PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A solution for future single-electron-
counting fast-readout Skipper-CCD
experiments: high channel density
front-end electronics design and
noise performance analysis

Chavez, Claudio, Sofo, Miguel, Lipovetzky, Jose,
Chierchie, Fernando, Fernandez Moroni, Guillermo, et al.

Claudio Chavez, Miguel Sofo, Jose Lipovetzky, Fernando Chierchie,
Guillermo Fernandez Moroni, Eduardo Paolini, Jorge Molina, Gustavo
Cancelo, Javier Tiffenberg, Juan Estrada, "A solution for future single-
electron-counting fast-readout Skipper-CCD experiments: high channel
density front-end electronics design and noise performance analysis," Proc.
SPIE 11525, SPIE Future Sensing Technologies, 1152519 (8 November
2020); doi: 10.1117/12.2580121

SPIEo Event: SPIE Future Sensing Technologies, 2020, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Nov 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



A solution for future single-electron-counting fast-readout
Skipper-CCD experiments: high channel density front-end
electronics design and noise performance analysis

Claudio Chavez!?, Miguel Sofo Haro®, Jose Lipovetzky®, Fernando Chierchie!, Guillermo
Fernandez Moroni®, Eduardo Paolini**, Jorge Molina?, Gustavo Cancelo®, Javier Tiffenberg?,
and Juan Estrada3

Tnstituto de Investigaciones en Ingenieria Eléctrica “Alfredo C. Desages” (IIITE-CONICET),
Departamento de Ingenieria Eléctrica y de Computadoras, Universidad Nacional del Sur
(UNS), Bahia Blanca, Argentina.
2Facultad de Ingenieria - Universidad Nacional de Asuncién, Asuncién, Paraguay.
3Fermi National Accelerator Laboratory, Batavia IL, United States.
4Comisién de Investigaciones Cientificas Prov. Buenos Aires (CICpBA), Argentina.
>Centro Atémico Bariloche and Instituto Balseiro, Comisién Nacional de Energia Atémica

(CNEA), Universidad Nacional de Cuyo (UNCUYO), Rio Negro, Argentina.

ABSTRACT

The Skipper-CCDs, a special type of charge-coupled device (CCD) sensor that features sub-electron readout
noise levels, was proposed decades ago. However, only in recent years it has been possible to develop large size
Skipper-CCDs ensuring stable operation. Their extreme low noise operation makes them suitable for experiments
that require low thresholds and high energy resolution, such as dark matter and neutrino interactions detection,
and more recently quantum-imaging and astronomy. New experiments are planning to use kilograms of active
silicon from Skipper-CCDs as sensitive mass. In this way, they can achieve extremely low detection thresholds
and a high probability of particle interaction. However, this approach needs arrays of thousands of Skipper-
CCDs operating at the same time imposing challenging requirements. Also, introduction of this technology in
astronomy and quantum-imaging applications requires a large number of channels per sensor to speed up the
readout. The front-end needs to be redesigned from scratch: it must achieve low noise performance, be simple
for easy integration and allow the routing of thousands of channels out of the sensors with minimal connections.
This paper presents a detailed analysis of options for the front-end electronics and their noise performance.
It describes a novel way of using a dual-slope integrator with minimal components to pile up the charge of
consecutive readouts of the same pixel in a concept that we call a multi-slope integrator. This reduces drastically
the output bandwidth, simplifying the wiring and the warm electronics. These proposals will allow the generation
of new scientific instruments based on Skippers-CCD arrays.

Keywords: Charge-Coupled Device, Skipper-CCD, Sub-electron noise, Dual-slope integrator, Multi-slope inte-
grator, Differential integrator, CCD readout

1. INTRODUCTION

Charge coupled devices (CCDs) are widely used in instruments such as cameras for detection of photons in
astronomy, and in cosmology to detect other particles that interact with the silicon atoms of the sensor. The
readout noise of an standard CCD is in the order of 2 or 3 e—, mostly limited by the white and 1/f noise
combination of the output amplifier of the sensor.!
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The Skipper-CCD?3 is a CCD with a modified output stage that allows to measure the charge of each pixel
several times, and, since the noise of each measurement is independent, the pixel value can be obtained by
averaging the measurements reducing in this way the noise well below 1 e—. The readout electronics, called Low
Threshold Acquisition controller (LTA), specifically designed to control, acquire and processes®® the Skipper-
CCD signals was recently presented.®

The good performance obtained by the Skipper-CCD and the LTA, achieving sub-electron noise with a wide
dynamic range, has allowed the progress and planning of many scientific experiments. The Sub-Electron-Noise
Skipper-CCD Experimental Instrument (SENSEI) uses Skipper-CCDs for Light Dark Matter Searches” and Dark
Matter in CCDs experiment (DAMIC)® is also planning to do so. In the same direction, the Observatory of
Skipper CCDs Unveiling Recoiling Atoms (OSCURA project), is planning to have a 10 of kg active silicon
experiment for dark matter detection based on Skipper-CCDs.?

The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE)!® searches for reactor neutrinos using
standard-CCDs detectors, and the next generation of neutrino experiments: the Neutrino Interaction Observation
with a Low Energy Threshold Array (v—IOLETA experiment) is planning to use several kg of Skipper CCDs.!!

Besides Dark Matter and neutrinos, there are other possible applications for Skipper CCDs such as: spec-
trograph instruments, single photon counting quantum imaging cameras; high precision measurements of silicon
properties (quenching factor, fano factor, ionization energy distribution, temperature dependence),'? cold neu-
tron quantum measurements,'3 etc.

In all these cases the number of channels increases dramatically, either to speed-up readout by adding more
channels to a CCD, or due to the amount of CCDs required to increase the probability of particle interaction. The
electronics for those experiments has to be designed to achieve the necessary scalability in terms of bandwidth
and mechanical properties. This paper present a new design of the front-end electronic towards that objective.
The work is organized as follows: In Section 2 the readout of the Skipper-CCD using Dual Slope Integration
(DSI) is reviewed. Section 3 discusses options for a Skipper-CCD system with high channel density, while Section
4 focuses in the front-end electronics which is close to the sensor and is in-charge of computing the pixel value. A
novel Multiple Slope Integrator (MSI) is proposed, which integrates the charge of several skipper samples of the
same pixel within the analog circuit, reducing the bandwidth required to transmit the information to upstream
electronics. Simulations focused on the noise performance of the front-end electronics using the proposed MSI
topology are presented in Section 5, and conclusions are presented in Section 6.

2. SKIPPER-CCDS READOUT

The traditional scheme/architecture for scientific CCD readout is shown in figure 1. The sensor output signal
is fed to a nearby preamplifier and then transmitted to the warm readout electronics outside the cryostat via
independent wires. The electronic system then performs a Dual Slope Integration (DSI) to obtain each pixel
value using analog processing circuits.!# !> Recently, new systems have been developed with high speed Analog
to Digital Converters (ADCs) to compute pixels through a fully digital processing (Digital DSI).'¢

The DSI results from the implementation of the following equation:!

A 2Iw +T1 Iw
P=1 (/IW+T :U(t)dt—/o m(t)dt) : (1)

where P; is the final pixel value, z(t) is the CCD output or video signal, 7 is the time spent to transfer the
charge to the sensing node after the reset, A is an arbitrary gain of the signal processing chain, and Iy is the
pixel integration time. The first integral represents the integration over the charge and the second is over the
pedestal (reference level), both integrals are normalized by the integration time Iy .

In general the readout noise per pixel decreases with the pixel integration time as described in,' but due to
the low frequencies components of this noise introduced by the CCDs on-chip output amplifier, the reduction
has a limit after which it remains constant despite an increase in the integration time.?
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Unlike standard CCDs, Skipper-CCDs allow multiples independent measurements (samples) of charge of the
same pixel. The N samples are then averaged resulting in a reduction of the measurement noise by a factor
of #N This remains true even after reaching the limit noise reduction for long integration times mentioned
previously. This fact turns the Skipper-CCD into a sub-electron noise device and also positions it among the
most sensitive instruments in the world.?> However, this capacity comes with a price, since each pixel needs to be
sampled N times, the amount of information that needs to be transferred and stored also gets multiplied by the
same factor N. This has some implications that will be described with further details in the following sections.

VACUUM/LN2 DEWAR

WARM READOUT ELECTRONI

ANALOG VIDEO SIGNAL BUS

CCDs

TEMPERATURE 77 K- 140K AN
~ VACUUM/CRYOGENIC

INTERCONNECTION

Figure 1. A common readout architecture for scientific CCDs. Sensor are cooled down by liquid nitrogen submersion or
using vacuum and cryocoolers. Analog signals are then transported to the warm readout electronics

3. HIGH CHANNEL DENSITY FRONT END

One disadvantage of having Skipper-CCDs in low noise readout mode is the amount of time needed for readout.
A typical skipper of 1500 x 9000 pixels with a readout mode of 100 samples per pixel (N = 100) and an integration
time per pixel of 13 us (I = 13us) takes around 13 hours to complete using a single output amplifier. This time
is approximately proportional to the integration time, the number of pixels and number of samples per pixel.
One way to overcome this problem is by dividing the CCD in many sections, where each one has its own output
stage, or channel. A single CCD can now be readout using many channels at the same time, decreasing the
readout time by a factor equal to the number of channels. Applications like Astronomy and Quantum imaging
need shorter readout times and sub-electron noise levels at the same time, so they may require a Skipper-CCD
with tens of channels. Different scientific applications like Dark Matter and Neutrino detection require not only
ultra low readout noise levels, but also a high amount of sensitive mass, because the predicted event rate per
unit of mass is low.®'7 This means they have to use several CCDs together to reach a minimum required event
rate.

In both cases, when using sensors with multiples channels or multiples sensors working together, the system
becomes a high channel density front-end.

The readout architectures described in section 2 can be scaled up for a high channel density system only up
to a limit. When the number of channels increases by the order of hundreds these architectures become less and
less practical. The mechanical constraints generated by the amount of sensitive analog lines mixed with clock
lines, power lines and readout boards turn these architectures into an inefficient system, even for highly modular
architectures. Also, routing hundreds of sensitive analog signals from the sensor to the upstream electronics
increases the chances of cross talk, noise and faulty connections.
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Adding to these constraints listed above is the amount of data that would be produced by high channel density
Skipper-CCDs array during readout. Scaling it up to hundreds of sensors can produce also storage/transfer
problems. This situation is further detailed in the following sections.

WARM MULTI-CCD DA-

WARM MULTI-CCD DA-
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Figure 2. Alternatives of readout architectures for high channel density front-ends. Most of the readout electronics is
integrated into the sensor package. The left option considers packages with digital output and digital multiplexing, while
the one in the right uses cold multi-channel ADC electronics near the packages with partial integration.

A possible solution for these High Channel Density systems is to put a readout electronics as close as possible
to the sensor so most of the processing stays embedded. Figure 2 describes two options, the one on the left
integrates pixel signal processing and analog to digital conversion electronics into the CCD package. Digital
multiplexing is used to transfer the information to the upstream electronics. The one on the right performs only
the pixel signal processing close to the detector and then uses a multi-channel ADC hardware that is also inside
the cryostat and close to the detectors. The clocks and BIAS voltages are shared by all sensors.

These modular architectures require a lot less connections outside the cryostat and are scalable even for
thousands of channels. A key component shared by these architectures, and the main focus of this work, is the
integrated readout electronic close to the sensors. This circuit must be compact because of space constraints,
must have low power consumption and provide a low readout noise. An option is described with further details
in the next section.

4. INTEGRATED ELECTRONICS: COMPACT LOW GAIN MULTI-SLOPE
INTEGRATOR

We propose to use a low gain integrator as cold readout electronic near the sensor. This circuit uses a preamplifier
and a controllable differential integrator for analog pixel computing as shown in Figure 3. Instead of using a Dual
Slope Integration (DSI) as normally is done for skippers-CCDs, this circuit is designed to perform a Multi-Slope
Integration (MSI). The difference between these two processes is that the integrator is reset after every pixel
sample in the DSI, but only at the end of the last sample of the pixel in the MSI. Figure 4 shows an example of
both methods for N = 3. Analog to digital conversion takes place only once per pixel in MSI instead of sampling
each of the N measurements of the same pixel as in DSI. The MSI output for a Skipper-CCD readout with N
measurements per pixel is given by the relation derived from equation 1

N-1 2@y +7+t; Tw+t;
P vsr = Z (/ x(t)dt—/ x(t)dt) ) (2)
j=0 \"1

w+T+t; 7]
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Figure 3. Schematic of the proposed integrated readout electronic with MSI.
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where t; is the initial time of each measurement of the pixel charge and can be computed as t; = j(2Iw +7+1),
where ¥ models any dead time between consecutive pixel measurements, 7 is the time spent to transfer the
charge to the sensing node after the reset, and Iy, is the pixel integration time.

Low gain multi slope integration (MSI) during skipper-CCD readout

\ - k‘ One reset every N

cycles

P

Amplitude

\

Dual slope integration (DSI) during skipper-CCD readout

B A

Time

Amplitude

One reset per cycle

@ Pixel value sample

Figure 4. Comparison between dual slope integration (DSI) and Multi-Slope Integration (MSI) during Skipper-CCD
readout for 3 samples per pixel (N = 3). For N = 1 both methods are equivalent except for the amplitude.

4.1 Preamplifier

The preamplifier U1 in figure 3 provides a first stage with high input impedance to avoid loading the CCD
output stage and an amplification gain. Since this is the 1st stage after the CCD, the low noise characteristic
and gain ensures a good signal to noise ratio for the rest of the electronic chain. This stage is also used to limit
the bandwidth to up to a few hundreds kHz. R1 and R2 set the gain and R5 the input impedance.

4.2 Controllable differential integrator

U2 along with R3, R4, C'3 and C4 in figure 3 conform the integrator circuit. This configuration is known as
differential integrator'® and it has the advantage of using a less components compared to the more traditional
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approach of an inverting integrator with switchable inverter/non-inverter amplifier. R3 = R4 and C3 = C4 set
the gain as described below.

Three digital lines are required to control the integrator, +int/-int to select positive or negative integration
through the switches S1 and S2, and a reset control line through the switches S3 and S4. When neither positive
nor negative integration is selected the output holds the previous value. The voltage at the differential integrator
output is given by the following equation'®

1
Integrator,,,, = B3 /(SZOut(t) — S1out(t))dt, (3)

where 52,,:(t) and S1,,:(t) are the output of the selection switches S1 and S2.

This integrator also features native cancellation of most of the unwanted effects of non-ideal characteristics
from the switches, since they contribute to the output in opposites ways with the same gain (see equation 3).
This is important because it makes the circuit less sensible to problems related to analog switches, that otherwise
must be compensated adding more components.

In the proposed MSI method, the integrating capacitor acts as a storage device. For each sample of the same
pixel, the capacitor accumulates a charge proportional to the charge in the current pixel and it is not reset until
the beginning of a new pixel. Therefore, the voltage produced at the end of the process on the integrator outputs
is proportional to the charge of the current pixel. A low speed ADC can be used to digitize that voltage right
after the end of the process.

The information stored in this way avoids excessive use of storage space. The amount of data produced by a
Skipper-CCD using DSI is given by the following equation

IMAGE DATApg; = bitspix x TOTAL_PIX x N, (4)

where, bitspix is the ADC bits resolution, TOTAL_PIX is the total number of pixels of the CCD, and N is the
number of samples per pixel. For MSI, only one value is sent every N pixel samples, so the amount of data is
reduce by a factor of 1/N as show in the following equation

IMAGE_DATA g1 = IMAGE}]V)ATADSI. (5)

For a 1500 x 9000 pixels Skipper-CCD, 16 bits per pixel and 400 skipper samples per pixel, the resulting
data storage requirement for the DSI method is 10GB per image, and only 25MB per image for MSI.

Also, since the value of each iteration (MSI cycles) is stored and used in the capacitor, it does not need to
be transferred (in analog or digital form) to any other device before the end of pixel processing. The bandwidth
required to transfer pixels values from the readout system using DSI is given by the following equation

BWnps1 = bitspix fpix; (6)

where, fpix is the pixel frequency, approximately equal to 1/2Iy, . In the case of MSI only one pixel value is sent
every N so the bandwidth per channel is reduced by a factor of 1/N. Bandwidth for MSI is given by

BW
BWygr = TDSI (7)

For a integration time of 10us, 16 bits per pixel and 400 skipper samples per pixel, the DSI method requires
a bandwidth per channel during readout of 800Kbps, while MSI only requires 2Kbps.

These reductions represent requirements of bandwidth and storage 99% lower compared to DSI in this con-
figuration and they have critical impacts in a high channel density front end.
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4.3 Gain considerations

The gain of the chain is limited by the saturation level of the analog stages. From this is clear that in order to
avoid saturation, in a Multi-Slope Integration the gain must remain low for any of the possible 3 situations: (1)
long integration time; (2) a high number of skipper samples N of each pixel and (3) high charge dynamic range
needed. The combination of the aforementioned situations results in a limit for the gain.

The gain of the whole chain is given by

1
Gain[V/e-] = ANST — |, 8
Ve v (70) 0
where, A is the total amplification gain of analog stages excluding the integrator, Iy, is the integration time,
S is the sensitivity of the CCD output amplifier, which is around 2uV/e- , 75 is the gain of the differential
integrator , C' is the integrating capacitor value and R the input resistor (see equation 3).

The output voltage is given by
Vout[V] = Gain x qle-] + Vofset, (9)

where Vgt is the voltage right before the ADC, ¢ is the charge in the current pixel of the CCD and Vigget is
an offset value produced by a combination of the CCD and the readout electronics. This component does not
decrease the data quality but can reduce the dynamic range. The values of R and C in the equation 8 depend
on the application parameters: the dynamic range for current (gmaz), maximum integration time Iyy,,qz, the
maximum number of samples per pixel N,,.:, total chain amplification A and maximum output voltage before
saturation Vo max-

For the case studied here A = 20V/V, Iy ez = 26.648, Gmaz~350e—, Npae = 500, Vout max = 4.096V. From
equation 9 and 8: RC = 36us. For R = 2Kohm, C' = 18nF.

4.4 Real switches and capacitors considerations

Analog switches have some unavoidable unwanted characteristics that can affect the performance of this read-
out system in different ways. These are charge injection, ON resistance Ron, which is the resistance during
conduction, OFF leakage currents, etc. Charge injection is responsibly for glitches in the signal during the
switching.

Ron has variations between switches in the same family or even in the same chip, they also depend on the
operating voltage. Ron affects the gain of the circuit because they connect in series with the inputs of the
integrator. See S1 and S1 in figure 3. They also slow down capacitors discharge during the integrator reset
as S3 and S4 are responsible of short-circuiting integrating capacitors C'l and C3. Because of the non-null
resistance there is a minimum time for fully discharge that must be considered.

53 and S4 OFF leakage current can also charge of discharge the integrating capacitors during active integra-
tion producing an error in the final result.

The differential integrator is less sensible to this non-ideal characteristics of analog switches. However, a
switch with low glitch, medium to low Ron and super low OFF leakage current is recommended.

5. SIMULATION AND NOISE ANALYSIS
5.1 Circuit simulation

Simulations were carried out using spice models with different levels of accuracy according to each type of
components: low levels of accuracy for resistor and capacitor models, including tolerance errors and parasitic
resistances for capacitors. A moderate level of accuracy for operational amplifiers, including finite gain and
bandwidth, finite input impedance and non-null output impedance. For analog switches, high accuracy models
from vendors were used, that includes the behavior of ON/OFF resistance, charge injection, ON/OFF time and
OFF leakage currents. The different precision levels allow to focus the analysis on those components that are
known to be critical to noise and distortion, without increasing unnecessarily the simulation time.

Proc. of SPIE Vol. 11525 1152519-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Nov 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The simulation covered the dynamic characteristics of each model with tolerance errors but did not include
their noise contribution. However, one the main interests was to produce a noise contribution equivalent to the
real CCD output amplifier as addictive noise at the input of the circuit, which is what impose a limit on noise
performance to any CCD readout system.'S Also meaningful was the transient simulation that allows to model
the glitches and transient response of the switches, which are nonlinear phenomena that can not be captured
with standard spectral noise simulations that correspond to linear circuits. The software used for simulation was
LTSpice XVII® from Analog Devices® and simulation step was set to 10 ns.

5.2 Skipper-CCD simulation

The left plot in figure 5 shows the Power Spectra Density (PSD) of the output amplifier of the Skipper-CCD
provided by designers S. Holland et al,> from Lawrence Berkeley National Laboratory (LBNL). This output
amplifier of the CCD is a MOSFET in source follower configuration. The shape of the PSD shows the 1/f
pink noise at lower frequencies and the flat or white noise at frequencies higher than 200KHz. That pink noise
component at the lower part of the spectrum is that limit the noise reduction using only Dual Slope Integration

(DSI).16
. Power Spectral Density 1.36e+04 RMS Overall . Power Spectral Density
10 10
—— Synth1.36e+04 RMS
—— Specl.36e+04 RMS
— +/15dB
10* 4 10* 4
N
2 2
¢ g
>
= 2
103 107 4
102 Y T T T T 10? T T T
10? 107 104 10° 108 10? 107 104 10% 108 107
Freguency (Hz) Frequency (Hz)

Figure 5. On the left the measured Power Spectra Density (PSD) of CCD output stage from.?> On the right, the PSD of
4 seconds of synthesized noise (Blue) along with the the specified target PSD and +/-1.5dB verification marks (black).

A noise signal of 4 seconds was synthesized using the CCD output real PSD and the open source Signal
Analysis Package GUI by Tom Irvine.!® The plot on the right in figure 5 shows the PSD of this synthesized
noise signal (blue) along with the specified target PSD (red) and £1.5dB verification marks. This noise is added
to an ideal CCD output generator to produce realistic CCD signals as shown in the schematic of figure 6 along
with its output signal (video). In the center of the video signal, a pixel can be observed between two voltage
dips caused by clock feedthroughs. The peak (another clock feedthrough) at the center of the image separates
the pedestal or reference level from the signal level. The charge in pixels can be set to any desired values.

5.3 Results and noise analysis

A histogram of the simulation of a signal with 2500 pixels is shown in figure 7. 1000 pixels were set with a charge
of 200 e—, the rest 1500 pixels were left with 0 e— of charge and one sample per pixel N =1 (DSI equivalent).
The output was converted to 18 bits values using a reference of 4.096 V as full scale to simulate the quantization
noise effect introduced by an ADC. The two peaks in the histogram correspond to the groups of pixels with
Oe- (left one) and 200e- of charge. They scatter around a mean value with a Gaussian distribution as expected.
Then Gain in ADU/e- (ADC Units per electron) can be calculated from the distance between the mean values
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Figure 6. Schematic of the CCD signal generator with a capture of the signal for a single pixel
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Gain[ADU /e—] =

Xo00e~ — Xpe-

200e~

)

56.50ms

(10)

where, X (.- and Xopp.- are the mean final values of pixels corresponding to Oe— charge and 200e— charge.
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the noise in e— rms (root mean square) from the standard deviation of the pixels distribution'¢

00e—
Gain’

noisele- rms| = (11)

where, og._ is the standard deviation of the pixels with 0e— charge in ADU.

Using equations 10 and 11 a noise scan was performed. This measures the noise ine— rms for the integration
times of bus, 10us, 20us, 35us and 55us using one skipper sample (N = 1) per pixel and 1000 simulated pixel
for each configuration. The results are shown in figure 8.

2500 pixels simulation. Output histogram at 16 bits simulated digital conversion.

30
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15

Noise [e- rms]

10
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Figure 8. Noise versus pixel integration time.

The plateau in the noise scan shown in figure 8 shows that this noise reduction using one sample per pixel
(DSI) has a limit as mentioned in section 2. Even for integration times above 55us the noise levels remain at
around 2e— rms.

The histogram and the noise scan results were very close to previous experimental results with other type
of electronics which are not suitable for scaling up to thousands of channels.® 1517 The noise limit was slightly
higher for experimental data, around 2.5e— rms. This comparison was used to validate the simulation before
staring with the MSI mode.

Figure 9 shows the results of the last part of the noise analysis. This is a noise scan using the number of
skipper samples per pixel N as parameter in a range of 1 to 49 with the MSI mode of the circuit. Two integration
times were used, 13.3us and 26.6us. The noise were reduced approximately by a factor of ﬁ’ which is seen as a
straight line in the log-log plot. This is the expected noise reduction for N averages of independent measurements
of the same pixel charge. The plot also shows that the noise reach sub-electron levels for N > 5 in the case of

Iy = 26.6pus and for N > 22 in the case of Iy = 13.6us.

5.4 Power consumption considerations

Using +5 V for all the analog stages the power consumption showed in simulation was 33mW per channel. This
is considered a raw estimation, since this parameter depends heavily on the operational amplifier selected.
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Figure 9. Noise versus number of samples per pixels for integration times of 13.3us and 26.6us using low gain MSI.

6. CONCLUSIONS

Two raw options for architectures that are compatible with a high channel density front ends were described along
with their basic requirements. The analysis showed that for systems in the order of hundreds of channels using
Skipper-CCDs it could be possible to reach easy scalability and less problems related to mechanical constraints
if the readout electronics are integrated into the sensor package.

A circuit was proposed as an option for the integrated readout electronics. The simulation results showed
evidence that it can process Skipper-CCD signals and reduce the noise to sub-electron levels while saving storage
and bandwidth by a factor equal to the number of samples per pixel selected. This is despite the non-ideal
characteristic of analog switches and tolerance errors of passive components. It also meets the requirement of
low complexity and low power needed in a high channel density front-ends.

The noise levels obtained in simulation were coherent with previously obtained experimental data. This means
that this method is valid to test options for different readout circuits, filters or pixel computation techniques.
The reason behind the slightly lower noise levels in simulation could be that this work just covered a limited
band of the Skipper-CCD PSD and exclude components noise contribution to avoid excessive simulation times.
A more realistic simulation with the full PSD and all the noise contributors can be set for further study.

After these results, a hardware implementation of the readout circuit proposed is being built for testing with
Skipper-CCDs at Fermi National Accelerator Laboratory.
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