Regular Article

Household arsenic contaminated water treatment employing iron oxide/ bamboo biochar composite: an approach to technology transfer

Jacinta Alchouron, Chanaka Navarathna, Prashan M. Rodrigo, Annie Snyder, Hugo D. Chludil, Andrea S. Vega, Gianpiero Bosi, Felio Perez, Dinesh Mohan, Charles U. Pittman Jr., Todd E. Mlsna

<page-header><image><section-header><image><image>

Please cite this article as: J. Alchouron, C. Navarathna, P.M. Rodrigo, A. Snyder, H.D. Chludil, A.S. Vega, G. Bosi, F. Perez, D. Mohan, C.U. Pittman Jr., T.E. Mlsna, Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: an approach to technology transfer, *Journal of Colloid and Interface Science* (2020), doi: https://doi.org/10.1016/j.jcis.2020.11.036

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

1	Household arsenic contaminated water treatment employing iron oxide/bamboo
2	

- 2 biochar composite: an approach to technology transfer
- 3 Jacinta Alchouron ^{\$,a/} Chanaka Navarathna ^{\$,b}, Prashan M. Rodrigo ^b, Annie Snyder ^b, Hugo
- D. Chludil ^c, Andrea S. Vega ^{a,d}, Gianpiero Bosi ^e, Felio Perez ^f, Dinesh Mohan ^g, Charles
 U. Pittman Jr. ^b, Todd E. Mlsna ^{b,*}
- 6
- 7 8
- ^{\$} These authors have made an equal contribution
- 9 ^a Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Recursos
- 10 Naturales y Ambiente, Cátedra de Botánica General, Av. San Martín 4453, C1417DSE,
- 11 Buenos Aires, Argentina
- 12 ^b Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-
- 13 9573, USA
- 14 ^cUniversidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología
- 15 Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Av. San Martín 4453,
- 16 C1417DSE, Buenos Aires, Argentina
- ¹⁷ ^d Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires,
- 18 Argentina
- 19 ^e Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo, Centro de
- 20 Proyecto, Diseño, y Urbanismo (CEPRODIDE), Int. Güiraldes 2160, C1428EGA, Buenos
- 21 Aires, Argentina
- 22 ^fMaterial Science Lab, Integrated Microscopy Center, University of Memphis, Memphis,
- 23 TN 38152, USA
- ^g School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067,
- 25 India
- 26 **Corresponding Author** *(Tel: 662- 325-6744; fax: 662-325-1618; email:
- 27 TMlsna@chemistry.msstate.edu)
- 28

29 Abstract

30	Commercialization of novel adsorbents technology for providing safe drinking water
31	must consider scale-up methodological approaches to bridge the gap between laboratory
32	and industrial applications. These imply complex matrix analysis and large-scale
33	experiment designs. Arsenic concentrations up to 200-fold higher (2000 μ g/L) than the
34	WHO safe drinking limit (10 μ g/L) have been reported in Latin American drinking waters.
35	In this work, biochar was developed from a single, readily available, and taxonomically
36	identified woody bamboo species, Guadua chacoensis. Raw biochar (BC) from slow
37	pyrolysis (700 $^{\circ}$ C for 1 h) and its analog containing chemically precipitated Fe ₃ O ₄
38	nanoparticles (BC-Fe) were produced. BC-Fe performed well in fixed-bed column sorption.
39	Predicted model capacities ranged from 8.2-7.5 mg/g and were not affected by pH 5-9 shift.
40	The effect of competing matrix chemicals including sulfate, phosphate, nitrate, chloride,
41	acetate, dichromate, carbonate, fluoride, selenate, and molybdate ions (each at 0.01 mM,
42	0.1 mM and 1 mM) was evaluated. Fe $_3O_4$ enhanced the adsorption of arsenate as well as
43	phosphate, molybdate, dichromate and selenate. With the exception of nitrate, individually
44	competing ions at low concentration (0.01 mM) did not significantly inhibit As(V) sorption
45	onto BC-Fe. The presence of ten different ions in low concentrations (0.01 mM) did not
46	exert much influence and BC-Fe's preference for arsenate, and removal remained above
47	90%. The batch and column BC and BC-Fe adsorption capacities and their ability to
48	provide safe drinking water were evaluated using a naturally contaminated tap water (165 \pm
49	5 μ g/L As). A 960 mL volume (203.8 Bed Volumes) of As-free drinking water was
50	collected from a 1 g BC-Fe fixed bed. Adsorbent regeneration was attempted with
51	(NH ₄) ₂ SO ₄ , KOH, or K ₃ PO ₄ (1 M) strippers. Potassium phosphate performed the best for

52	BC-Fe regeneration. Safe disposal options for the exhausted adsorbents are proposed.
53	Adsorbents and their As-laden analogues (from single and multi-component mixtures) were
54	characterized using high resolution XPS and possible competitive interactions and
55	adsorption pathways and attractive interactions were proposed including electrostatic
56	attractions, hydrogen bonding and weak chemisorption to BC phenolics. Stoichiometric
57	precipitation of metal (Mg, Ca and Fe) oxyanion (phosphate, molybdate, selenate and
58	chromate) insoluble compounds is considered. The use of a packed BC-Fe cartridge to
59	provide As-free drinking water is presented for potential commercial use. BC-Fe is an
60	environmentally friendly and potentially cost-effective adsorbent to provide arsenic-free
61	household water.

62

Keywords: bamboo biochar, Latin America, arsenic, breakthrough, competitive, XPS, iron
leaching

65

66 **1- Introduction**

Arsenic ranks 20th in abundance in the Earth's crust [1]. Arsenic (As) in soils, 67 68 sediments, and groundwater mainly occurs in pentavalent and trivalent oxidation states [1]. 69 The primary source of As in natural waters is geogenic because As is mobilized by natural 70 geochemical processes [2]. Drinking groundwater contaminated with natural sources of As 71 is believed to be a major source of human exposure [3]. Excessive and prolonged exposure 72 to drinking water containing As may cause numerous health consequences because of its 73 mutagenicity, teratogenicity, and carcinogenicity [4-6]. Dermatitis, skin, lung and bladder 74 cancer, neurotoxicity, hypertension, cardiovascular and respiratory diseases, and Mellitus

diabetes [7-9] are among the many health consequences associated with chronic inorganicAs exposure.

77 The human right to safe, clean, accessible and affordable drinking water has been 78 recognized in 2010 by the United Nations General Assembly (Res. 62/292). However, the 79 contamination of drinking water with As constitutes a global menace with high impact on 80 the poorest regions of the world [4-6]. In South America, about 14 million people drink As 81 contaminated $[>10 \ \mu g/L[10]]$ water [11], turning arsenic contamination into a primary 82 public health concern. At low concentrations, arsenate is tasteless, colorless and odorless 83 and the practical difficulty of directly correlating health effects with As intoxication has 84 allowed this problem to be neglected for years [3, 7, 12].

85 Expensive and/or multi-step treatment technologies, such as reverse osmosis, 86 coagulation and filtration, ion-exchange resins, are known to provide safe As-free water 87 [12-14]. As a result, the treatment of arsenic-contaminated water is of concern to small 88 communities in rural areas around the world, where untreated groundwater is the main 89 source of drinking water. These are often low-income communities that lack access to 90 water supplies, and their inhabitants are mostly unaware that an arsenic problem exists [14, 91 15]. Small scale, household level, low-cost treatments have been assessed. Among these, 92 heterogeneous photocatalytic [16], bioremediation [17], phytofiltration [18], in situ-93 remediation using permeable reactive barriers [19], geological materials such as natural 94 adsorbents [11], or engineered biochars [20-22], have been explored. However, there is no 95 universal method available when assessing appropriate technologies for small communities 96 in rural areas. The choice depends on the physicochemical and microbiological composition of waters to be treated [4, 14]. In addition, cheap, easy-to-use, eco-friendly technologies 97 98 necessarily rely on locally available materials [12, 14].

99	Functionalizing an adsorbent for aqueous pollutants remediation primarily requires
100	screenings in mono-element aqueous systems. This screening involves dose/volume, pH
101	dependence, kinetics, isotherms and column studies. Results including fast kinetics and/or
102	high adsorption capacities and/or regeneration abilities are the basic needed performance
103	characteristics which at first glance manifest the eligibility of an adsorbent for the screened
104	purpose [23]. Different carbonaceous-based adsorbents demonstrated potential eligibility
105	for pollutants remediation such as for heavy metals [24, 25], oil spills [26],
106	pharmaceuticals [16] and aromatic organic compounds [27]. To bridge the gap between lab
107	results and industrial applications further scalability performance tests are needed.
108	Comprehensive multi-component testing, sorption experiments in natural pollutant
109	concentration media, real water tests and large-scale column tests should be assessed. Very
110	recently Singh et al. [28] presented a mechanistic study at low As(III) concentrations (50-
111	1000 μ g/L) to demonstrate sorptive As(III) removal at concentrations usually present in the
112	actual water bodies.
113	Guadua chacoensis (Rojas Acosta) Londoño & P. M. Peterson [29] is a woody
114	bamboo (Poaceae, Bambusoideae, Bambuseae) native of South America growing in
115	southeastern Bolivia, Paraguay, Brazil, Uruguay and Argentina. It grows in marginal and
116	gallery forests [30, 31]. Its foliage leaves have been proposed as forage (Panizzo et al.,
117	2017), and their mature culms used in construction and crafts [32, 33]. Alchouron et al.
118	(2020) reported that G. chacoensis young discarded culms are suitable for biochar
119	synthesis, transforming this valueless waste into biochar adsorbents and iron-oxide
120	dispersants for arsenate removal. This enabled a productive use of the widely available and
121	otherwise wasted clumps.

122 The aim of this work was to systematically study arsenic removal from polluted 123 drinking water by Fe_3O_4 nanoparticles dispersed on G. chacoensis bamboo biochars from a 124 technology transfer. 125 These goals take into account the following: 126 1- Applications of modified/engineered biochars are lacking in Latin America [12] 127 2- Native plantations are beneficial for biodiversity restoration and environmental 128 health [34] 129 3- G. chacoensis bamboo is a wide ranging South American native species whose 130 interest for its sustainable exploitation has grown over the years with increasing 131 knowledge of its uses [32, 33, 35, 36] 4- Fe_3O_4/G . chacoensis bamboo biochar composites demonstrated remarkable As(V) 132 133 Langmuir adsorption capacities (39-868 mg/g), and robust removal over a 5-9 pH 134 window [37] 5- Systematic experiments are needed to design scaled-up technologies for large-scale 135 136 implementations [12] 137 Large scale fixed-bed column sorption at different pH's (5, 7 and 9), breakthrough 138 curve modelling capacities, and bed regenerations employing three As aqueous stripping 139 agents (ammonium sulfate, sodium hydroxide and potassium phosphate) were quantified. 140 Two adsorbents were employed, raw G. chacoensis biochar (BC) and its BC-Fe analogue 141 containing chemically co-precipitated Fe₃O₄ nanoparticles dispersed on the biochar 142 surfaces. The effect of competing ions on As(V) adsorption was studied in the presence of 143 other anions (sulfate, phosphate, nitrate, acetate, chromate, molybdate, selenate, carbonate, 144 fluoride and chloride) at three different concentrations (0.01, 0.1 and 1 mM). The percent 145 removal of each ion, and the ability to provide safe drinking water from naturally As-

6

Journal Pre-proofs

146	contaminated waters was also assessed. Both batch and fixed-bed column remediations
147	were investigated. A comprehensive XPS study was performed to provide a better
148	understanding of competitive surface sorption mechanisms.
149	
150	2. Experimental
151	
152	2.1. Materials
153	
154	All chemicals used were either GR or AR grades purchased from Sigma Aldrich
155	(Saint Louis, MO). A 1000 mg/L As(V) stock solution of was prepared by dissolving
156	HAsNa ₂ O ₄ •7H ₂ O in deionized water. As(V) concentrations were determined using an
157	Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Perkin Elmer SCIEX -ELAN
158	DRC II. Working solutions were freshly prepared before use by diluting the stock solutions
159	with deionized water, and the pH was adjusted to desired values with 0.1 M HCl or 0.1 M
160	NaOH (Hanna HI 2211 pH/ORP Meter). Disposable polypropylene funnels with Whatman
161	No. 1 filter paper were used to separate biochar from solution mixtures.
162	Bamboo-based biochar composites prepared from G. chacoensis clumps were used
163	in this study. Fragments (~45 cm from the base) were trimmed from growing discarded
164	young culms. These culms lack commercial value since they naturally crack and dry and
165	are specifically removed by producers to encourage wider culms in the growing clump.
166	Samples were obtained from three different geographic regions in Argentina: Corrientes
167	(Capital department); Corrientes (Empedrado department); and Buenos Aires (Botanical
168	Garden of the Agronomy Faculty of the University of Buenos Aires).

169	A previous study showed that ultra-high surface area is not required in a biochar for
170	high arsenic sorption [37]. Therefore, expensive and time consuming chemical activation
171	was not done as a pre-treatment. Raw G. chacoensis biochar (BC) and its chemically co-
172	precipitated iron-nanoparticle dispersed analogue (BC-Fe) were synthesized following the
173	same protocol as described by Alchouron et al (2020). Briefly, room temperature dried, 0.5
174	- 1 cm milled particles of <i>G. chacoensis</i> culms were subjected to a slow pyrolysis
175	carbonization [700 °C (10 °C/min), held for 1 h and cooled to ~25 °C] under a N_2
176	atmosphere (10 mL/min), in a tubular muffle furnace (O.R.L, Argentina) inside a steel
177	reactor (AISI 310). The resulting BC (S _{BET} 6.7 m^2/g) was ground, sieved to particle size
178	range of 5-1 mm, and stored in hermetic plastic bags. Pyrolysis temperature was chosen
179	based on prior knowledge of this bamboo charcoal's specific surface area development
180	versus temperature [38].
181	Magnetite nanoparticle deposition onto BC was performed following a proven
182	method [39]. Solutions of Fe(III) and Fe(II) were prepared separately by dissolving FeCl ₃
183	(~100 g) in ~3.9 L distilled water and FeSO ₄ •7H ₂ O (~160 g) in ~0.45 L of distilled water
184	with stirring for 15 min at ~25 °C. Solutions were combined, agitated (200 rpm) at ~60 °C
185	for 15 min, then slowly added into a 150 g BC suspension while stirring (50 rpm) for 30
186	min at ~25 °C. Mixture pH was raised to ~10 by adding ~0.15 L of 10 M NaOH dropwise.
187	The mixture was then stirred (50 rpm) for 1 h and aged at room temperature for 24 h. The
188	resulting Fe ₃ O ₄ /BC hybrid (BC-Fe-S _{BET} 28.9 m^2/g) was thoroughly vacuum-filtered and
189	washed with distilled water, followed by three ethanol washes, and drying overnight at 70
190	°C. The pH of the distilled water washings was monitored until it stabilized at 6.9. During
191	the experiment period, both BC and BC-Fe were stored in glass beakers inside a hot air

192 oven at 70 °C. The main characteristics of BC and BC-Fe, i.e., Brunauer–Emmett–Teller

193	(BET) surface area, point of zero charge (PZC), and ultimate and proximate analysis were
194	included in Alchouron et al (2020). The resulting Fe $_3O_4$ /BC hybrid contained wt. 74.2 %
195	Fe ₃ O ₄ and 25.7 wt. % (See supplementary material).
196	
197	2.2. Artificial As(V)-water sorption studies
198	
199	2.2.1. Large-scale column breakthrough studies
200	
201	Fixed-bed continuous flow adsorption studies were conducted and breakthrough
202	curves were constructed to assess the potential of BC-Fe in scaled-up applications [40, 41].
203	Solution pH on column sorption performance was evaluated at pH 5, 7 and 9, covering the
204	pH range of most As-contaminated underground waters [42].
205	Three columns (<i>i.e.</i> , one for each pH solution) were packed in 3 cm internal
206	diameter glass burettes, using a warm aqueous mixture of 18 g of BC-Fe (15 cm height).
207	Columns were top pressurized at 1.1 bar to maintain a 4 mL/min steady flow (2.26 BV/h). 8
208	L of a 100 mg/L As(V) solution was passed through each column at 25 °C. Elute was
209	collected in 200 mL allotments and examined for arsenate concentration. Packed bed
210	breakthrough curves were used to determine the volume of effluent treated, the column
211	exhaustion point and the pH effect on these variables. The bed volume (BV) was calculated
212	from the expression [43]:
213	Bed volume $= \pi R^2 h$

214 where R is the radius of the column and h is the bed height.

2.2.2. Effect of competing ions in water studies

217	Ions present in natural waters may compete with arsenic for adsorption [44-46].
218	As(V) adsorption onto BC and BC-Fe was investigated in the presence of sulfate,
219	phosphate, nitrate, chloride, acetate, dichromate, carbonate, fluoride, selenate and
220	molybdate. These ions were selected based on the following criteria: similar chemistry to
221	arsenate (phosphate, dichromate, selenate, molybdate and sulfate) and their typical presence
222	in natural waters (nitrate, chloride, acetate, carbonate and fluoride). The effect of each ion
223	was explored at three different concentrations (0.01, 0.1 and 1 mM) with 10 mg/L As(V)
224	$[0.07 \text{ mM of } AsO_4^3 -]$. Then, the simultaneous effect of all 10 ions on arsenic adsorption
225	was studied at three different concentrations (each ion is present at 0.01, 0.1 or 1 mM) to
226	three separate solutions containing 10 mg/L As(V) [0.07 mM of AsO_4^{2-}]. In all cases,
227	experiments were done in triplicate with 50 mg of adsorbent (BC or BC-Fe) in 25 mL
228	solutions at 25 °C, for 2 hrs while mixing at 300 rpm. Post agitation mixtures were
229	separated by filtration and remaining arsenic concentrations were quantified.
230	To better understand competitive adsorption, ions remaining in solution after
231	adsorption were quantified using atomic absorption (chromium), ICP-MS (molybdate and
232	selenate), ion selective electrodes (chloride and fluoride), liquid chromatography UV-Vis
233	(nitrate) and UV-Vis (phosphate). Sulfate, acetate and carbonate where not determined due
234	to unavailability of suitable analytical equipment.
235	

2.3. As-contaminated domestic water sorption studies

238	Arsenic ($0.17 \pm 0.01 \text{ mg/L}$) contaminated water was collected from a domestic
239	faucet in Altamirano (35°21'46.2"S, 58°09'18.8"W), Buenos Aires, Argentina. Prior to
240	collection, the faucet was open to continuous water flow for 3 min. The sample was
241	collected in plastic bottles, hermetically sealed, and stored at -4 °C for transport and during
242	the experimentation.
243	
244	2.3.1. Batch studies
245	
246	Arsenic adsorption by BC and BC-Fe, was determined for this domestic water. The
247	biochar dose (0.01 to 0.5 g) and the biochar/solution contact temperature (5, 25 and 40 °C)
248	were simultaneously evaluated in triplicate. Biochars were equilibrated with 50 mL of
249	water at 300 rpm for 120 min. Experiments were done in triplicate and standard error bars
250	were included in all plots using the standard deviation of these replicates.
251	
252	2.3.2. Column studies
253	
254	A BC-Fe fixed-bed continuous flow arsenic breakthrough curve was obtained to
255	evaluate the dynamic behavior of the adsorbent in As-contaminated domestic water. The
256	column was packed in a 1 cm internal diameter glass burette using a warm mixture of
257	distilled water and 1 g of BC-Fe (6 cm height). A total volume of 8 L of water was passed
258	through the column at 25 °C at a steady flow of ~ 4 mL/min (50.9 BV/h). Samples were
259	collected in 150 mL allotments and examined for arsenic. Based on BC's capacity and
260	results in section 2.3.1, experiments were not performed on BC.

262

2.4. Adsorbent regeneration and iron leaching studies

263

264	Regeneration of BC and BC-Fe were studied by equilibrating the As-laden biochars
265	with three aqueous stripping agents separately: ammonium sulfate, potassium hydroxide
266	and potassium phosphate. Biochars were first loaded in batch experiments with arsenic
267	solutions (50 mL of 100 mg/L As(V)) and were equilibrated (300 rpm, 1 h) at pH 7 with
268	0.1 g of biochar at 25 °C. Batch desorptions were carried out by stirring (300 rpm, 12 h) the
269	As-laden BC and As-laden BC-Fe with 50 mL solutions of each stripping agents at 1M.
270	Sorption-stripping cycles were performed three times. Filtrates were analysed for arsenic
271	and mass balance was used to quantify the amount of arsenic adsorbed or desorbed.
272	Iron dissolution from BC-Fe was studied by completing three batch sorption
273	equilibria (1 g of BC-Fe, 50 mL of 1000 mg/L As(V) at 25 C, vortex shaking for 2 mins)
274	and then stripping (1 g of BC-Fe, 50 mL of 1000 mg/L As(V) at 25 C, vortex shaking for 2
275	mins) with 1 M potassium hydroxide, potassium phosphate, sodium hydroxide, and sodium
276	chloride. Filtrates were analyzed for iron using a Shimadzu AA-7000 Atomic Absorption
277	Spectrophotometer (AAS). Experiments were done in triplicate and standard error bars
278	were included in all plots using the standard deviation of these replicates.
279	2.5. Characterisation
280	2.5.1. X-ray photoelectron spectroscopy (XPS)
281	X-ray photoelectron spectroscopy (XPS) analyses were run on a Thermo Scientific
282	K-Alpha XPS system with a monochromatic X-ray source at 1486.6 eV, corresponding to

283 the Al K_{α} line, with a spot size of 400 μ m². Photoelectrons were collected at a takeoff angle

284	of 90^{0} relative to the overall sample's fractal particle surface. Measurements were made in
285	the constant analyzer energy mode. The survey spectra were taken at a pass energy of 200
286	eV. High resolution (HR) core level spectra were taken at a 40 eV pass energy. The XPS
287	data acquisition were performed using the "Avantage v5.932" software provided with the
288	instrument.
289	2.5.2. Magnetic moment
290	Magnetic hysteresis measurements were carried out on a Lake Shore 7304 Vibrating
291	Sample Magnetometer (VSM). The magnetic properties of the adsorbents are represented
292	by plots of magnetization (M) against the field strengths (H) giving the hysteresis loop. The
293	saturation magnetization was measured from the hysteresis curve.
201	3. Results and discussion
274	
295	3.1. Simulated As(V)-water sorption studies
294 295 296	 3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies
295 296 297	 3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's
294 295 296 297 298	 3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's capacity as a function of initial adsorbate characteristics, flow rate, and bed height [47]. For
294 295 296 297 298 299	 3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's capacity as a function of initial adsorbate characteristics, flow rate, and bed height [47]. For the three As(V) solutions (pH 5, 7 and 9), the As(V) retained (mg/g) in the column was
294 295 296 297 298 299 300	 3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's capacity as a function of initial adsorbate characteristics, flow rate, and bed height [47]. For the three As(V) solutions (pH 5, 7 and 9), the As(V) retained (mg/g) in the column was determined by mass balance calculations and integrating the breakthrough curve area (from
294 295 296 297 298 299 300 301	3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's capacity as a function of initial adsorbate characteristics, flow rate, and bed height [47]. For the three As(V) solutions (pH 5, 7 and 9), the As(V) retained (mg/g) in the column was determined by mass balance calculations and integrating the breakthrough curve area (from t_0 to t_t) obtained by plotting the concentration ratio (C/C_0) versus flow time (min) (Figure
294 295 296 297 298 299 300 301 302	3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's capacity as a function of initial adsorbate characteristics, flow rate, and bed height [47]. For the three As(V) solutions (pH 5, 7 and 9), the As(V) retained (mg/g) in the column was determined by mass balance calculations and integrating the breakthrough curve area (from t_0 to t_t) obtained by plotting the concentration ratio (C/C_0) versus flow time (min) (Figure 1.a). The breakthrough time (t_u) is defined as, C/C_0 being ~ 0.01 (1%) of the influent and
 294 295 296 297 298 299 300 301 302 303 	3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's capacity as a function of initial adsorbate characteristics, flow rate, and bed height [47]. For the three As(V) solutions (pH 5, 7 and 9), the As(V) retained (mg/g) in the column was determined by mass balance calculations and integrating the breakthrough curve area (from t_0 to t_t) obtained by plotting the concentration ratio (C/C_0) versus flow time (min) (Figure 1.a). The breakthrough time (t_u) is defined as, C/C_0 being ~ 0.01 (1%) of the influent and the equivalent to 0.01 mg/L of As(V) eluted, which coincides with the WHO's maximum
 294 295 296 297 298 299 300 301 302 303 304 	3.1. Simulated As(V)-water sorption studies 3.1.1. Large-scale column breakthrough studies The fixed bed column performance for arsenates removal depends on the column's capacity as a function of initial adsorbate characteristics, flow rate, and bed height [47]. For the three As(V) solutions (pH 5, 7 and 9), the As(V) retained (mg/g) in the column was determined by mass balance calculations and integrating the breakthrough curve area (from t_0 to t_t) obtained by plotting the concentration ratio (C/C_0) versus flow time (min) (Figure 1.a). The breakthrough time (t_u) is defined as, C/C_0 being ~ 0.01 (1%) of the influent and the equivalent to 0.01 mg/L of As(V) eluted, which coincides with the WHO's maximum permissible arsenic limit. The bed volume (BV) of the fixed bed was of 106 mL. Thus, the

occurred after 27, 35, and 25 BV for pH 5, 7 and 9, respectively. The predicted model
capacities were 8.2, 8.4 and 7.5 mg/g for pH 5, 7, and 9, respectively. Results were then
verified by mass balance calculations. Complete column performance descriptions are
presented in Table 1. The pH influenced capacities only slightly [(3.9 mg/g (mass balance
calculations) or 1.0 mg/g (breakthrough curve integration)]. Previous *G. chacoensis's* BCFe's batch adsorption studies were also not significantly affected within the pH (5-9) range
[37].

313 The ratio between time equivalent to usable capacity and time equivalent to total stoichiometric capacity $(t_u/t_t = H_b/H_t)$ is the fraction of the total bed capacity or length 314 utilized up to the breakthrough point. Hence, the bed length of H_t , H_b is the length upon 315 316 reaching the breakpoint [40]. Usable bed lengths varied with 5-9 pH between 8.7 to 11.3 317 cm (Table 1). When the polluted water is initially passed through the inlet of the column, 318 the mass transfer zone is accomplished by the upper layers of the fresh adsorbent [48]. At 319 this point $C/C_0 = 0$. While feeding the As(V) further into the column, the sorbent sorption 320 sites gradually saturate, and the mass transfer zone travels, descending to un-adsorbed 321 zones [48]. At the breakpoint, the fractions of the total bed capacities used were 0.3 (pH =5), 0.4 (pH = 7), and 0.3 (pH = 9). When the effluent concentration is close to the inlet 322 323 concentration $[(C/C_0) \sim 1.0]$ the breakthrough occurs, the bed is judged to be ineffective, and regeneration is required. 324

	Breakthrough point	Saturation point	Bed volumes until saturation (BV)	Column capacity by breakthrough curve integration	Column capacity by mass balance calculation	Usable column length	Unusable column length
	(min)	(min)		(mg/g)	(mg/g)	(cm)	(cm)
pH 9	214	660	25	8.2	7.2	10.1	4.9
pH 7	395	935	35	8.4	11.2	8.7	6.3
pH 5	178	711	27	7.5	8.0	11.3	3.7

Table 1. Fixed-bed continuous flow column test data for BC-Fe at pH 5, 7 and 9 and at 25 °C.^a

^aTests were carried out on 18 g of BC-Fe packed fixed-bed (15 cm) columns at 25°C,
pressurized at 1.1 bar. A total volume of 8 L of a 100 mg/L As(V), pH 5, 7 and 9 solution,
was passed through the column at an average flow of 4 mL/min.

331 Robust initial As(V) uptake was achieved by the fixed-bed column contacted with 332 the As(V) solution at pH 7 versus pH 5 and 9, and then rapidly decreased as the saturation point is reached. At these experimental conditions, the column which the As(V) solution at 333 pH 7 had passed through, would achieve 1580 mL safe arsenic water (As<10 µg/L) up to 334 335 the column breakpoint, and by that time. BC-Fe would be laden with 0.5 mg/g of arsenic. 336 Previous experiments evaluating BC-Fe's column performance at pH 7 gave a 337 column capacity of 10.2 mg/g from mass balance [37], while this current work showed an 338 11.2 mg/g capacity. The inlet concentration (100 mg/L) and temperature of contact (25 °C) 339 were similar in both experiments. Flow rate and column-heights were 3.4 times faster (from 340 1.18 to 4 mL/min) and 3 times longer (from 6 cm to 18 cm). It was presumed that this 341 chosen flow rate might have sharpened the breakthrough curve since the residence time of 342 the sorbate in the column was not long enough to reach equilibrium. However, the height 343 increase possibly compensated for this by increasing the sorption site density. Hence, the 344 increasing amount of BC-Fe leads to a longer adsorbate/ adsorbent interaction time. 345

Carbonaceous adsorbent	Cinlet	Flow rate	рН	Column capacity calculates by	Column model pre- capacity	dicted	Batch Langmu ir	Batch/column capacities**	References
	mg/L	mL/mi n		mass balance mg/g	Model	mg/g	capacity mg/g		
Al-enriched Tetra Pak biochar	135	1	3	18.3	Thomas	15.8	33.2	2.1	[49]
Fe-impregnated biochar	50	2	5.8	0.83	n/s	n/s	2.16	2.6ª	[50]
Thioglycolated sugarcane carbon	0.0015	3	6	0.08183	Thomas	0.083	n/d	n/s	[51]
Fe-mixed mesoporous pellet	0.5	17	5		Thomas	0.43	5.4	12.6	[52, 53]
Iron oxide nanoneedle array-decorated biochar fibers	0.275	2.26	6.7	n/s	Bed volumes	n/s	93.94	n/d	[54]
Fe-Mn Granular activated carbon	0.12	6	8.2 2	n/s	Thomas	34	2.3	0.1	[55]
Fe impregnated granular activated carbon	0.25	10.8	n/s	0.47	n/s	n/s	1.43	3.0 ^a	[56]
Algal derived-biochar	25.00	5	n/s	8.12	Thomas	8.16	7.67	0.9	[57]
Crawfish shell biochar	80	5	n/s		Thomas	2.85	17.2	6.0	[58]
Bamboo Fe-biochar	100	1.18	7	10.2	Breakthrough curve integration	13.9	89.9	6.5	[37]
Guadua chacoensis	100	4	9	7.23	Breakthrough curve	8.2	n/s	n/s	
Bamboo Fe-biochar	100	4	5	7.99	integration	8.4 7.5	90 n/s	10.7 n/s	I nis study

Table 2. Comparison of fixed-bed column capacities with batch sorption capacities at 25 °C.

347 *n/s= not specified. ** Calculated between the Langmuir and the model-predicted capacities for exception of (a) which were

348 calculated between Langmuir and mass-balance capacities since model-predicted capacityes were not determined [= batch Langmuir

349 capacity / column capacity].

350	Column sorption data using carbonaceous sorbents for aqueous As(V) removal are
351	presented in Table 2. Initial adsorbate concentration (C _{inlet}), flow-rate, and pH were
352	reported for the best column performance capacity in each study. Higher C_{inlet} values
353	resulted in earlier breakthrough and exhaustion times [48]. Increased inlet concentrations
354	generate a higher driving force to overcome mass-transfer resistance in the liquid phase,
355	and the adsorption sites are more quickly exhausted. This reduces the volume of the treated
356	effluent, but no direct relationship can be established between inlet concentration and
357	column capacity (Table 2). Nikic et al. studied a Fe-Mn granular activated carbon at 0.12
358	mg/L As(V) C _{inlet} at a relatively fast flow rate (6 mL/min). This gave a high 34 mg/g
359	column capacity. Ding et al studied Al-enriched Tetra Pak biochar at a 135 mg/L C_{inlet} and a
360	relatively slow flow-rate (1 mL/min) resulting in a 15.8 mg/g arsenic column capacity [49,
361	55].
362	The reported Fixed-bed-Column-Capacity versus Batch-Langmuir-Capacity ratios
363	are shown in Table 2. With the exception of Nikic et al, fixed-bed capacities decreased to
364	12.6 times the batch sorption capacities. Senthilkumar et al reported similar capacities on
365	algal-derived biochar due to its rapid kinetics (< 30 min) [57]. Nikic et al reported a
366	surprise capacity increase from 2.3 mg/g (in batch studies) to 34 mg/g (in column studies)
367	[55]. However, the isotherm data was obtained for low (0.1-1 mg/L) arsenic concentrations.
368	A higher Langmuir capacity would probably have been obtained at higher concentrations.
369	

Figure 1. (a) Continuous flow fixed-bed column breakthrough curves for As(V)

372	adsorption onto BC-Fe at pH 5, 7 and 9. C is the effluent concentration at time t (min) and
373	C_0 is the influent concentration (mg/L). Each column contained, 18 g of BC-Fe (15 cm
374	height) packed in 3 cm internal diameter glass burettes. A 4 mL/min (2.26 BV/h) steady
375	flow of a 100 mg/L As(V) solution was passed through each column at 25 °C. (b) The
376	simultaneous effect and (c) the individual effect of 10 ions (sulfate, phosphate, nitrate,
377	chloride, acetate, dichromate, carbonate, fluoride, selenate and molybdate) on As(V)
378	aqueous adsorption by BC or BC-Fe. The adsorbent's capacity (q_e) is expressed as the mg
379	of As(V) adsorbed by a g of biochar. Three different competing ion concentrations were
380	used (0.01, 0.1 or 1 mM) in three separate 10 mg/L As(V) solutions, 50.0 mg dose of
381	adsorbent, 25 °C, 300 rpm agitation and 2 h equilibration. The red dotted line is traced
382	based on the control 'no ion' treatment. (d) Quantification of competitive ions individually
383	after contacting each with BC and BC-Fe at three different concentrations (0.01, 0.1 and 1
384	mM) in a 10 mg/L aqueous As(V) solution. (d.i.) on BC and (d.ii.) on BC-Fe (50.0 mg dose
385	of adsorbent, 25 °C, 300 rpm agitation and 2 h equilibration). C_f/C_i is the ratio of the final
386	(C_f) over the initial (C_i) concentration. (b-d) Error bars are standard deviations of three
387	repetitions.

388

3.1.2. Effect of competing ions on As(V) removal from water

389 BC's and BC-Fe's arsenate removal was robust at natural water pH (5-9) [37]. 390 Arsenate removal on water treatment will mainly vary with the existence of competing ions 391 present in surface and ground waters. BC and BC-Fe are both multiphase adsorbents with 392 three or four phases (*i.e.*, biochar, silica, minerals like CaCO₃ and magnetite) that can 393 interact with other ions. An in-depth understanding is needed to systematically design 394 adsorbents for water treatment. Figure 1.c displays the effect of ten individually competing

395	ions at low, medium and high concentrations (0.01, 0.1 and 1 mM, respectively) on As(V)
396	removal from aqueous 10 mg/L As(V) solutions by (c.i.) BC and (c.ii.) BC-Fe. In the
397	absence of any competing anions in water, BC-Fe's As(V) equilibrium uptake was
398	complete (98% \pm 1.7), while BC's sorption was 43 % \pm 3.8 under conditions summarized in
399	the figure 1.c caption.
400	Each competing anion either enhanced or decreased arsenate uptake on BC. MoO_4^2 ⁻
401	, for example, increased As(V) uptake on BC. As(V) removal rose as molybdate solution
402	concentration increased. This could be due to the increased ionic strength of the solution.
403	Arsenate adsorption was being boosted by the time molybdate was also being retained
404	(Figure 1.d.i.). High chloride concentrations also enhanced As(V) sorption on BC. The
405	chloride solutions were prepared using magnesium chloride. It is possible the Mg ²⁺
406	deposited on the biochar surface or in solution was responsible for forming a water
407	insoluble stoichiometric magnesium arsenate compound like $Mg(HAsO_4)_2$ or $(Mg_3(AsO_4)_2)_2$
408	[Ksp = 8.16×10^{-22}] [59]. This was further verified with the XPS low resolution survey
409	spectra (Table S2) and further discussed in supplementary material (section 4). Similar
410	observations were reported by Fang [60] and Jiang, Chu, Amano and Machida [61] for
411	phosphate sorption in the presence of Mg ²⁺ .
412	Sulfate, phosphate, nitrate, acetate, dichromate, carbonate and fluoride decreased
413	BC's As(V) uptake. Interestingly (with exception of sulfate), with the increase of ion
414	concentration from 0.01 to 1 mM, the arsenic removal remained unchanged. Presence of

415 sulfate strongly affected the immobilization of As(V) sorption on BC. A 0.01 mM of

416 sulphate had the same effect as 1 mM of phosphate or nitrate. The presence of SeO_4^2 in

417 the solution did not affect As(V) sorption.

418	Iron-oxide nanoparticles deposited BC (BC-Fe) exhibited different trends in
419	competitive sorption. The presence of Cl^- and CH_3COO^- in solutions did not influence the
420	As(V) sorption. In addition, $Cr_2O_7^{2-}$, F^- and SeO_4^{2-} showed negligible effects on arsenic
421	sorption i.e., ~ 3 % decrease only at high ion concentrations. The point of zero charge
422	(PZC) for BC-Fe is \sim 4 and surface is negatively charged at the pH used in these
423	experiments ($pH = 7$). Higher electrostatic repulsion with negatively charged deprotonated
424	Fe_3O_4 surface hydroxyls may occur at pH 7-9. With the exception of nitrate, low
425	concentration of ions (0.01 mM) did not show any significant As(V) sorption inhibition. At
426	a 1 mM competing ion concentration, the order of BC-Fe's As(V) sorption drop was SO_4^{2-}
427	$= MoO_4^{2-} = PO_4^{3-} \ge CO_3^{2-} > NO_3^{-} > Cr_2O_7^{2-} > F^- = SeO_4^{2-}$. In the presence of 1 mM
428	sulfate, As(V) uptake dropped dramatically to ~ 30 %. Molybdate, phosphate and carbonate
429	(1 mM) dropped As(V) sorption to ~40, 40 and 45% respectively. The quantifications of
430	MoO_4^{2-} and PO_4^{3-} carried out after sorption are shown in section 3.1.2.2. At high
431	concentrations' competition exist for sorption sites. Sulfate, molybdate and phosphate are
432	tetrahedral oxyanions as are arsenates and form inner-sphere chemisorbed complexes with
433	surface hydroxyl groups of deposited magnetite on BC-Fe [62-64].
434	The effect of the simultaneous presence of ten competing ions mixed together at
435	three different concentrations on the removal of 10 mg/L aqueous As(V) solution for BC

436 and BC-Fe is presented in figure 1.b. The presence of the ten ions even at 0.01 mM,

437 strongly affected BC's As(V)'s sorption, lowering the removal from ~50% to ~22% under
438 conditions summarized in section 2.2.2. However, the increasing concentration (from 0.01)

- 439 to 1 mM) and thus the increasing ionic strength of the system did not seem to have a
- 440 significant effect on sorption. The same trend (the robust maintenance of the arsenic

441	removal despite the increasing concentration of ions) was observed for single ion
442	competitive experiments (Figure 1.c.i.). In contrast, the presence of ten ions in low
443	concentrations (0.01 mM) did not significantly influence BC-Fe's preference for arsenate,
444	and removal remained above 90% (Figure 1.b.). Subsequently, arsenate removal decreased
445	to 50% in the presence of ten ions in high concentrations (1 mM).
446	All in all, the influence over arsenic uptake in the presence of ions for BC is higher
447	than for BC-Fe. Although, they are both multiphase adsorbents, BC-Fe is dosed with
448	magnetite particles with surface iron hydroxyls. This adsorbent phase has higher affinity for
449	anion adsorption than that of carbonaceous char and silica dominantly present in BC [65,
450	66]. Magnetite particles, which serve as sorption sites, increase the surface for electrostatic
451	interactions that may generate stronger As-interactions in BC-Fe versus BC [21]. The
452	nature of As(III/V) chemisorption on magnetite has been carefully studied [20, 67]. In
453	addition, BC-Fe's As(V) Langmuir adsorption capacity is higher than that of BC (90 and 49
454	mg/g, respectively) [37]. Thus, the relative contribution of each competitive ion over As-
455	removal by BC compared with BC-Fe is almost 1:2. The competitive effect of dissolved
456	anions in water must be taken into account when designing an effective arsenic treatment
457	system.
458	Competitive ion adsorption [in 10 mg/L As(V)] was quantified after stirring with
459	batch suspensions of BC or BC-Fe. The results of these quantifications are shown in figure

460 1.d. BC did not remove nitrate, chloride and fluoride. Phosphate and chromium were461 slightly removed at high ion concentrations. Molybdate was partially removed and upon

462 increasing its concentration (from 0.0 to 1mM), and its uptake rose (Figure 1.d.i.) as did463 that of arsenate (Figure 1.c.i.).

464	Both BC and BC-Fe removed phosphate and molybdate (Figure 1.d.). Arsenate,
465	molybdate and phosphate anions have a similar geometry and compete for the same
466	adsorption sites [20, 63, 64]. Competitive phosphate sorption with arsenate has been
467	reported for many types of adsorbents [50, 68]. Nitrates, fluoride and chlorides have lower
468	affinities for magnetite surface hydroxyls as their adsorption occurs primarily through
469	hydrogen bonding [69]. The possible sorption interactions of the competitive contaminants
470	and arsenic on BC and BC-Fe surfaces are further discussed, proposed and schematized in
471	section 3.4 and supplementary material (section 4).
472	
473	3.2. Batch and column studies for arsenic sorption from As-contaminated
474	household water onto BC and BC-Fe.
475	
476	Table S1 shows some characteristics of the natural water sample tested in this study.
477	All values of dissolved contents are within safe limits for drinking water with the exception
478	of arsenic (16 times over WHO recommended limit). Adsorption results are systematically
479	discussed considering the physical and chemical characteristics of the sample and the
480	possible interactions discussed in sections 3.1, section 3.4, and supplementary material
481	(section 4). Predictions of the amount of safe drinking water obtained without adsorbent
482	regeneration have been carefully made and are presented in the context of WHO's As (<
483	0.01 mg/L) limit.
484	As(V) batch sorptions on BC and BC-Fe for a naturally As (0.16 mg/L \pm 0.02)
485	contaminated tap water using adsorbent amounts from 0.01 to 0.5 g and contact
486	temperatures of 5, 25 and 40 °C are displayed in figure 2.a. Increasing the adsorbent dose in
487	these 50 mL water samples had no effect on BC's arsenic uptake but increased BC-Fe's.

488	BC was unable to reduce the arsenic concentration to safe levels or even close to safe
489	levels. However, BC-Fe in a 2 g/L dose (0.1 g of BC-Fe into 50 mL of solution) was
490	sufficient to provide safe drinking water at 40 °C. In a 5 g/L dose BC-Fe gave safe water at
491	all three temperatures.
492	The water sample had 58 mg/L (0.6 mM) of sulfate. This concentration is <i>slightly</i>
493	high considering the conditions simulated in section 3.1.2. The presence of sulfate dropped
494	As(V)'s uptake by both BC and BC-Fe (Figure 1.c.). Therefore, this level of sulfate may
495	explain the low BC arsenic uptake displayed in figure 2.a.
496	Sorption of As onto BC-Fe is endothermic. In simulated As-water systems,
497	Langmuir sorption capacities were reported to increase with temperature (90 mg/g at 25 °C
498	and 457 mg/g at 40 °C) [37]. Similar trends were observed for BC-Fe at both 1 (0.05 g) and
499	2 g/L (0.1 g) dose. However, at a dose of 2 g/L (40 °C) the safe drinking water limits have
500	been reached.

Figure 2. (a) As(V) adsorption on BC and BC-Fe of a naturally As $(0.16 \text{ mg/L} \pm 0.02)$ contaminated water when varying adsorbent amount (0.01-0.5 g) and contact temperature (5, 25 and 40 °C). Biochars were equilibrated with 50 mL of water at 300 rpm for 120 min. Safe to drink water is defined here at 0.01 mg/L of As(V) as recommended by WHO. Error bars are the standard deviation of three repetitions. (b) Continuous flow fixed-bed column study of a naturally contaminated As(V) water sample passed at a ~ 4 mL/min flow rate (51 BV/h) onto 1 g of BC-Fe (6 cm bed height, 1 cm inner column diameter,) at 25 °C. (b.i.)

509	Breakthrough curves for arsenate adsorption onto BC-Fe, (b.ii.) A plot showing the arsenic
510	in the water that has eluted from the column (mg/L) versus the mL of filtered water,
511	displaying the safe drinking water guideline for As defined by the WHO ($< 0.01 \text{ mg/L}$).
512	The important components of the natural water used in the study is listed in the table inside
513	(Figure 2, b.i.) and the complete water analysis is displayed in Table S1.
514	A fixed-bed continuous flow adsorption study on BC-Fe was conducted to evaluate
515	the dynamic behavior of the adsorbent over naturally As-contaminated household water.
516	Packed bed performance was assessed using a breakthrough curve (Figure 2.b.). A
517	breakthrough point at 0.01 mg/L was established (Figure 2.b.i.) based on the WHO's safe
518	drinking standard. A 960 mL volume of safe As drinking water, equivalent to 203.8 BV,
519	was collected (at the conditions described in section 2.3.2.) by using 1 g of BC-Fe
520	When the eluted arsenic concentration reaches > 0.01 mg/L, the BC-Fe adsorbent
521	must be replaced. Based on the mass balance calculations, 19.5 μ g of As/g of BC-Fe would
522	be adsorbed onto BC-Fe at this point. If these residues were to be disposed of, according to
523	the toxicity-specific leaching procedure (TCLP) developed by USEPA [70], there would be
524	less arsenic than the maximum limit accepted (100 times the acceptable limit in drinking
525	water, i.e., 1000 μ g/L). Countries such as Argentina [71] rely on this regulation in order to
526	determine whether solid residues (in this case 19.5 μ g/g As adsorbed on BC-Fe) are
527	hazardous or not hazardous. Thus, since this is considered a non-hazardous residue, BC-Fe
528	can be disposed of inside a household bin (see supplementary material, section 3).
529	A simple cartridge-based devise for domestic water treatment with this biochar/iron
530	oxide adsorbent with commercial implications appears in the supporting material (Section
531	6). Testing of low-cost designs is underway for home-level arsenic remediation.
532	

533

3.3. Adsorbent regeneration

534

535 BC and BC-Fe reusability was studied by conducting three consecutive batch 536 sorption-regeneration cycles using either aqueous ammonium sulfate, aqueous potassium 537 phosphate or aqueous potassium hydroxide as stripping agents (Figure 3.). Biochars were 538 first loaded in batch loadings with arsenic solutions (50 mL of 100 mg/L As(V)) and were 539 equilibrated (300 rpm, 1 h) at pH 7 with 0.1 g of biochar at 25 °C. After the first adsorption 540 cycle, no As(V) was detected in remaining solution. Hence, BC-Fe adsorbed all arsenic 541 present in the solution used to load the adsorbent for regeneration in the next step (q_{max}) of 542 50 mg/g). The BC adsorbed a total of 15 mg/L (q_{max} of 7.5 mg/g). To compare adsorbents 543 and sorption performance during sorption-regeneration cycles, q_{max} values were considered 544 to be 100 % of the As adsorbed. BC-Fe's and BC's Langmuir arsenic adsorption capacities 545 are 90 mg/g and 49 mg/g, respectively [37]. Regenerations when the maximum adsorbent 546 capacity is not completely As-saturated may be more challenging. The first 547 adsorbent/adsorbate contact occurs at sites where interactions are strong (bidentate) thus 548 not as available for stripping agents to affect their interactions [20, 37]. 549 When employing all three stripping agents over the As-laden BC, the amount of 550 stripped arsenic is low (Figure 3. a-c). In the first cycle, potassium hydroxide managed to 551 strip 37 % of the adsorbed arsenate from BC, while potassium phosphate and ammonium 552 sulphate stripped 20 % and 2 % respectively. Basic pH shift due to hydroxide affected 553 As/BC chemisorption. After the 1st cycle of treatment with either 3 stripping agents, BC's 554 arsenic uptake is reduced to ~ 50 %. Surprisingly, the adsorption percentage is maintained 555 after the 2nd and 3rd cycles. Portions of As get tightly bound and resist stripping, thus

reducing As uptake cycle by cycle, but as the capacity of biochar does not collapse, arseniccan still be adsorbed.

558 For BC-Fe, the study carried out using potassium phosphate (Figure 3. e.) as a 559 stripping agent displayed a different trend than that shown when employing ammonium 560 sulfate or potassium hydroxide (Figure 3. d., f.). Potassium phosphate was a superior stripping agent and the ratio of stripped arsenic was 0.8 and 0.5 for 1st and 3rd cycles. 561 562 Phosphates and arsenates compete for adsorption onto magnetite. Cycle to cycle, portions 563 of As become tightly bound and resist stripping, thus reducing As uptake. Arsenic stripped 564 by ammonium sulphate and potassium hydroxide in the 1^{st} cycle only accounted for ~ 17 % and ~ 10 %, laden As respectively. Although BC-Fe was loaded with all available As in 565 566 solution $(q_{max} \text{ of } 50 \text{ mg/g})$, it is not its saturation capacity (90 mg/g) and therefore does not prevent the loading of more arsenic. Thus, its Langmuir arsenic adsorption capacity is not 567 reached up to the 2nd cycle and explains As the adsorption decrease in the 3rd cycle. 568 569 Biochar's application will determine the most appropriate regeneration agent. It is 570 difficult to determine whether BC or BC-Fe are more easily regenerated. In this work, any 571 of the three stripping agents managed a total adsorbents regeneration. This reveals the 572 stability of the As(V)- Fe_3O_4 -BC or As(V)-O-BC hybrid adsorbents. The order of % As stripped per stripping agent used is ammonium sulfate < potassium hydroxide < potassium 573 574 phosphate (Fig. 3. a., d.). Potassium phosphate is best for BC-Fe. Strong acids or bases like 575 HCl and NaOH proved to be good As stripping agents [72, 73] and should be considered if 576 desiring a complete adsorbate/adsorbents regeneration. However, at highly acidic or basic concentrations, Fe^{2+} and Fe^{3+} can be leached from iron oxides and reduce the ability to use 577

- adsorption/regeneration-cycles. The logic followed in Section 3.2 (TCLP) should be
- 579 followed.

582

583

Figure 3. Sorption-regeneration studies: the wt % of As (V) removed from the solution (adsorbed) and stripped from the adsorbent (regenerated) during 3

adsorption/regeneration cycles by BC and BC-Fe using three different 1M stripping agents

585 [ammonium sulfate (a, d), potassium phosphate (b, e), and potassium hydroxide (c and f)].

586 The 100 % is based on an As adsorption q_{max} of 7.5 mg/g for BC (a-c) and of 50 mg/g for

587 BC-Fe (d-f) and g). Quantification of the iron leached (mg/L) from BC-Fe to the solution is

shown during three consecutive adsorption (A)-regeneration (R) cycles utilizing four

589 different stripping agents: KOH, K₃PO₄, NaCl, and NaOH. Experiments were run in

590 triplicate, at 25 °C, equilibrated for 2 min (full speed vortex shaking) using 1 g doses of

adsorbent, in 50 mL solutions. As(V) adsorption cycles were performed in a 1000 mg /L

solution and desorption (regeneration) cycles in a 1 M solution of each stripping agent.

593 Error bars are for 3 replicates.

594 Figure 3g displays quantifications of the leached iron (mg/L) from BC-Fe to the 595 solution during three consecutive adsorption(A)-regeneration(R) cycles utilizing four

596	different stripping agents (KOH, K ₃ PO ₄ , NaCl and NaOH). Partial dissolution of iron from
597	the sorbent was higher during contact with the high concentration 1000 mg/L-As(V)
598	saturated solution than with the 1M stripping agent solutions in all three adsorption-
599	regeneration cycles. In the 2 nd adsorption cycle, the iron leached into the solution
600	previously contacted with K ₃ PO ₄ was 9.6 mg/L. This amount was way greater than the
601	previously contacted with KOH (3.98 mg/L), NaCl (1.7 mg/L) and NaOH (1.3 mg/L).
602	Material characteristics were modified more potassium phosphate stripping. This may
603	affect the efficiency of the spent sorbent regeneration. No significant differences existed
604	among the adsorption or among the regeneration treatments in the 3 rd cycle's Iron leaching.
605	Iron leaching in the 3 rd regeneration cycle was null. BC-Fe's contact with both NaCl and
606	NaOH solutions had the least effect over iron leaching.
607	In high acid or base solution concentrations, Fe ²⁺ and Fe ³⁺ are partially leached from
608	iron oxides, reducing the ability to use several adsorption/regeneration cycles. Additionally,
609	stoichiometric As-Fe compounds may be formed and precipitated from the solution and
610	deposition on BC-Fe. This can be intensified in As saturated concentrations. Experiments
611	exploring iron leaching from the sorbents with different As concentrations will be further

- 612 assessed.
- 613

3.4. XPS characterization, adsorption pathways and mechanisms

Key Strategies And Strategies And

- 619 Their binding energies, atomic percentages and FWHMs are presented in Table S3. XPS
- 620 write up, deconvolution and interpretations are presented in supplementary material (section
- 621 4).

622

Figure 4. Deconvoluted high resolution (HR)-XPS BC-Fe laden with 10 mg/L As(V) plus
multi-ion mixtures at 1 mM (CPS-Counts for second) for (a) As 2 p, (b) Cr 2p, (c) Se 3d,
(d) Mo 3d, (e) P 2p.

626

627 The possible sorption interactions and pathways of the competitive contaminants
628 and arsenic on BC and BC-Fe surfaces are summarized in scheme 1. Interactions can occur
629 through electrostatic attractions, hydrogen bonding and weak chemisorption to BC

630 phenolics. On iron oxide surface chemisorption dominates for phosphate, molybdate,

- 631 selenate, sulfate and chromate. Electrostatic attractions and hydrogen bonding may play a
- role in carbonate, nitrate, fluoride and chloride sorption. In addition, the stoichiometric
- 633 precipitation of metal (Mg, Ca and Fe)-oxyanion (phosphate, molybdate, selenate and
- 634 chromate) insoluble compounds has to be considered.

636 **Scheme 1.** Schematic representation of possible interactions of arsenate and competitive

637 contaminants ions on BC and iron oxide phases of BC-Fe

635

The As(V) chemisorption mechanism onto magnetite is summarized in scheme 2. As(V) adsorbs on magnetite's 111 outer planes as monodentate links to a single iron or via bidentate binding to a single iron atom or to two adjacent surface iron atoms. Associative or dissociative pathways could exist. The crystal chemistry and DFT calculations presented by Sherman and Randall [74] defined the possible surface arsenate structures and their conjugate acids chemisorbed onto various iron oxides (goethite, ferrihydrite, hematite and

644	lepidocrocite) as bidentate corner-sharing complexes (² C), edge-sharing (² E) and
645	monodentate corner-sharing (1V) complexes. EXAFS and XANES As(III) studies can be
646	similarly compared to As(V) adsorption of magnetite by the formation of bidentate
647	binuclear corner-sharing complexes (² C) [28, 75, 76]. The possible chemisorbed arsenate
648	surface species versus solution pH are shown in Scheme X. The 3-D octahedral structure
649	shown is simplified as structure 1. These chemisorbed species have been widely proposed
650	from several experimental and theoretical studies. Monodentate neutral 2, monodentate
651	monoanion 3, and dianion 4, can exist along with bidentate neutral 5, and bimetallic
652	bidentate anion 6 depending on solution pH. Also, bidentate monometallic complexes at
653	edges or corners are possible (7-10), but their stabilities have not been established.
654	Tridentate trinuclear corner-sharing (³ C) complexes (11) were favored for As(III) on
655	magnetite [76]. Tetrahedral vacancies might allow tridentate As(V) adsorption [77].

Scheme 2. Possible structures of arsenate-magnetite surface complexes.*These structures
are based on the reported literature on FT-IR, XPS, Mossbauer, XANES and DFT studies
for arsenate sorption on to various iron oxides (magnetite, maghemite, hematite,
lepidocrocite, ferrihydrite and goethite). Possible hydrogen bonding between phosphate
oxygen and hydroxyl with iron oxygens or hydroxyl groups to form pseudo-monodentate or
resonance structures are not shown here.

3.5. Conclusions

667	An Fe ₃ O ₄ /G. chacoensis bamboo biochar composite (BC-Fe), which previously
668	demonstrated remarkable As(V) Langmuir adsorption capacities (39-868 mg/g) and robust
669	removal over a 5-9 pH window [37] is presented in multicomponent aqueous systems
670	together with scale up applications for the first time in Latin America. Discarded, locally
671	available, and silica-rich culms of G. chacoensis were transformed into a value-added
672	engineered biochar adsorbent for arsenic removal from water. These chars are produced
673	from single known species (native from Bolivia, Paraguay, Uruguay, Brazil, and Argentina)
674	and thus, more readily duplicated than those produced from unknown culm fragments or
675	unknown mixtures of a pool of known species.
676	The high correlation between the model predicted column capacity and the column
677	capacity calculated by breakthrough curve integration indicates the breakthrough curve
678	integration model explains the column adsorption data. Column capacities ranged 8.2-7.5
679	mg/g and were not affected by 5-9 pH shift. A faster flow rate was compensated by higher
680	column height which increased the sorption site density. Capacities among this and our
681	previous study were similar.
682	Attempting multicomponent studies is challenging due to multiple simultaneous
683	interactions. Yet, such data is critical for modelling the adsorbents behavior in real water
684	systems. The influence of other ions over arsenic uptake was higher for the raw-biochar
685	(BC) than for BC-Fe. With the exception of nitrate, individually competing ions at low
686	concentration (0.01 mM) did not significantly inhibit As(V) sorption onto BC-Fe. The
687	presence of ten ions in low concentrations (0.01 mM) did not significantly influence BC-
688	Fe's preference for arsenate, and removal remained above 90 %. Fe ₃ O ₄ enhanced arsenate

689	adsorption as well as phosphate, molybdate, dichromate and selenate. This enhances the
690	idea that BC-Fe appears to provide safe As-drinking water in diverse aqueous medias. BC
691	and BC-Fe's deconvoluted XPS in multicomponent aqueous mixtures exhibit arsenate
692	adsorption or potential arsenate adsorption sites affected by the presence of chromate,
693	selenate, molybdate and phosphate. Adsorption pathways are proposed including
694	electrostatic attractions, hydrogen bonding and chemisorption to BC phenolics.
695	The batch and column adsorption capacities of BC and BC-Fe and their ability to
696	provide safe drinking water was evaluated using a naturally contaminated tap water (165 \pm
697	5 μ g/L As). BC-Fe in a 2 g/L dose (0.1 g of BC-Fe into 50 mL of solution) was sufficient to
698	provide safe drinking water at 40 °C. A 960 mL volume of safe As drinking water (203.8
699	BV) was collected by using 1 g of BC-Fe. After this treatment, BC-Fe is considered a non-
700	hazardous residue, BC-Fe can be disposed of inside a household bin.
701	Regeneration when the maximum adsorbent capacity is not completely As-saturated
702	was challenging. Potassium phosphate was best for BC-Fe regeneration.
703	Fe ₃ O ₄ nanoparticles dispersed on <i>G. chacoensis</i> bamboo biochar (BC-Fe) is capable to
704	provide household-scale arsenic contaminated water treatment. Both batch and fixed-bed
705	column remediations were investigated and proven to be effective in scaled-up technologies
706	for large-scale implementations. A BC-Fe's spinoff technology for household As-free
707	drinking water provision which considers practical functionality at low cost is presented. A
708	better understanding of simple local sorption strategies for arsenic treatment on
709	multicomponent aqueous systems will help bridge the gaps between environmental science
710	and technology, and commercialization.

712 Acknowledgments

- 713 This work was supported by the University of Buenos Aires [grant UBACyT
- 714 20020160100061BA], the Mississippi State University Chemistry Department and
- 715 Fulbright-Bunge & Born.

716 **References**

- 717 [1] B.K. Mandal, K.T. Suzuki, Arsenic round the world: a review, Talanta 58(1) (2002) 201-235.
- 718 [2] D.K. Nordstrom, Worldwide occurrences of arsenic in ground water, American Association for 719 the Advancement of Science, 2002.
- [3] A.E. Bardach, A. Ciapponi, N. Soto, M.R. Chaparro, M. Calderon, A. Briatore, N. Cadoppi, R.
- 721 Tassara, M.I. Litter, Epidemiology of chronic disease related to arsenic in Argentina: A systematic
- 722 review, Sci Total Environ 538 (2015) 802-16.
- 723 [4] M.I. Litter, M.E. Morgada, J. Bundschuh, Possible treatments for arsenic removal in Latin
- American waters for human consumption, Environ Pollut 158(5) (2010) 1105-18.
- 725 [5] S. Islam, M.M. Rahman, M. Islam, R. Naidu, Geographical variation and age-related dietary
- exposure to arsenic in rice from Bangladesh, Science of the Total Environment 601 (2017) 122-131.
- [6] H. Rasheed, P. Kay, R. Slack, Y.Y. Gong, A. Carter, Human exposure assessment of different
- arsenic species in household water sources in a high risk arsenic area, Science of the Total
 Environment 584 (2017) 631-641.
- 730 [7] E. Astolfi, A. Maccagno, J.G. Fernández, R. Vaccaro, R. Stimola, Relation between arsenic in
- 731 drinking water and skin cancer, Biological Trace Element Research 3(2) (1981) 133-143.
- [8] W.-P. Tseng, Effects and dose-response relationships of skin cancer and blackfoot disease with
 arsenic, Environmental health perspectives 19 (1977) 109-119.
- 734 [9] T. Yoshida, H. Yamauchi, G. Fan Sun, Chronic health effects in people exposed to arsenic via the
- drinking water: dose-response relationships in review, Toxicol Appl Pharmacol 198(3) (2004) 24352.
- 737 [10] W.H.O. WHO, Preventing disease through healthy environment. Exposure to arsenic: a major
- public health concern, Public Health and Environment, 20 Avenue Appia, 1211 Geneva 27,
- 739 Switzerland, 2010.
- 740 [11] J. Bundschuh, M. Litter, V.S. Ciminelli, M.E. Morgada, L. Cornejo, S.G. Hoyos, J. Hoinkis, M.T.
- 741 Alarcon-Herrera, M.A. Armienta, P. Bhattacharya, Emerging mitigation needs and sustainable
- options for solving the arsenic problems of rural and isolated urban areas in Latin America a
 critical analysis, Water Res 44(19) (2010) 5828-45.
- 744 [12] R. Kumar, M. Patel, P. Singh, J. Bundschuh, C.U. Pittman, Jr., L. Trakal, D. Mohan, Emerging
- technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods,
- experience from, and options for Latin America, Sci Total Environ 694 (2019) 133427.
- 747 [13] D. Mohan, C.U. Pittman, Jr., Arsenic removal from water/wastewater using adsorbents--A
- 748 critical review, J Hazard Mater 142(1-2) (2007) 1-53.
- 749 [14] M.I. Litter, A.M. Ingallinella, V. Olmos, M. Savio, G. Difeo, L. Botto, E.M.F. Torres, S. Taylor, S.
- 750 Frangie, J. Herkovits, I. Schalamuk, M.J. Gonzalez, E. Berardozzi, F.S. Garcia Einschlag, P.
- 751 Bhattacharya, A. Ahmad, Arsenic in Argentina: Technologies for arsenic removal from groundwater
- sources, investment costs and waste management practices, Sci Total Environ 690 (2019) 778-789.
- 753 [15] M.I. Litter, A.M. Ingallinella, V. Olmos, M. Savio, G. Difeo, L. Botto, E.M. Farfan Torres, S.
- 754 Taylor, S. Frangie, J. Herkovits, I. Schalamuk, M.J. Gonzalez, E. Berardozzi, F.S. Garcia Einschlag, P.

- 755 Bhattacharya, A. Ahmad, Arsenic in Argentina: Occurrence, human health, legislation and
- 756 determination, Sci Total Environ 676 (2019) 756-766.
- 757 [16] J. Kim, J. Song, S.-M. Lee, J. Jung, Application of iron-modified biochar for arsenite removal
- 758 and toxicity reduction, Journal of Industrial and Engineering Chemistry 80 (2019) 17-22.
- 759 [17] S. Alvarado, M. Guedez, M.P. Lue-Meru, G. Nelson, A. Alvaro, A.C. Jesus, Z. Gyula, Arsenic
- 760 removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia
- 761 crassipes) and Lesser Duckweed (Lemna minor), Bioresour Technol 99(17) (2008) 8436-40.
- 762 [18] J.W. Huang, C.Y. Poynton, M.P. Elles, Phytofiltration of Arsenic from Drinking Water Using
- 763 Arsenic-Hyperaccumulating Ferns, Environmental science & technology 38(12) (2004) 3412-3417.
- 764 [19] O. Gibert, J. De Pablo, J. Cortina, C. Ayora, Treatment of acid mine drainage by sulphate-
- 765 reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale
- 766 experiments, Reviews in Environmental Science and Biotechnology 1(4) (2002) 327-333.
- 767 [20] A.G. Karunanayake, C. Navarathna, S. Gunatilake, M. Crowley, R. Anderson, D. Mohan, F.
- 768 Perez, C.U. Pittman, T.E. Mlsna, Fe3O4 Nanoparticles Dispersed on Douglas Fir Biochar for 769 Phosphate Sorption, ACS Applied Nano Materials (2019).
- 770 [21] S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W.G. Harris, K.W. Migliaccio, Removal of
- 771 arsenic by magnetic biochar prepared from pinewood and natural hematite, Bioresour Technol 772 175 (2015) 391-5.
- 773 [22] K.Z. Benis, A.M. Damuchali, J. Soltan, K. McPhedran, Treatment of aqueous arsenic–A review
- 774 of biochar modification methods, Science of The Total Environment (2020) 139750.
- 775 [23] X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of biochar for the removal of 776 pollutants from aqueous solutions, Chemosphere 125 (2015) 70-85.
- 777 [24] R. Deng, D. Huang, G. Zeng, J. Wan, W. Xue, X. Wen, X. Liu, S. Chen, J. Li, C. Liu,
- 778 Decontamination of lead and tetracycline from aqueous solution by a promising carbonaceous
- 779 nanocomposite: Interaction and mechanisms insight, Bioresource technology 283 (2019) 277-285.
- 780 [25] S. Rajput, C.U. Pittman Jr, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and
- 781 applications for lead (Pb2+) and chromium (Cr6+) removal from water, Journal of colloid and
- 782 interface science 468 (2016) 334-346.
- 783 [26] C.M. Navarathna, N. Bombuwala Dewage, C. Keeton, J. Pennisson, R. Henderson, B. Lashley, X.
- 784 Zhang, E.B. Hassan, F. Perez, D. Mohan, Biochar Adsorbents with Enhanced Hydrophobicity for Oil 785 Spill Removal, ACS Applied Materials & Interfaces 12(8) (2020) 9248-9260.
- 786 [27] N.B. Dewage, A.S. Liyanage, Q. Smith, C.U. Pittman Jr, F. Perez, D. Mohan, T. Mlsna, Fast
- 787 Aniline and Nitrobenzene Remediation from Water on Magnetized and Nonmagnetized Douglas 788 Fir Biochar, Chemosphere 225 (2019) 943-953.
- 789 [28] P. Singh, A. Sarswat, C.U. Pittman Jr, T. Mlsna, D. Mohan, Sustainable Low-Concentration
- 790 Arsenite [As (III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar 791 Nanocomposite Adsorbents—A Mechanistic Study, ACS omega 5(6) (2020) 2575-2593.
- 792
- [29] X. Londoño, P.M. Peterson, Guadua chacoensis (Poaceae: Bambuseae), its taxonomic identity, 793 morphology, and affinities., Novon 2 (1992) 41-46.
- 794 [30] M.A. Lizarazu, A.S. Vega, Guadua, in: F.O. Zuloaga, Z.E. Rúgolo, A.M. Anton (Eds.), Flora
- 795 Argentina. Plantas Vasculares de la República Argentina. Monocotyledoneae: Poaceae:
- 796 Aristidoideae-Pharoideae2012, pp. 59-63.
- 797 [31] M.A. Lizarazu, Z.E. Rúgolo de Agrasar, A.S. Vega, A New Species of <I>Guadua</I> (Poaceae,
- 798 Bambusoideae, Bambuseae) and Synopsis of the Genus in Argentina and Neighboring Regions, 799 Systematic Botany 38(4) (2013) 1062-1075.
- 800 [32] A.S. Vega, Z.E. Rúgolo, Guadua Kunth, in: Z.E. Rúgolo (Ed.), Bambúes leñosos nativos y
- 801 exóticos de la argentina, Trama S.A, CABA, Argentina, 2016, pp. 99-112.

- 802 [33] M. Lindholm, S. Palm, Guadua chacoensis in Bolivian investigation of mechanical properties of
- 803 a bamboo species, Department of Management and Engineering Centre for Wood Technology & 804 Design, University of Linköping, Sweden, 2007.
- 805 [34] J.P. Haggar, C.B. Briscoe, R.P. Butterfield, Native species: a resource for the diversification of
- 806 forestry production in the lowland humid tropics, Forest Ecology and Management 106 (1998) 807 195-203.
- 808 [35] C.C. Panizzo, P.V. Fernandez, D. Colombatto, M. Ciancia, A.S. Vega, Anatomy, nutritional value
- 809 and cell wall chemical analysis of foliage leaves of Guadua chacoensis (Poaceae, Bambusoideae,
- 810 Bambuseae), a promising source of forage, J Sci Food Agric 97(4) (2017) 1349-1358.
- 811 [36] P.V. Fernandez, V.M. Zelaya, L. Cobello, A.S. Vega, M. Ciancia, Glucuronoarabinoxylans and
- 812 other cell wall polysaccharides from shoots of Guadua chacoensis obtained by extraction in
- 813 different conditions, Carbohydr Polym 226 (2019) 115313.
- 814 [37] J. Alchouron, C. Navarathna, H.D. Chludil, N.B. Dewage, F. Perez, C.U. Pittman Jr, A.S. Vega,
- 815 T.E. MIsna, Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle
- 816 dispersed analogues for aqueous arsenic (V) remediation, Science of The Total Environment 706 817 (2020) 135943.
- 818 [38] M. Fu, Sustainable management and utilization of sympodial bamboos, China Forestry
- 819 Publishing House2007.
- 820 [39] A.G. Karunanayake, O.A. Todd, M.L. Crowley, L.B. Ricchetti, C.U.J. Pittman, R. Anderson, T.E.
- 821 MIsna, Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from
- 822 wastewater using magnetized fast pyrolysis biochar from waste Douglas fir, Chemical Engineering 823 Journal 319 (2017) 75-88.
- 824 [40] C.J. Geankoplis, Transport processes and separation process principles:(includes unit 825 operations), Prentice Hall Professional Technical Reference2003.
- 826 [41] S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride 827 on activated alumina, Separation and Purification Technology 42(3) (2005) 265-271.
- 828 [42] R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M. Prasad, Arsenic contamination, consequences 829
- and remediation techniques: a review, Ecotoxicol Environ Saf 112 (2015) 247-70.
- 830 [43] S. Hasan, A. Krishnaiah, T.K. Ghosh, D.S. Viswanath, V.M. Boddu, E.D. Smith, Adsorption of
- 831 divalent cadmium (Cd (II)) from aqueous solutions onto chitosan-coated perlite beads, Industrial & 832 engineering chemistry research 45(14) (2006) 5066-5077.
- 833 [44] S.S.A. Alkurdi, I. Herath, J. Bundschuh, R.A. Al-Juboori, M. Vithanage, D. Mohan, Biochar
- 834 versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in 835 future research?, Environ Int 127 (2019) 52-69.
- 836 [45] T. Wen, J. Wang, S. Yu, Z. Chen, T. Hayat, X. Wang, Magnetic Porous Carbonaceous Material
- 837 Produced from Tea Waste for Efficient Removal of As(V), Cr(VI), Humic Acid, and Dyes, ACS 838 Sustainable Chemistry & Engineering 5(5) (2017) 4371-4380.
- 839 [46] A. Sigdel, J. Park, H. Kwak, P.-K. Park, Arsenic removal from aqueous solutions by adsorption
- 840 onto hydrous iron oxide-impregnated alginate beads, Journal of Industrial and Engineering
- 841 Chemistry 35 (2016) 277-286.
- 842 [47] Q. Yang, Y. Zhong, X. Li, X. Li, K. Luo, X. Wu, H. Chen, Y. Liu, G. Zeng, Adsorption-coupled
- 843 reduction of bromate by Fe (II)-Al (III) layered double hydroxide in fixed-bed column: experimental
- 844 and breakthrough curves analysis, Journal of Industrial and Engineering Chemistry 28 (2015) 54-845 59.
- 846 [48] H. Patel, Fixed-bed column adsorption study: a comprehensive review, Applied Water Science
- 847 9(3) (2019).

- 848 [49] Z. Ding, X. Xu, T. Phan, X. Hu, G. Nie, High adsorption performance for As(III) and As(V) onto
- 849 novel aluminum-enriched biochar derived from abandoned Tetra Paks, Chemosphere 208 (2018)850 800-807.
- [50] X. Hu, Z. Ding, A.R. Zimmerman, S. Wang, B. Gao, Batch and column sorption of arsenic onto
 iron-impregnated biochar synthesized through hydrolysis, Water Res 68 (2015) 206-16.
- [51] P. Roy, N.K. Mondal, S. Bhattacharya, B. Das, K. Das, Removal of arsenic(III) and arsenic(V) on
- chemically modified low-cost adsorbent: batch and column operations, Applied Water Science 3(1)
- 855 (2013) 293-309.
- 856 [52] B. Te, B. Wichitsathian, C. Yossapol, W. Wonglertarak, Investigation of Arsenic Removal from
- Water by Iron-Mixed Mesoporous Pellet in a Continuous Fixed-Bed Column, Water, Air, & Soil
 Pollution 229(9) (2018).
- [53] B. Te, B. Wichitsathian, C. Yossapol, W. Wonglertarak, Development of low-cost iron mixed
- porous pellet adsorbent by mixture design approach and its application for arsenate and arsenite
 adsorption from water, Adsorption Science & Technology 36(1-2) (2017) 372-392.
- 862 [54] Y. Wei, S. Wei, C. Liu, T. Chen, Y. Tang, J. Ma, K. Yin, S. Luo, Efficient removal of arsenic from
- 863 groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization 864 and fast adsorption kinetics, Water Res 167 (2019) 115107.
- 865 [55] J. Nikic, J. Agbaba, M.A. Watson, A. Tubic, M. Solic, S. Maletic, B. Dalmacija, Arsenic
- adsorption on Fe-Mn modified granular activated carbon (GAC-FeMn): batch and fixed-bed
- 867 column studies, J Environ Sci Health A Tox Hazard Subst Environ Eng 54(3) (2019) 168-178.
- 868 [56] M. Kalaruban, P. Loganathan, T.V. Nguyen, T. Nur, M.A. Hasan Johir, T.H. Nguyen, M.V. Trinh,
- S. Vigneswaran, Iron-impregnated granular activated carbon for arsenic removal: Application to
 practical column filters, J Environ Manage 239 (2019) 235-243.
- [57] R. Senthilkumar, D.M. Reddy Prasad, L. Govindarajan, K. Saravanakumar, B.S. Naveen Prasad,
- 872 Synthesis of green marine algal-based biochar for remediation of arsenic(V) from contaminated 873 waters in batch and column mode of operation, Int J Phytoremediation (2019) 1-8.
- [58] J. Yan, Y. Xue, L. Long, Y. Zeng, X. Hu, Adsorptive removal of As(V) by crawfish shell biochar:
 batch and column tests, Environ Sci Pollut Res Int 25(34) (2018) 34674-34683.
- balch and column tests, Environ Sci Pollut Res Int 25(34) (2018) 346/4-34683.
- [59] J.S. Lee, J.O. Nriagu, Stability constants for metal arsenates, Environmental Chemistry 4(2)
 (2007) 123-133.
- [60] Y. Fang, A novel intracellular protein delivery system-Magnesium phosphate nanoparticles
 with cationic lipid coating for catalase intracellular delivery, (2014).
- 880 [61] D. Jiang, B. Chu, Y. Amano, M. Machida, Removal and recovery of phosphate from water by
- 881 Mg-laden biochar: Batch and column studies, Colloids and Surfaces A: Physicochemical and 882 Engineering Aspects 558 (2018) 429-437
- 882 Engineering Aspects 558 (2018) 429-437.
- [62] C. Mansour, G. Lefèvre, E. Pavageau, H. Catalette, M. Fédoroff, S. Zanna, Sorption of sulfate
 ions onto magnetite, Journal of colloid and interface science 331(1) (2009) 77-82.
- [63] B. Verbinnen, C. Block, D. Hannes, P. Lievens, M. Vaclavikova, K. Stefusova, G. Gallios, C.
- 886 Vandecasteele, Removal of Molybdate Anions from Water by Adsorption on Zeolite-Supported
- 887 Magnetite, Water environment research 84(9) (2012) 753-760.
- 888 [64] A.G. Karunanayake, C.M. Navarathna, S.R. Gunatilake, M. Crowley, R. Anderson, D. Mohan, F.
- 889 Perez, C.U.J. Pittman, T. Mlsna, Fe3O4 Nanoparticles Dispersed on Douglas Fir Biochar for
- 890 Phosphate Sorption, ACS Applied Nano Materials 2(6) (2019) 3467-3479.
- 891 [65] D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Jr., Organic and inorganic contaminants removal
- from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review,
 Bioresour Technol 160 (2014) 191-202.
- 894 [66] T.G. Asere, C.V. Stevens, G. Du Laing, Use of (modified) natural adsorbents for arsenic
- remediation: A review, Sci Total Environ 676 (2019) 706-720.

- 896 [67] C.-H. Liu, Y.-H. Chuang, T.-Y. Chen, Y. Tian, H. Li, M.-K. Wang, W. Zhang, Mechanism of arsenic
- 897 adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies,
- 898 Environmental science & technology 49(13) (2015) 7726-7734.
- 899 [68] R. Li, J.J. Wang, L.A. Gaston, B. Zhou, M. Li, R. Xiao, Q. Wang, Z. Zhang, H. Huang, W. Liang, An
- 900 overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion
- 901 contaminants from aqueous solution, Carbon 129 (2018) 674-687.
- 902 [69] N. Bombuwala Dewage, A.S. Liyanage, C.U. Pittman, Jr., D. Mohan, T. Mlsna, Fast nitrate and
- 903 fluoride adsorption and magnetic separation from water on alpha-Fe2O3 and Fe3O4 dispersed on
 904 Douglas fir biochar, Bioresour Technol 263 (2018) 258-265.
- 905 [70] EPA, Toxicity characteristics leaching procedure, Method 1311., (1992).
- 906 [71] Decreto831/93, Residuos peligrosos. Generación, transporte y disposición de residuos
- 907 peligrosos, in: R.d.I.I. 24.051. (Ed.) Ministerio de justicia y derechos humanos de la, Presidencia de
 908 la Nación Argentina, 1993.
- 909 [72] L. Verma, J. Singh, Synthesis of novel biochar from waste plant litter biomass for the removal
- 910 of Arsenic (III and V) from aqueous solution: A mechanism characterization, kinetics and
- 911 thermodynamics, J Environ Manage 248 (2019) 109235.
- 912 [73] T.S. Anirudhan, M.R. Unnithan, Arsenic(V) removal from aqueous solutions using an anion
- 913 exchanger derived from coconut coir pith and its recovery, Chemosphere 66(1) (2007) 60-6.
- 914 [74] D.M. Sherman, S.R. Randall, Surface complexation of arsenic (V) to iron (III)(hydr) oxides:
- 915 structural mechanism from ab initio molecular geometries and EXAFS spectroscopy, Geochimica et
 916 Cosmochimica Acta 67(22) (2003) 4223-4230.
- 917 [75] C.M. Navarathna, A.G. Karunanayake, S.R. Gunatilake, C.U. Pittman Jr, F. Perez, D. Mohan, T.
- 918 Mlsna, Removal of Arsenic (III) from water using magnetite precipitated onto Douglas fir biochar, 919 Journal of environmental management 250 (2019) 109429.
- 920 [76] J. Farrell, B.K. Chaudhary, Understanding arsenate reaction kinetics with ferric hydroxides,
- 921 Environmental science & technology 47(15) (2013) 8342-8347.
- 922 [77] Y. Wang, G. Morin, G. Ona-Nguema, N. Menguy, F. Juillot, E. Aubry, F. Guyot, G. Calas, G.E.
- 923 Brown Jr, Arsenite sorption at the magnetite–water interface during aqueous precipitation of
- 924 magnetite: EXAFS evidence for a new arsenite surface complex, Geochimica et Cosmochimica Acta
- 925 **72(11) (2008) 2573-2586**.