QY (η)]
fY (QY (η)) CQPE[ξη(1 −D)]} +R(ξ̃η),

with R(ξ̃η) defined in the Appendix.

Proof: In the Appendix A.

This result determines that it is not possible to bound UQR effects within those of CQR as
in the continuous case. That is, if we frame the case of a dummy covariate for UQR, the UQPE
formula for the continuous case is incorrect. In turn, the remainder term R(ξ̃η) depends on the
comparison of the corresponding τ conditional quantiles coming from the matching function.
That is, R(ξ̃η) depends on the difference ξη(1) − ξη(0), and since ξη(1) and ξη(0) are discrete
values, nothing guarantees that it is close to zero.

5. Empirical Application

We use microdata from the Argentine household survey, Encuesta Permanente de Hogares
(EPH). This survey is carried out by the National Statistics Institute (INDEC) and collects
data from 31 major urban areas, with a statistical coverage rate of approximately 62% of total
population. The sampling process involves two stages based on geographical stratification—each
one of the 31 cities is first divided into census radii, from which households are randomly selected.
The survey’s rotating scheme allows for the construction of short-term panels but we have not
explored that feature in this application.

Databases are released quarterly and we will use 2019q4 and 2020q4. Note that the surveys
correspond to one pre- and another post-COVID-19 pandemic. This choice stems from the fact
that social confinement measures were particularly strict in most Argentine cities and we intend
to check whether this may have influenced our results. Sample size is 19,662 for 2019 and 12,499
for 2020. We include all salaried or self-employed individuals aged 18 to 65.

We estimate a Mincer regression in order to illustrate the differences among conditional quan-
tile regression (CQR), unconditional quantile regression (UQR) and ordinary least squares (OLS).
In particular, we compute (i) the marginal effect of one year of age (continuous variable) on log
hourly wages, and (ii) the gender log hourly wage gap between men and women (dummy vari-
able). For the former, we calculate the marginal effect for an individual with average sample age
using the delta method to get the standard errors. Formally, the estimated equation is

lnwagei = β0 + β1agei + β2age2i + β3femalei + x′iγ + ui,

where x is a vector that includes other covariates—education, region, citizenship, economic sector,
seniority, firm size, hours and position.

Figure 4 shows the empirical results for the effect of age. OLS estimates are of course inde-
pendent of the quantile considered, so that one additional year of age always raises the mean
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(a) Age - 2019q4. (b) Age - 2020q4.

Figure 4. Marginal effects: OLS, CQR and UQR, Age.

individual’s wage in about 0.6%, no matter whether the individual has low or high (conditional
or unconditional) wage. The CQR and UQR are somewhat different until percentile 30, where
the distance between them becomes smaller. Both quantile effects are close to 1% for the highest
quantiles. However, OLS seems a reasonable approximation for the effect in essentially any point
of the distribution, whether conditional or unconditional.

Figure 5 shows that the gap between wages of females and males is about -14%. Here the
2019 curve shows an inverted U shape pattern that is not as clear in the 2020 curve. The gender
gap is particularly large in the left tail, where the CQR effect is below -20% and the UQR can
reach -50%. Both CQR and UQR are located somewhat above the OLS level (around -11%)
between percentiles 20 and 80, but behavior at the right tail differs between the yearly samples
and therefore is more difficult to interpret.

Let us illustrate the important differences between CQR and UQR by elaborating on the
latter finding. A linear model of the wage equation indicates that the gender wage gap is about
14%, but CQR shows that it can soar to 20% for the lowest conditional wages. This means that

(a) Gender - 2019q4. (b) Gender - 2020q4.

Figure 5. Marginal effects: OLS, CQR and UQR, Gender Gap.
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individuals who have unusually low wages given their observables show a larger gender gap than
those whose wages are closer to the mean. But it does not say anything about whether this is true
for individuals whose wage is low independently of their observables. UQR shows that, not only
this is also the case, but the gender gap for those individuals can be up to 50%. This determines
that gender differences are not only observed after controlling for human capital variables, but
the latter are also associated with gender differences in such a way that the unconditional effect
is much larger.

The fact that confidence intervals overlap sometimes implies that some of these differences
might not be statistically significant. This is partly a consequence of limited sample sizes. This
explains why confidence intervals are narrower in the 2019 sample (that contains almost 50%
more observations), thus making some differences more salient—notably, the left tail of the
distribution of the gender gap, where the intervals barely overlap.

We can observe how the results of the empirical application are in agreement with the theo-
retical explanations. Thus, the marginal effects of the age (continuous variable) of the uncondi-
tional regressions (UQPE) are contained within the marginal effect of the conditional regressions
(CQPE). However, it can be observed that for gender (discrete variable), particularly in the
lower quantiles of the distribution, the marginal effects of the UQR is not contained within the
conditional effect. This is because it is not possible to obtain a clear theoretical relationship
between UQPE and CQPE for discrete variables.

To gain some intuition on the previous empirical results, we introduce the following CQ-
UQ curve. For each value of individual i we calculate τ∗i = minτ {Yi ≤ QY (τ ∣xi)}, that is,
the corresponding conditional quantile τ that matches closely the individual’s wage. Then we
estimate for all η, τ(η) = Pr (Y ≤ QY (τ∗∣x)∣Y ≤ QY (η)). Then we consider the graph (η, τ(η))
that matches the unconditional quantiles η with the estimated conditional distribution in order
to study if there is any relationship between the two. Figure 6 shows the results. We find that
individuals with low values of τ are largely over-represented among those with low values of η,

Figure 6. CQ-UQ, Gender Gap.
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implying that the left tail of the income distribution consists mostly of individuals whose income
level is low conditional on their observable attributes.

Furthermore, the CQPE-UQPE curve for men lies above the one for women, therefore the
over-representation of low τ cases in the left tail of the unconditional distribution is higher for
men. This could help rationalize the fact that the gender gap is larger in the low unconditional
quantiles but not so much so in the low conditional quantiles.

6. Conclusion

This paper is motivated by the difficulty in understanding the use of two increasingly popular
methods to estimate distributional impacts, conditional and unconditional quantile regression.
We focus on their interpretation and establish the connection between both models from the
point of view of an applied practitioner.

We study the similarities and differences of these two. In particular, we show that for the
case of continuous covariates there is a clear link between these two, that is, one is a weighted
average of the other. For non-continuous or binary covariates we show that the previous result
does not apply, and we establish a new analytical relationship.

The present paper can be extended along several directions. First, the linear approximation
of the RIF model can be studied to establish when it works and when it does not. In this case,
exploring non-linear models for CQR and UQR may illustrates their potential pitfalls. Second,
the analytical connection between the two motivates new estimators where CQR is estimated
first, and then UQR is derived. This avoids using the RIF linear approximation. Finally, further
empirical statistics based on the comparison between both methods can be informative about
population characteristics.
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Appendix A - Proof of Proposition 1.

Consider a model that only has one dummy covariate D. Using the results above for this case
case the UQPE is:

UQPE(η) = E [RIF (Y ;QY (η), FY )∣D = 1] −E [RIF (Y ;QY (η), FY )∣D = 0] .

Namely,

UQPE(η) = −Pr[y ≤ QY (η)∣D = 1] − Pr[y ≤ QY (η)∣D = 0]
fY (QY (η)) . (19)

From the matching function definition it is easy to see that:

ξη(d) = Pr[Y ≤ QY (η)∣D = d] = FY ∣D=d[QY (η)], (20)

such that

QY (η) = QY ∣D=0[ξη(0)] = QY ∣D=1[ξη(1)].

Thus,

UQPE(η) = −ξη(1) − ξη(0)
fY (QY (η)) . (21)

In addition, also from the definition of matching function:

QY ∣D=1[ξη(1)] −QY ∣D=0[ξη(0)] = 0

QY ∣D=1[ξη(1)] −QY ∣D=0[ξη(0)] ±QY ∣D=d[ξη(1 − d)] = 0

QY ∣D=1[ξη(1)] −QY ∣D=d[ξη(1 − d)] +QY ∣D=d[ξη(1 − d)] −QY ∣D=0[ξη(0)] = 0

Note that there are two cases: (i) for d = 0

CQPE[ξη(1)] +QY ∣D=0[ξη(1)] −QY ∣D=0[ξη(0)] = 0, (22)

and (ii) for d = 1

QY ∣D=1[ξη(1)] −QY ∣D=1[ξη(0)] +CQPE[ξη(0)] = 0. (23)

Let us then consider the following expansion of QY ∣D=d[ξη(1 − d)] about ξη(d),

QY ∣D=d[ξη(1 − d)] = QY ∣D=d[ξη(d)] +
∂QY ∣D=d[ξη(d)]

∂τ
[ξη(1 − d) − ξη(d)] +R(ξ̃η, d),

with R(ξ̃η, d) = 1
2

∂2QY ∣D=d[ξ̃η]

∂τ2
[ξη(1 − d) − ξη(d)]2, where ξ̃η is some value between ξη(d) and

ξη(1 − d).
Also, we know that ∂QY ∣D(τ)/∂τ = 1/fY ∣D[QY ∣D(τ)] and note also that fY ∣D{QY ∣D=d[ξη(d)]} =

fY ∣D=d[QY (η)].
Substituting everything in (22) and (23) we can solve for two expressions for ξη(1) − ξη(0):

ξη(1) − ξη(0) = −fY ∣D=0[QY (η)]{CQPE[ξη(1)] −R(ξ̃η,0)}
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for the case d = 0 and

ξη(1) − ξη(0) = −fY ∣D=1[QY (η)]{CQPE[ξη(0)] +R(ξ̃η,1)}

when d = 1.
Averaging both cases (weighted by their probability), substituting it in (21) and rearranging

terms, we have

UQPE(η) =
fY ∣X=0[QY (η)]
fY (QY (η)) CQPE[ξη(1)]Pr(X = 0)

+
fY ∣X=1[QY (η)]
fY (QY (η)) CQPE[ξη(0)]Pr(D = 1) +R(ξ̃η),

where

R(ξ̃η) =
fY ∣D=0[QY (η)]
fY (QY (η)) R(ξ̃η,0)Pr(D = 0) +

fY ∣X=1[QY (η)]
fY (QY (η)) R(ξ̃η,1)Pr(D = 1).

Then,

UQPE(η) = E {
fY ∣D[QY (η)]
fY (QY (η)) CQPE[ξη(1 −D)]} +R(ξ̃η),

where R(ξ̃η) = E {fY ∣D[QY (η)]

fY (QY (η)) R(ξ̃η,D)}.

Appendix B - Guide for Implementation in STATA and R

To apply conditional quantile regressions in STATA, use the qreg command. Standard syntax
is qreg depvar indepvars, q(τ). See https://www.stata.com/manuals/rqreg.pdf.

Similarly, the rq command, from the R quantreg library, can be used. Standard syntax
for this function is rq(depvar ∼ indepvars, tau = τ). See https://cran.r-project.org/web/
packages/quantreg/vignettes/rq.pdf.

To apply unconditional quantile regressions in STATA, you must use the rifhdreg command.
The syntax is rifhdreg depvar [indepvars], rif(q(τ)). You will have to install the com-
mand through the following syntax: ssc install rifhdreg and then obtain the manual by help

rifhdreg (Rios-Avila, 2020).
Likewise, to apply unconditional quantile regression in R, install the library "uqr". The

standard syntax is urq(depvar ∼ indepvars, tau = τ). UQR code is available at http://
cran.nexr.com/web/packages/uqr/index.html.

https://www.stata.com/manuals/rqreg.pdf
https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf
https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf
http://cran.nexr.com/web/packages/uqr/index.html
http://cran.nexr.com/web/packages/uqr/index.html
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