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Abstract Functional pollen is needed to successfully com-
plete fertilization. Pollen is formed inside the anthers follow-
ing a specific sequence of developmental stages, from micro-
sporocyte meiosis to pollen release, that concerns
microsporocytes/microspores and anther wall tissues. The
processes involved may not be synchronous within a flower,
an anther, and even a microsporangium. Asynchrony has been
barely analyzed, and its biological consequences have not
been yet assessed. In this review, different processes of pollen
development and lifetime, stressing on the possible conse-
quences of their differential timing on pollen performance,
are summarized. Development is usually synchronized until
microsporocyte meiosis I (occasionally until meiosis II).
Afterwards, a period of mostly asynchronous events extends
up to anther opening as regards: (1) meiosis II (sometimes);
(2) microspore vacuolization and later reduction of vacuoles;
(3) amylogenesis, amylolysis, and carbohydrate inter-
conversion; (4) the first haploid mitosis; and (5) intine forma-
tion. Asynchrony would promote metabolic differences
among developing microspores and therefore physiologically
heterogeneous pollen grains within a single microsporangium.
Asynchrony would increase the effect of competition for re-
sources during development and pollen tube growth and also
for water during (re)hydration on the stigma. The differences

generated by developmental asynchronies may have an adap-
tive role since more efficient pollen grains would be selected
with regard to homeostasis, desiccation tolerance, resilience,
speed of (re)hydration, and germination. The performance of
each pollen grain which landed onto the stigma will be the
result of a series of selective steps determined by its develop-
ment, physiological state at maturity, and successive environ-
mental constrains.

Keywords Asynchrony . Competition . Development .

Homeostasis .Microspores . Pollen

Introduction

Angiosperm pollen is the male gametophyte responsible to
carry the male sperm cells to the female counterpart, the pistil,
to achieve fertilization. Functional pollen is needed to success-
fully complete fertilization. Pollen grains may look like simple
structures, but each pollen grain is an independent unit that
underwent a precise developmental program and it is involved
in a delicate relationship with the sporophytic and the external
environments, both during development and presentation/
dispersal (Fig. 1). In fact, developmental failure and/or envi-
ronmental stresses may cause male sterility (Fig. 1).

In angiosperms, pollen grains develop inside the anthers of
stamens, in closed cavities called microsporangia, which are
delimited by the anther walls (Fig. 2). Anthers are supported
by a filament, usually a slender structure of parenchymatic
nature that transports water and nutrients to the anther via a
vascular bundle connected to the flower and the sporophytic
vascular system. The microsporangia are kept together by the
connective tissue, where the vascular bundle arriving from the
filament ends (Fig. 2). Pollen development follows a specific
sequence, which involves both the anther wall tissues and the
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microsporocytes/microspores (Sanders et al. 1999; Scott et al.
2004; Fig. 2), and therefore, several developmental stages can
be clearly distinguished (e.g., Borg and Twell 2011; Zhang
and Yang 2014). Microsporocytes differentiate in the center
of the microsporangia; microsporocytes are diploid cells that
undergo meiosis to form a tetrad of unicellular haploid micro-
spores enclosed by a callose wall (Fig. 2(a, b)). Single micro-
spores are separated from the tetrads after callose digestion
and differentiate as pollen grains following several definite
changes in the cytoplasm, the cell wall, and one or two haploid
mitotic divisions (Fig. 2(b)). The final maturation of micro-
spores involves different degrees of cytoplasm dehydration,
before and/or after anther opening (Fig. 2(b, c)). Therefore,
mature pollen can be released/dispersed with different water
content (Fig. 2(c)), in a dormant or in a more or less active

state, depending on the species (Franchi et al. 2011). After
arrival on the stigma, pollen grains establish a close relation-
ship with the pistilar tissues in order to (re)hydrate, germinate,
and form the pollen tubes, and their metabolism is reactivated
if dormant (Heslop-Harrison 1987; Van Aelst et al. 1993).

All the processes from microsporocyte meiosis to pollen
release may not be synchronous within a flower, an anther,
and even a microsporangium (e.g., González et al. 2001;
Jacobs and Lersten 1994; Liu et al. 2007; Sunderland and
Huang 1987; Taylor et al. 2013; Teng et al. 2005). Likewise,
the timing of the events that follow pollen arrival to the stigma
is not uniform and depends on the responsiveness of single
pollen grains. The occurrence of asynchrony at different
stages has been registered in many cases, but it has been in-
frequently quantified and/or pondered (e.g., Sunderland and

Fig. 1 Scheme summarizing the environmental contexts where
microspores/pollen can be found and the final outcome according to
different conditions faced. Full lines represent the course of normal

development; dashed lines indicate the impact of environmental
stresses, which can be of different types and intensities

Fig. 2 Schematic anther structure and pollen development (from
microsporocyte, clockwise direction). A cross section of a
tetrasporangiate anther is represented in the center. a Initial synchronous
processes until meiosis I. b Succession of mainly asynchronous processes
until pollen final maturation and anther opening. cAnther opening, pollen
dehydration (different degrees according to the species), and pollen
release (two-celled pollen is represented); pollen dehydration is largely

synchronous, but mature pollen can be found in slightly different states of
maturation as a consequence of the asynchrony registered along b.
Processes are referred in italics; dashed horizontal lines separate
periods with differences in the synchrony of the processes. degree
symbol variable among species; asterisk the event depends on the
tapetum development and therefore is a synchronous event
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Huang 1987) and its biological consequences have not been
yet assessed. In this review, we will try to summarize different
processes during pollen development and lifetime (until ger-
mination), according to the environmental contexts where pol-
len grains can be found (Fig. 1), stressing on the possible
consequences of their differential timing on pollen
performance.

Pollen in the sporophytic environment

Timing of events during pollen development

The series of processes from the stage of microsporocyte to
that of mature pollen may be synchronous or asynchronous
among all the microsporocytes or microspores within a micro-
sporangium. In general, the development is synchronized until
microsporocyte meiosis I and sometimes until meiosis II, par-
ticularly when meiosis is of simultaneous type (e.g.,
Cymbopetalum bailloni R.E.Fr. (Tsou and Fu 2007)).
Synchronous cell divisions would be under genetic control
(Magnard et al. 2001; Wang et al. 2004; Li et al. 2015), and
it has been suggested that the presence of cytoplasmic con-
nections between microsporocytes would facilitate synchrony
of meiotic events within a microsporangium (Heslop-Harrison
1966; Mamun et al. 2005b;Whelan et al. 1974). Nevertheless,
meiosis II can be asynchronous, when meiosis is either of
successive type (e.g., Ekici 2014; Teng et al. 2005) or of si-
multaneous type (e.g., González et al. 2001; Liu et al. 2007;
Pacini and Juniper 1984; Vesselina and Mateu-Andrés 2010).
In some cases, asynchrony has been considered a meiotic
instability related to the formation of sterile pollen (e.g.,
Vicia rigidula Royle (Kaur and Singhal 2010)) or diploid
gametes (Bieling et al. 2003; Ghorbani et al. 2015). Besides,
asynchrony is common in intraspecific hybrids and related to
meiotic anomalies (e.g., Eucalyptus spp. (Yang and Kang
2015)). After the meiotic division of microsporocytes, there
is a period of mostly asynchronous events that extends up to
anther opening (Fig. 2(b)), although there are exceptions
(e.g., some Orchidaceae spp., due to the persistence of
cytomictic channels (Pacini 2009a), or some Winteraceae
and Monimiaceae spp. having tetrads as pollen dispersal units
(Sampson 1977, 1981)). The asynchronous events involve,
apart from meiosis II (Fig. 2(b)), the following: (1) micro-
spore vacuolization (e.g., Hordeum vulgare L. (Shim et al.
2009)), followed by new cytoplasm formation and later reduc-
tion of vacuoles (Fig. 3a; although it may also be very syn-
chronous, as in Arabidopsis thaliana (L.) Heynh. (Zhang et al.
2002)); (2) amylogenesis (Clément and Pacini 2001; Fig. 3b),
eventually amylolysis (e.g., “more or less synchronous” in
Tradescantia paludosa E.S. Anderson & Woodson
(Maruyama 1968); Fig. 3c, e), carbohydrate inter-conversion,
and storage; (3) the first haploid mitosis to form the generative

cell that remains enclosed by the vegetative cell (Fig. 3d) and
the change of shape and migration of the generative cell
(Fig. 3e; e.g., Kant et al. 2013; Sampson 1981); and (4) intine
formation, which is under microspore control (Borg and Twell
2011) and depends on microspore development because it
may be synthesized before (e.g., Jung et al. 2006; Owen and
Makaroff 1995; Regan and Moffatt 1990) or after the first
haploid mitosis (e.g., Mirgorodskaya et al. 2015; Sharma
et al. 2015; Ubera Jiménez et al. 2006; Vinckier et al. 2012).
By contrast, during the same period, digestion of the callose
wall that encloses the tetrad of microspores and exine and
pollen coat deposition are synchronous processes among all
microspores (Fig. 2(b)). This is because callase, which digests
the callose walls (Scott et al. 2004, and references therein),
and (part of the) materials for exine and pollen coat are pro-
vided by tapetal cells (Blackmore et al. 2007; Goldberg et al.
1993), whose development and degeneration are synchronous
across a microsporangium.

The male gametes will be formed after a mitotic division of
the generative cell, but the timing of this division is species
specific, so pollen grains can be dispersed as two celled (veg-
etative cell enclosing the generative cell, with mitosis occur-
ring after pollination inside the pollen tube) or three celled
(vegetative cell enclosing the two gametes, formed by dispers-
al). A very particular case of asynchronous development has
been registered in Annona cherimola Mill., which has
bicellular and tricellular pollen at the time of anther opening.
Thus, even the second haploid mitotic division is asynchro-
nous in this species, if that division occurs before pollen dis-
persal (Lora et al. 2009).

Altogether, there may be some differences in the metabolic
state of single pollen grains by the time of anther opening as a
consequence of the eventual asynchronies during their devel-
opment. Actually, particular cases of pollen dimorphism have
been registered as the outcome of drastic desynchronization at
different stages of microspore development (e.g., Sunderland
and Huang 1987). On this regard, it has been reported time
after time that environmental stress (such as extreme temper-
atures or drought) may cause developmental failures and par-
tial or total pollen impairment (Fig. 1; e.g., Koonjul et al.
2005; Parish et al. 2012; Saini 1997; Song et al. 2015).
Asynchronies may be favored during development under en-
vironmental stress (e.g., meiotic abnormalities in Ulex spp.
(Misset 1992) or delayed amylogenesis in rice (Han et al.
2006)), which may result in the formation of variable percent-
ages of fertile and sterile pollen grains, as an extreme case of
differences among mature pollen grains.

Flow of fluids and nutrients during pollen development

Pollen behaves as a sink during its development in the anther
and depends on an external supply of nutrients (Schwacke
et al. 1999) that is under control of the tapetum, a special
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antheral tissue (Fig. 2). Pollen nutrition during development is
supported by the saps that arrive to the anther provided by the
sporophyte through the vascular bundle (Fig. 4). The xylem
sap moves towards the anther and its microsporangia follow-
ing the symplast and apoplast through the connective tissue
and the anther walls (Fig. 4). The phloem unloading pathway
is also active, in which nutrients move from phloem cells to
sink cells via plasmodesmata (Imlau et al. 1999; Zhang et al.

2010) or through specific symporters (Stadler and Sauer
1996). Nutritive substances derived from the photosynthetic
activity of the anther wall cells, if they contain chloroplasts,
may also be provided to the developing microspores (Clément
and Pacini 2001). The presence of plasmodesmata facilitates
the movement of substances and organelles between cells
(e.g., Wang et al. 2002), promoting the coordinated function-
ing of the tissues, which is particularly observed in the

Fig. 3 Asynchronies during pollen development. a Reduction of
vacuoles; observe a few microspores still containing vacuoles (arrows)
while amylogenesis has occurred (starch not colored). b Amylogenesis;
note the different contents of amyloplasts (strongly colored) among
microspores. c Amylolysis; observe the different numbers of
amyloplasts among microspores, already absent in some of them (starch
not colored). d First haploid mitosis; observe some microspores at the
unicellular stage (asterisks) and others at the bicellular stage (arrows). e
Differentiation of the generative cell and differential amylolysis; note the

asynchronic migration and change to fusiform shape of the generative cell
(arrows), still rounded in some microspores (asterisks), and the different
amyloplast (strongly colored) contents among microspores. f Different
starch (strongly colored) contents among mature pollen grains. a, c, f
Solanum lycopersicum L.; b Parietaria judaica; d Solanum neorickii
D.M. Spooner, G.J. Anderson & R.K. Jansen; e Olea europaea L. a, c
Toluidine blue staining; b, e Periodic acid-Schiff reaction; d Fast green
and hematoxylin staining; f Lugol’s iodine reaction. Scale bars= 25 μm
(a–c, e, f) and 10 μm (d)
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tapetum (Rowley 1993). However, plasmodesmata are absent
between microspores and tapetum (e.g., rice (Mamun et al.
2005a), tomato (Schwacke et al. 1999)), although they may
be present before meiosis (e.g., Capsicum annuum L. (Horner
and Rogers 1974)).

The tapetum is a transitory, apoptotic tissue of secretory
nature. At least two types of tapeta are recognized according
to the cellular structure and the relative relationship with mi-
crospores, namely secretory and amoeboid, but their functions
are essentially the same (Pacini 1997). There is a third type of
tapetum sometimes recognized, called invasive nonsyncytial
(Tiwari and Gunning 1986), which may be intermediate be-
tween the other two types (Furness 2008). The better known
and most common is the secretory tapetum, which encircles
the locule, the space formed in the center of the microsporan-
gium and filled with a locular fluid secreted by the tapetum
itself (Furness 2008; Pacini 2009b). The microspores are im-
mersed in the locular fluid (Fig. 2) that would work as the
connectingmedium between the tapetum and the microspores.
A functional tapetum is critical for microspores’ development;
tapetum ablation results in male sterility (Goldberg et al. 1993;
Mariani et al. 1990), while a number of male sterile mutants
have defects in the tapetum (e.g., Kawanabe et al. 2006; Parish
and Li 2010; Sanders et al. 1999).

The locular fluid is released by the tapetal cells via plasma
membrane or by vesicles (Clément et al. 1998, and references
therein; Owen and Makaroff 1995). The locular fluid may be
already detected at the microsporocyte stage (Clément et al.
1998), and it is present at least until the early bicellular

microspore stage (Quilichini et al. 2014), i.e., the onset of
anther and pollen dehydration in many species. Substances
of different natures are secreted by the tapetum into the locule
(e.g., pectin (Aouali et al. 2001; Clément et al. 1998), proteins
(Huang et al. 2013; Papini et al. 1999), lipidic bodies
(Dickinson and Lewis 1973; Hsieh and Huang 2007; Parish
and Li 2010; Owen and Makaroff 1995; Paul et al. 1992;
Staiger et al. 1994; Wang et al. 2003; Wu et al. 1997)).
Soluble carbohydrates are the main substances supplied by
the sporophyte through the tapetum to nourish developing
microspores (Engelke et al. 2010), which can be detected in
the locular fluid even at late stages (Carrizo García et al.
2015). Owing to the demand of different types of substances
during microspore development, the composition of the locu-
lar fluid varies according to the developmental stage of the
microspores (e.g., Castro and Clément 2007; Clément et al.
1998, and references therein; Dunwell and Thurling 1985;
Pressman et al. 2012; Quilichini et al. 2014). The tapetum, at
least of the secretory type, degenerates by programmed cell
death (PCD), beginning by the time when microspores be-
come vacuolated; the process is generally completed around
the first microspore haploid mitosis (Sanders et al. 1999).
PCD can also involve other anther tissues, such as part of
the anther wall and the connective tissue near the locules,
whose digested contents would provide additional materials
to be used by the microspores (Varnier et al. 2005; Wetzel and
Jensen 1992).

Microspores would gradually uptake the substances pro-
vided by the tapetum, according to their needs (e.g., soluble
carbohydrates to store starch, sporopollenin precursors when
exine is formed). Therefore, microspores would compete for
the resources within a microsporangium. The eventual meta-
bolic differences created among microspores as a conse-
quence of developmental asynchronies may influence their
competitiveness, i.e., some microspores would be at a more
advanced stage than others, possibly taking the resources first.
As a result, asynchrony of physiological states may be ulti-
mately emphasized. The extent of competition for nutrients
during microspore development would also depend on other
variables, such as the position of microspores in relation to the
tapetal cells, the type of pollen dispersal unit, and the abun-
dance of the locular fluid (Pacini 2010). Indeed, there can be
different strategies to reduce competition, which in turn re-
duce or prevent asynchrony. For instance, the competition
for nutrients would be low in the case of Poaceae and allied
monocot species where, in a cross section of the anther, mi-
crospores are arranged in a single row around the locule, usu-
ally with the single pore of each one facing the tapetum (e.g.,
H. vulgare (Charzyńska and Lenart 1989), Sorghum bicolor
(L.)Moench (Christensen and Horner 1974), and several other
species (Kirpes et al. 1996)). By contrast, competition would
be higher when the locule contains many dispersed micro-
spores immersed in an abundant locular fluid, although they

Fig. 4 Schematic pathway followed by fluids and nutrients from the
sporophyte towards developing pollen grains
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can move because of the temporary pulsation of tapetal cells.
Pollen movements, in order to facilitate uniform nutrition, are
probably faster during early microspore stage and decrease
with tapetum degeneration (Pacini 1990). Microspore compe-
tition for nutrients may also be low in some cases of com-
pound pollen because of anatomical reasons. For example,
in Acacia species, each microspore is in contact with the ta-
petum during development and the locular space is absent
(e.g., Kenrick and Knox 1979; Pacini 2010), or some
Orchidaceae species in which cytomictic channels may persist
until the late microspore stage and then even the first haploid
mitosis may be synchronous throughout a microsporangium
(Pacini 2009a, Figs. 5–11). However, in massulate species,
microspore development may be synchronized within a
massula but not necessarily between the massulae formed
within each microsporangium (e.g., Peristylus spiranthes
(Schauer) S.Y. Hu (Zee and Siu 1990)), and therefore, com-
petitionmay be established between them. Competition would
be also low in species with periplasmodial and invasive tapeta,
because the tapetal cells occupy the spaces between micro-
spores (Furness 2008; Pacini and Keijzer 1989; Tsou and Fu
2007), ensuring a tight relationship with each one.

The degeneration of the tapetum, independent of the type,
marks the starting of the maturation phase of pollen grains.
When pollen is mature, there is a general decrease of the water
content in different parts of the anther (Nelson et al. 2012). In
order to allow the presentation and dispersal of pollen grains,
the locular fluid disappears by evaporation through the anther
epidermis and/or by resorption towards the stamen filament or
other floral parts (Ge et al. 2001; Keijzer 1987; Pacini and
Hesse 2004; see below). The subject has been scarcely ana-
lyzed, but recently, it has been shown in two Poaceae species
(maize and long stamen rice) that the locule dehydrates at an
early stage (Tsou et al. 2015), earlier than usually suggested.
By then, vacuolization in the microspores is approaching its
maximum, and therefore, the authors proposed that the free
fluid could be taken up by the microspores themselves (Tsou
et al. 2015). On this regard, rapid swelling of pollen grains
right before anther opening was registered in rice and barley
(Matsui et al. 1999, 2000), which may be in line with the
phenomenon suggested by Tsou et al. (2015), although it is
a later stage. In the case of Poaceae species, pollen grains are
dispersed with high water content (e.g., maize (Kerhoas et al.
1987), rice (Das et al. 2014), and others (Franchi et al. 2011));
thus, the way of water relocation may be different for species
with pollen grains dispersed with low water content.

The advanced processes regulated by sporophytic tissues,
i.e., tapetum PCD and changes of water content in the anther,
are homogeneous across a microsporangium, whereas the mi-
crospores may be at different physiological states by then
(some more advanced than others). As a result, physiological
differences between microspores may be reinforced under the
influence of sporophytic events during the final steps of

maturation. This is because each microspore would react in
a different way according to its particular physiological state
(e.g., degree or speed of dehydration depending on the con-
centration of cytoplasmic osmoregulatory molecules).

Carbohydrate metabolism during microsporogenesis

Among the main features of microspore development are the
gradual processes of amylogenesis and amylolysis, which are
asynchronous within a microsporangium (Figs. 2(b) and 3b,
c, e, f). The most common trend is a single event of
amylogenesis, although one (e.g., Carrizo García 2007;
Clément et al. 1994; Pacini et al. 1992; Polowick and
Sawhney 1993; Yeung et al. 2011) or two (e.g., Maruyama
1968; Pacini and Franchi 1988; Pacini and Viegi 1995; Santos
de Oliveira et al. 2015) cycles of amylogenesis and amylolysis
may occur, according to the species. When two cycles of
amylogenesis occur, the first one usually takes place in an
early microspore stage, before intine formation, and the sec-
ond one after the first haploid mitosis, being both asynchro-
nous processes (Pacini and Franchi 1988; Pacini and Viegi
1995). It is worth mentioning that there may be another cycle
of amylogenesis/amylolysis before microspore formation, ei-
ther in the pollen mother cells (Lora et al. 2009) or in the
microsporocytes during meiosis (Maruyama 1968). The
asynchronic nature of these processes could be related to the
metabolic differences observed among microspores after mei-
osis and, as regards amylogenesis, probably to their different
capacities to compete for the nutrients provided by the tape-
tum. The synthesis of starch would depend on the availability
of cytoplasmic sucrose and hexoses that relies on the ability of
eachmicrospore to uptake and/ormetabolize these substances.
These processes are under genetic control, involving the ex-
pression of specific genes (e.g., AtSTP6 monosaccharide
symporters (Scholz-Starke et al. 2003) and PmSUC1 sucrose
transporter (Lauterbach et al. 2007)).

As regards amylolysis, it may be total or partial towards
maturity, which determines the pollen final starch content.
Therefore, mature pollen may be starchy or starchless (Baker
and Baker 1979). For instance, in several tomato varieties, it
has been recorded that the starch stored during pollen devel-
opment is almost completely hydrolyzed before anthesis; thus,
mature pollen has a negligible amount (Fig. 3f; Carrizo García
et al. 2010; Polowick and Sawhney 1993; Pressman et al.
2002). By contrast, mature pollen grains of rice, sorghum,
and maize are filled with starch, while the failure of starch
biosynthesis has been observed in male sterile lines of these
species (e.g., Datta et al. 2001, 2002; Jain et al. 2007; Kong
et al. 2007). Starch presence was first related to the pollination
mechanism (Baker and Baker 1979), but it was suggested later
that the variation in starch content could be better explained by
the relation between sugars and desiccation and other func-
tional features (Franchi et al. 1996; Roulston and Buchmann
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2000). In general, pollen starch content was usually consid-
ered uniform within a species, but variations in this trait have
also been recorded in fertile plants (e.g., Capsicum pubescens
Ruiz & Pav. (Bo and Carrizo García 2015), Parietaria judaica
L. (Franchi et al. 1984), and several Commelinoid monocots
(Zona 2001)). Since amylogenesis and amylolysis are not
strictly synchronized among microspores within a microspo-
rangium, there may be some differences in the starch and
oligosaccharide content of each one at maturity (Fig. 3f; e.g.,
Bo and Carrizo García 2015; Franchi et al. 1984). Indeed, the
presence of starchy and starchless grains in the same anther
was observed in 76 out of 901 species studied (Franchi et al.
1996). Because of the eventual differences in the content of
carbohydrate of mature pollen, dissimilar physiological reac-
tions of single pollen grains may be presumed with reference
to their ability to control desiccation in the atmosphere, to
(re)hydrate and to germinate (see below), processes in which
carbohydrates are involved. Indeed, the storage of sucrose
during the final stage of pollen maturation is important be-
cause pollen becomes desiccation tolerant, probably due to
the formation of a glassy state, with the stabilizing participa-
tion of sucrose (Firon et al. 2012; Hoekstra et al. 2001).

The progress of amylogenesis/amylolysis and their timing
also affects other processes not related to the natural life of
microspores or pollen such as induced androgenesis. The pres-
ence or absence of amyloplasts during specific microspore
stages would indicate if a species is androgenetic or not as
well as the favorable period to induce androgenesis
(Sangwan and Sangwan-Norreel 1987). For instance, in
Nicotiana, as soon as starch accumulated in the microspores,
in vitro androgenesis was not followed (Nitsch and Nitsch
1970). Different embryogenic capacities as well as different
sporophytic pathways among microspores could be expected
due to the asynchronous microspore development (Croser
et al. 2011; Hu and Kasha 1999; Liu et al. 2002). Indeed,
different pre-treatments have been applied to favor synchroni-
zation of microspore embryogenesis in order to have a higher
yield of haploid embryos (e.g., Hu and Kasha 1999; Pechan
et al. 1991).

Pollen in the external environment
(presentation/dispersal)

Anther opening and pollen release

Anther opening, the process of anther wall rupture at
the stomium to allow pollen release (Sanders et al.
1999) is the result of several steps (septum rupture
and shrinkage, stomium breakage, stomium opening,
and separation and outward bending of anther walls)
that involve a precise combination of cell lysis process-
es and mechanical pressure (Carrizo García et al. 2006;

Wilson et al. 2011). A key structure for anther opening
and wall outward bending is the endothecium of the
anther wall, which is formed by one or more layers of
apoptotic cells having lignified wall thickening of dif-
ferent shapes (Manning 1996). A biomechanical model
for anther opening has been recently proposed, in which
the anther wall dehydration is pointed out as the driving
force while the endothecium has a key role in the pro-
cess (Nelson et al. 2012), as previously suggested
(Wilson et al. 2011). On that regard, endothecium im-
pairment can result in failure of anther opening, even
though the stomium can open normally (Dawson et al.
1999; Mitsuda et al. 2005; Thangasamy et al. 2011;
Yang et al. 2007). Anther opening has always been
considered a process that involves tissue desiccation (ei-
ther resorption or evaporation (Bonner and Dickinson
1989; Keijzer 1987)), although water internal regulation
has been poorly studied (but see Bots et al. (2005) and
Stadler et al. (1999)). As a general rule, it is agreed that
high relative humidity (RH) delays or inhibits anther
opening while low RH accelerates the process
(Bianchini and Pacini 1996; Carrizo García et al.
2006; Franchi et al. 2007; Keijzer 1987; Linskens and
Cresti 1988; Lisci et al. 1994; Yates and Sparks 1993).
However, in Allium triquetrum L., the anthers would not
open until a particular stage is reached despite the en-
vironmental conditions (Carrizo García et al. 2006).
Actually, signaling of different hormones would be im-
portant to regulate the timing of anther opening and
pollen final maturation (Cecchetti et al. 2004; Peng
et al. 2013; Rieu et al. 2003; Sanders et al. 2000;
Scott et al. 2004; Shih et al. 2014). Anther opening is
under sporophytic control, and therefore, it is closely
timed.

Desiccation is uniform in an anther, and therefore, all the
pollen grains developed within each microsporangium will
undergo the final dehydration at the same time, even though
they could be at different developmental stages. While the
anther opens, pollen grains get in contact with the external
environment (which is very different from the environment
where they have developed) and they are eventually released
to achieve pollination. Pollen is particularly vulnerable at this
stage, and its relationship with the environment is critical.
Pollen is usually dispersed in a dormant state (Footitt and
Cohn 2001; Nelson et al. 2012), that is with low water content
and reduced metabolic activity. The water content of non-
reproductive cells with an active metabolism is generally
higher than 50 %, while that of mature pollen grains at pre-
sentation is generally lower than 30 % (e.g., C. annuum
(Carrizo García et al. 2013) and Juglans spp. (Luza and
Polito 1987)), with well-defined exceptions with higher water
content (e.g., several Poaceae and Cucurbitaceae species
(Carrizo García et al. 2015; Das et al. 2014; Franchi et al.
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2011; Kerhoas et al. 1987)). Although the final maturation of
pollen involves different degrees of cytoplasm dehydration,
before and/or during presentation after anther opening
(Fig. 2; Lisci et al. 1994), at that specific moment, there is
usually a hydric shock on pollen. That hydric shock triggers
water content fluctuations as well as metabolic reactions to
protect pollen grains from sudden changes of water content
that generally continue during pollen presentation/dispersal.
Pollen must be programmed to mitigate against the more dan-
gerous effects occurring during presentation and dispersal,
i.e., it needs a sort of homeostatic ability to maintain viability
notwithstanding the physical variations of the environment
(Fig. 1; Firon et al. 2012). Several molecules can help to
protect cellular integrity during the changes of water content
experienced by pollen grains (e.g., sucrose (Hoekstra et al.
2001), proline, and LEA proteins (Firon et al. 2012), and
references therein). The inter-conversion of carbohydrates in
the last moments of pollen maturation (i.e., starch and/or su-
crose storage) may be critical for pollen survival in the envi-
ronment until pollination is completed. Because single mature
pollen grains can show differences in their carbohydrate con-
tent and metabolic state by anther opening, as mentioned be-
fore, the environmental conditions faced when they are re-
leased and eventually dispersed may increase the biological
diversity of the pollen population shed by a flower. The fea-
tures that may be affected are viability-longevity, vigor, and
water content that, in the end, may influence pollen germina-
tion on the stigma. For instance, pollen viability is gradually
reduced over time (e.g., C. pubescens (Bo and Carrizo García
2015), Helleborus spp. (Vesprini and Pacini 2005), and
Papaver spp. (Azimi-Motem et al. 2008)) which means that
some pollen grains die faster than others. Likewise, when
pollen is subjected to an environmental stress (e.g., low rela-
tive humidity or high temperature), including controlled stor-
age conditions, pollen viability, and/or germinability may be
lost faster but still gradual, meaning that not all pollen grains
die at once because some of them would be more resistant
(e.g., Lagerstroemia spp. (Masum Akond et al. 2012),
Panicum virgatum L. (Ge et al. 2011), Trachycarpus fortunei
(Hook.) H. Wendl. (Guarnieri et al. 2006), Typha latifolia L.
(Hong et al. 1999), and several other species (Bassani et al.
1994; Nepi et al. 2010)).

Mature pollen during presentation/dispersal

Pollen becomes available for pollination after anther
opening, but there is a variable period, as regards its
length and conditions, until pollination is fulfilled.
Pollen is usually presented to dispersing agents (either
biotic or abiotic), although presentation is sometimes
omitted in some groups of plants (e.g., pollen launched
by different mechanisms (Franchi et al. 2007) or in
cleistogamous flowers (Márquez-Guzmán et al. 1993)).

In general, the longer the period pollen grains are ex-
posed to the environment, the greater the chances it will
be damaged by its negative effects (e.g., Hong et al.
1999). Indeed, the environmental conditions during dis-
persal are a major constraint for pollen survival since
pollen is not longer protected by the anther tissues.
Therefore, pollen survival and performance largely de-
pend on its homeostatic ability to buffer the environ-
mental effects on the cellular functioning (Fig. 1),
which is closely related to the physiological state of
mature pollen grains. However, pollen can be protected
by the floral structure in some cases, at least for some
time. For instance, although pollen presentation is usu-
ally continuous, in a few cases, it can be interrupted
temporarily by anther closure determined by hostile en-
vironmental conditions, such as rain or high RH (e.g.,
Laurus nobilis L. (Pacini et al. 2014) and Lilium
philadelphicum L. (Edwards and Jordan 1992)).
Besides, it was registered that even though pollen lon-
gevity was greatly reduced by rain wetting, pollen re-
sponse to rainy conditions was related to the existence
of protective floral structures (Mao and Huang 2009),
while the corolla closure or the flower position can pro-
tect pollen from rainwash, solar radiation, and/or chang-
ing temperatures (e.g., He et al. 2006; Huang et al.
2002; Wang et al. 2010; Franchi et al. 2014 and refer-
ences therein). The methods of pollen dispersal are var-
iable among species and may influence the performance
of the pollen grains that land on the stigmatic surface
(see Appendix 1 for further details).

If there is a period of presentation and dispersal, it can be
different according to the plant life form (i.e., herbaceous [pe-
rennials or annuals] or woody) and the spatial arrangement
(e.g., high or low density, distance among individuals).
Therefore, it may be hypothesized that pollen grains will have
different features as regards survival/homeostatic abilities,
such as desiccation tolerance and rehydration capacity, related
to (1) the plant life form, (2) the spatial arrangement of plants,
(3) the pollination syndrome, (4) the sexual expression and
mating system, and (5) the environmental conditions in which
the plants bloom. Because pollen needs to survive in the at-
mosphere for a variable period of time until it reaches the
pistilar tissues, another critical feature is pollen tolerance to
desiccation through time, after the initial distress occurred at
anther opening. Pollen longevity, as the maintenance of via-
bility through time, has been related to the contents of water
and carbohydrates. For instance, low water content and high
levels of sucrose and total insoluble cytoplasmic polysaccha-
rides would preserve pollen viability in T. fortunei (Guarnieri
et al. 2006). On this regard, at least two types of pollen grains
can be recognized according to their mean lifespan and desic-
cation tolerance, namely orthodox/desiccation tolerant and
recalcitrant/desiccation sensitive, in analogy with seeds
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(Franchi et al. 2011). Orthodox/desiccationtolerant pollen
grains are found more frequently. Orthodox pollen grains usu-
ally equilibrate with the environment at presentation and dur-
ing dispersal owing to the low water content and the predom-
inance of soluble carbohydrates over starch. By contrast, re-
calcitrant pollen grains have high water content and low quan-
tities of soluble carbohydrates. Recalcitrant pollen grains lose
water passively and quickly until they die when water content
is reduced to a certain threshold (Carrizo García et al. 2015;
Nepi et al. 2010). Species with recalcitrant pollen (i.e., sensi-
tive to desiccation) would need fast pollination to avoid the
quick loss of pollen viability and/or germination capacity,
while pollination may take longer in species with orthodox
pollen (Nepi et al. 2010). In fact, some herbaceous plants
living close one to the other have recalcitrant pollen grains.
The flight of pollen between flowers or individuals is short
and safe (e.g., P. judaica, Spinacia oleracea L., Poaceae spe-
cies (Franchi et al. 2011)) and then pollen would survive until
pollination is completed despite being short living and desic-
cation sensitive. Because of the relevant role of some carbo-
hydrates and water content in relation to pollen survival in the
atmosphere, the developmental asynchronies brought to light
acquire another dimension as regards pollen viability-longev-
ity, by promoting possible differential resistance. An interest-
ing ecological concept that may be considered and explored
for pollen grains is resilience, as the capacity to absorb distur-
bance and reorganize while undergoing change so as to still
retain essentially the same function and structure (afterWalker
et al. 2004). The homeostatic ability of pollen grains may be
closely related to its possible resilience, considering that pol-
len has to survive in the environment until pollination is com-
pleted. Resilience and homeostatic ability would be particu-
larly important as regards pollination in extreme environmen-
tal conditions (e.g., Steinacher and Wagner 2013), for pollen
storage, and in front of environmental disturbances such as
habitat fragmentation and climatic change (e.g., Coast et al.
2016).

Pollen on the pistilar tissues

Pollen (re)hydration and germination

Under natural circumstances, pollen grains land on the
stigmatic surface of the pistil after they have survived
exposed to the external environment and then they have
to be able to (re)hydrate and germinate. Pollen
(re)hydration on the stigma seems to be a regulated
process of several steps (Hiroi et al. 2013). It is worth
mentioning that germination may be prevented in some
cases of incompatibility between the pollen and the fe-
male tissues, even though pollen hydration may have

occurred (e.g., Brassica spp. (Elleman and Dickinson
1990; Hiroi et al. 2013; Zuberi and Dickinson 1985)).

The degree of pollen hydration upon landing on the stigma
depends on pollen water content. At least at first, water uptake
is mainly a passive process, thus ion fluxes would be involved
in water entrance to the pollen cytoplasm (Hepler et al. 2006;
Pertl et al. 2010). In addition, the concentration of osmoticant
molecules inside the pollen, such as sucrose and single hex-
oses, is also important. Recent studies have shown that the
water-absorbing capacity of pollenkitt may be involved in
pollen adhesion to the stigma (Lin et al. 2015). Besides, it
was inferred that oils facilitate the diffusion of water from
the pistil to the pollen grain (Wolters-Arts et al. 2002).
Therefore, it can be hypothesized that pollenkitt may also
participate in pollen (re)hydration, acting as a means of facil-
itating water mobilization.

The integrity of pollen membranes is critical to
achieve proper (re)hydration and avoid imbibitional
damage, i.e., pollen bursting. Sucrose is a protective
molecule that may help to reduce the effects of rehydra-
tion, in interaction with the membrane (Hoekstra et al.
1989). Once pollen has been (re)hydrated and the me-
tabolism has been reactivated, in the case of dormant
pollen grains, it may germinate and form the pollen
tube. Pollen carbohydrate and water contents may play
a selective role in male competition upon arrival to the
stigma in relation to pollen (re)hydration and germina-
tion. That is to say, notwithstanding the uniform condi-
tions of the stigma, the possible differences in mature
pollen physiological state and carbohydrate reserves
may trigger different responses during (re)hydration
and germination of individual pollen grains. Pollen
grains on the stigma would compete for water, which
may rely on their hydric state. However, competition is
also influenced by chance because it may depend on the
number of pollen grains and the relative position of
each one (particularly of the aperture region) on the
stigmatic surface. Pollen grains adhering to the stigma
with an aperture close to it have a quicker rehydration
(Heslop-Harrison 1987) since pollen tubes emerge from
the aperture closest to the aqueous phase of the stigma
(Lush et al. 2000). Pollen germination involves a series
of specific processes, from the polarization of the veg-
etative cell to the mobilization of reserves and the syn-
thesis of new cell walls, which are regulated by pollen
grains and may progress at different rates among them.

Nourishment during pollen germination

Pollen tubes are nourished by the female tissues on
their way to the ovules, and the main nutrient for the
developing pollen tubes is sucrose (Nakamura et al.
1980) . Ac tua l ly, modera te hea t s t r ess a l te red
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carbohydrate balance in the pistil and would be the
reason for a slower rate of pollen tube growth in vivo
in cotton under such conditions (Snider et al. 2011).
However, two phases of pollen tube growth can be dis-
tinguished according to the source of nutrients used,
namely an initial autotrophic period, when pollen tubes
use reserves stored in pollen grains (Carrizo García
et al. 2012; Shivanna 2003; Stephenson et al. 2003),
and a later heterotrophic phase, when they take nutrients
from the surrounding environment (either the pistilar
tissues in vivo or a culture medium in vitro (e.g.,
Labarca and Loewus 1972, 1973; Nakamura et al.
1980; Schlüpmann et al. 1994; Ylstra et al. 1998)). In
line with this proposed boundary, pollen germination
may be considered essentially an autotrophic process,
mostly sustained by pollen reserves, and therefore, the
type of reserves, either starch or soluble sucrose, glu-
cose, and fructose, may regulate its speed. Nevertheless,
simultaneous heterotrophism cannot be discarded. The
distinction between recalcitrant and orthodox pollen,
which differ in water and carbohydrate contents and
metabolic activity, should be made. Recalcitrant pollen
would germinate faster due to its already active metab-
olism when it lands on the stigma, although it usually
has a low quantity of soluble carbohydrates. By con-
trast, orthodox pollen needs to rehydrate first in order
to reactivate its metabolism (Franchi et al. 2011).
Therefore, the type of carbohydrate reserves could be
more influential on germination in the case of orthodox
pollen. For instance, the dominance of glucose and fruc-
tose (the molecules needed for energy and cell growth)
and the lack of sucrose were related to the fast pollen
germination in a tomato cultivar (Carrizo García et al.
2012).

In several cases, it has been observed that the tran-
scripts of specific genes are accumulated during pollen
development and only translated at advanced stages or
upon germination (e.g., those related to carbohydrate me-
tabolism (Hirose et al. 2010; Schneidereit et al. 2003;
Sivitz et al. 2008; Stadler et al. 1999; Truernit et al.
1999)). This fact could evidence an opportunistic dispo-
sition of pollen, meaning that it could be ready to ger-
minate and develop the pollen tube as soon as the con-
ditions are favorable. On this regard, in some cases, pol-
len grains temporarily store starch at the beginning of
pollen tube formation (Bellani et al. 1985; Carrizo
García et al. 2015; Dickinson 1968; Singh et al. 1978).
That phenomenon may be regarded as a strategy to ac-
cumulate nutrients right away as they become available,
as a stockpile to be eventually used later for the growing
pollen tubes. Could starch also work as a reserve in case
of exogenous nutrient depletion? These features may also
represent a selective advantage to favor fast germination

and initial pollen tube growth and to guarantee the suc-
cess of fertilization.

When pollen grains arrive to the stigma, they have gone
through different challenging conditions that could deepen the
physiological diversity among them, originated by the devel-
opmental asynchronies. Therefore, germination of each pollen
grain may be triggered at different speeds, beginning an un-
even race among the pollen tubes formed. The asynchronism
of pollen germination is clearly evidenced when pollen is
cultured in vitro (e.g., tomato (Carrizo García et al. 2012;
Karapanos et al. 2010), Pyrus communis L. (Tiwari and
Polito 1988)). Afterwards, pollen tubes will compete in the
stylar transmitting tissue to reach the ovary and fertilize the
ovules, which is also correlated with physical constraints in-
volving the stylar transmitting tissue and with the availability
of nutrients along the style (Hormaza and Herrero 1996).

Conclusions

Pollen grains formed within a single microsporangium
may be physiologically heterogeneous as a consequence
of developmental asynchronies, and then a high propor-
tion of all the pollen released by an anther may be
metabolically diverse. Asynchronies during development
may be favored by the absence of cell-cell connections
between microspores, which is a frequent trait.
Asynchrony would increase the effects of competition
for resources during development (either nutrients or
cell wall materials) and pollen tube growth, as well as
for water dur ing (re)hydrat ion on the st igma.
Competition would be particularly high under adverse
circumstances, probably due to the shortage of re-
sources. The degree of competition between micro-
spores, pollen, and/or pollen tubes may be different ac-
cording to the species and also between stages in a
single species (e.g., Poaceae species in which competi-
tion for nutrients is reduced between developing micro-
spores but strong between pollen tubes trying to reach
the single ovule found in an ovary. This competition is
particularly strong in maize because of the long stigma
silk (Heslop-Harrison et al. 1985)). Developmental asyn-
chrony would create differences in the metabolic state
among the pollen grains released by an anther. Those
differences may promote selection of more efficient pol-
len grains as regards homeostasis, desiccation tolerance,
resilience, speed of (re)hydration, and germination, and
therefore, the differences may have an adaptive role. In
the end, the performance of each pollen grain landed
onto the stigma will be the result of a series of selective
steps went through by each one, determined by the pro-
gression of its development and its physiological state at
maturity and by successive environmental constrains.
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Appendix 1. Methods of pollen dispersal and relation
with pollen performance The methods of pollen dispersal,
which are related to the array of pollen during its presentation, can be
roughly summarized as follows:

A. In cleistogamous flowers, pollen is not exposed (presentation and
dispersal are absent); pollen may be directly transferred to the stig-
ma, where it germinates, or it germinates inside the anther and
pollen tubes crossing the anther wall to reach the adjacent stigma
(Culley and Klooster 2007). Environmental pressure on mature pol-
len would be low.

B. The flower and the anthers open, and pollen is mature and ready for
dispersal by that time.

B.1. Pollen grains are isolated, not surrounded/covered by a
pollenkitt or other sticky substances.

B.1.1. Pollen grains are arranged in a single layer per loculus,
the filament is often slender: all pollen grains leave the
anther as it opens (e.g., some Poaceae (Charzyńska and
Lenart 1989; Kirpes et al. 1996) and Cyperaceae).
Pollination is usually fast.

B.1.2. Many pollen grains fill completely the loculus: pollen
grains form an incoherent mass on the anther wall sur-
face when it opens, and they gradually leave the anther
removed mostly by air currents (woody and herbaceous
anemophilous species, e.g., Halophytum ameghinoi
(Speg.) Speg. (Pozner and Cocucci 2006) and
Plantago lanceolata L. (Timerman et al. 2014)).
Pollen is orthodox/desiccation tolerant.

B.1.3. Pollen grains in poricidal anthers remain protected with-
in the anthers and are gradually removed by pollinators
(e.g., buzz-pollinated species such as Solanum spp. and
Ericaceae spp.). Pollen dehydration may be gradual, and
pollen is available in doses.

B.2. Pollen grains adhere to the inner surface of the anther walls
by means of pollenkitt or other sticky substances.

B.2.1. Pollen grains of big size (100 μm or more, usually
recalcitrant/desiccation sensitive) are arranged in a one
or two layers: many pollen grains of an anther can be
easily removed by flower visitors (e.g., Cucurbita spp.
and Malva spp.); pollination has to be fast.

B.2.2. Pollen grains (usually orthodox/desiccation tolerant)
form a spongy mass on the anther surface: pollen grains
leave the anther gradually because the repeated pollina-
tors’ visits or air currents (e.g., Liliaceae, Rosaceae spp.;
wind-pollinated Ambrosia artemisiifolia L. (Martin
et al. 2009)).

C. Pollen is mature by anther opening, but presentation is absent be-
cause pollen is launched by the anthers; pollenkitt is present or
absent.

C.1. Insects visiting the flowers determine its aperture and gradual
or explosive pollen release because anthers are already open
(e.g., some Fabaceae (Galloni et al. 2007; López et al. 1999)
and Lamiaceae (Brantjes and De Vos 1981); orthodox/
desiccationtolerant pollen).

C.2. Pollen is launched because of the sudden movement of the
filament caused by the dry environment (e.g., Cornus
canadensis L. (Edwards et al. 2015), Urtica spp. and
Parietaria spp. (Franchi et al. 2007), and some Moraceae
(Williams and Adam 1993; Taylor et al. 2006); recalcitrant/
desiccationsensitive pollen).

C.3. Pollen is launched because of the fast movement of the an-
ther wall (Ricinus communis L. (Bianchini and Pacini 1996);
orthodox/desiccation-tolerant pollen).

D. In cases of compound pollen, the mass of pollen grains stays within
the anther until its removal by animals (Orchidaceae and some
Asclepiadaceae); all the pollen grains of a flower can be removed
contemporaneously by a single pollinator. Pollen development
would be synchronized; pollen competition is established upon pol-
lination. Superficially exposed pollen grains may be more suscep-
tible to the environment pressure.

E. In cypsela inflorescences, with a cluster of flowers and anthers with
few pollen grains, locules open inwardly and pollen adheres to the
growing style owing to the presence of pollenkitt, and then it is
placed for dispersal underneath the not yet receptive stigma (second-
ary pollen presentation, e.g., species of Asteraceae and
Campanulaceae (Vranken et al. 2014)). Mature pollen performance
mostly related to its development and physiological state by anther
opening.
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