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Decades of successful use of antibiotics is currently challenged by the emergence of
increasingly resistant bacterial strains. Novel drugs are urgently required but, in a scenario
where private investment in the development of new antimicrobials is declining, efforts to
combat drug-resistant infections become a worldwide public health problem. Reasons
behind unsuccessful new antimicrobial development projects range from inadequate
selection of the molecular targets to a lack of innovation. In this context, increasingly
available omics data for multiple pathogens has created new drug discovery and
development opportunities to fight infectious diseases. Identification of an appropriate
molecular target is currently accepted as a critical step of the drug discovery process.
Here, we review how diverse layers of multi-omics data in conjunction with structural/
functional analysis and systems biology can be used to prioritize the best candidate
proteins. Once the target is selected, virtual screening can be used as a robust
methodology to explore molecular scaffolds that could act as inhibitors, guiding the
development of new drug lead compounds. This review focuses on how the advent of
omics and the development and application of bioinformatics strategies conduct a “big-
data era” that improves target selection and lead compound identification in a cost-
effective and shortened timeline.
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INTRODUCTION

Antibiotics have revolutionized medicine in many aspects, and countless lives have been saved since
their discovery at the beginning of the 20th century. However, although antimicrobials have enabled
the control of most bacterial diseases considered deadly in the pre-antibiotic era, the emergence of
resistant or multiresistant strains, often called "superbugs", is now a huge source of concern for

Edited by:
Alessio Squassina,

University of Cagliari, Italy

Reviewed by:
Hui Zhang,

Shanghai Children’s Medical Center,
China

Ernesto Satoshi Nakayasu,
Pacific Northwest National Laboratory

(DOE), United States

*Correspondence:
Adrián G. Turjanski
aturjans@gmail.com

Marcelo A. Martí
marti.marcelo@gmail.com
Darío Fernández Do Porto

dariofd@gmail.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Pharmacogenetics and
Pharmacogenomics,

a section of the journal
Frontiers in Pharmacology

Received: 28 December 2020
Accepted: 17 May 2021
Published: 09 June 2021

Citation:
Serral F, Castello FA, Sosa EJ,

Pardo AM, Palumbo MC, Modenutti C,
Palomino MM, Lazarowski A,

Auzmendi J, Ramos PIP, Nicolás MF,
Turjanski AG, Martí MA and

Fernández Do Porto D (2021) From
Genome to Drugs: New Approaches in

Antimicrobial Discovery.
Front. Pharmacol. 12:647060.

doi: 10.3389/fphar.2021.647060

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6470601

REVIEW
published: 09 June 2021

doi: 10.3389/fphar.2021.647060

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.647060&domain=pdf&date_stamp=2021-06-09
https://www.frontiersin.org/articles/10.3389/fphar.2021.647060/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.647060/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.647060/full
http://creativecommons.org/licenses/by/4.0/
mailto:aturjans@gmail.com
mailto:marti.marcelo@gmail.com
mailto:dariofd@gmail.com
https://doi.org/10.3389/fphar.2021.647060
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.647060


human health. The extraordinary genetic capacities of bacteria
have benefited from man’s overuse of antibiotics, leading to
multiple antibiotic resistance mechanisms for each antibiotic
introduced in the clinical practice (Davies and Davies, 2010).
In this context, novel drugs or therapies are urgently required.
Still, in a scenario where private investment in the development of
new antimicrobials is declining, efforts to combat drug-resistant
infections is becoming a worldwide concern.

Generally, antibiotic discovery and development processes are
ineffective and costly. It is predicted that around 90% of drugs
entering phase 1 clinical trials will not reach approval and that the
overall cost for each approved compound is about 1.4 billion
dollars (Hay et al., 2014; DiMasi et al., 2016). The decision-
making process in a drug discovery project requires a thorough
understanding of as many variables as possible to maximize the
chance of success. The reasons for the failure of many new
antimicrobial development projects range from inadequate
selection of the molecular targets to a lack of innovation and,
quite significantly, the appearance of severe side effects. However,
the availability of pathogen genomic-scale datasets has created
new opportunities for drug discovery, including those against
new resistant and multiresistant strains. Subtractive genomics,
structural bioinformatics, and metabolic pathways analysis
approaches are currently applied for the development of new
drugs and fight antimicrobial resistance, acting as a complement
to traditional wet-lab approaches. Although not enough time has
elapsed to exploit all capabilities of in silico approaches in drug
discovery, target-based drug discovery has been effective for
many therapeutic targets, most notably for HIV/AIDS (Zhan
et al., 2016), and was also successful in identifying potent
antibacterial inhibitors of peptide deformylase (Hackbarth
et al., 2002). Other examples of genomic approaches that
resulted in promising compounds include AFN-1252, a
selective inhibitor of the Staphylococcus aureus enzyme enoyl-
acyl carrier protein reductase, FabI, which showed potent in vitro
activity and in vivo efficacy (Kaplan et al., 2012). Early genome-
wide studies pointed to the essentiality of proteins involved in
fatty acid biosynthesis that, coupled to structural differences
between enzymes from bacteria and mammals, made these a
noteworthy target (Forsyth et al., 2002). BamA, a component of
the β-barrel assembly machine of Gram-negative bacteria, has
also been proposed as a target due to its essentiality and extensive
conservation in these organisms. A monoclonal antibody that
selectively inhibits this protein has been developed and
demonstrated to have bactericidal activity (Storek et al., 2018).
Other inhibitors targeting Gram-negative outer membrane
proteins have also been proposed (MacNair et al., 2020).
Combined, these examples reinforce the utility of target-based
approaches that, informed by genome evidence, can result in the
successful identification of novel drug candidates.

Targeted drug development projects consist of several steps
that range from candidate selection and validation, the
performance of in vitro and in vivo experiments to identify
lead and candidate molecules, pre-clinical development in
animal models, and finally, clinical trials in human subjects to
establish safety and effectiveness. Along this long and winding
road, several significant challenges must be met to avoid failure,

and as in any race, an optimal start is of great advantage. The
mentioned advent of omics approaches (e.g., genomics,
transcriptomics, and proteomics) has fostered the development
of bioinformatics tools guiding to a “big-data era” that allows
improved identification of putative targets and lead compounds.
Other informatics approaches to enhance antimicrobial
discovery, such as Machine Learning (ML), are out of the
scope of the present work and are reviewed elsewhere (Lau
et al., 2021). Opportunities to apply ML occur in all stages of
antimicrobial discovery (Vamathevan et al., 2019; Lau et al.,
2021). Examples include target validation, identification of
prognostic biomarkers, and analysis of digital pathology data
in clinical trials. Halicin is one of the most notable discoveries of
new antimicrobials using ML techniques (Stokes et al., 2020).
This drug was effective against many multidrug resistant
microbes in vitro and in vivo.

In this review, we will focus on the different bioinformatics
strategies used for prioritizing drug targets in pathogens.
Particularly, we include results of prioritized targets with
their potential molecule inhibitor candidates for two bacteria
that cause endemic diseases in Latin American countries,
namely Mycobacterium tuberculosis (Mtb) and Bartonella
bacilliformis (Bb).

HOW TO PRIORITIZE DRUG TARGETS IN
PATHOGENIC BACTERIA?

Since experimental research of putative drug targets is time-
consuming and expensive, it is worthwhile to conduct
bioinformatic analysis to select proteins that are good
candidates as molecular targets for antimicrobial discovery
projects. These analyses consider features commonly thought
to be desirable in a target, including druggability (whether drug-
like compounds are likely to interact with the protein),
essentiality (which suggest that inhibiting the target function
will have the desired bactericidal effect), specificity/selectivity
(potential for inhibiting the pathogen without harming the
host and its microbiota), and relevance in metabolic stages of
the pathogen during infection.

From a general point of view, druggability is a concept used to
describe the ability of a given protein to bind a drug-like molecule,
which in turn modulates its function in some “desired” way
(Gashaw et al., 2012). From a structural point of view, it can be
related to the likelihood that a small molecule binds a given
protein target with high affinity (Sheridan et al., 2010), a property
usually referred to bindability. Taking this into account,
druggable proteins should have a well-defined pocket with
suitable physicochemical properties to bind a drug. Our group
has developed a fast whole genome approach for druggability
prediction based on the open-source algorithm fpocket (http://
fpocket.sourceforge.net/) (Guilloux et al., 2009), which combines
several physicochemical descriptors to estimate the druggability
of the pockets present in proteins. This approach was extensively
tested, both on experimental structures and homology-based
models, in the context of whole proteome target search studies
in our previous works on the subject (Radusky et al., 2014;
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Defelipe et al., 2016; Ramos et al., 2018; Sosa et al., 2018; Farfán-
López et al., 2020). Based on previous analysis of the druggability
score distribution, for all pockets that host a drug-like compound
in the Protein Data Bank (Sussman et al., 1998), we have classified
pockets into four categories: non-druggable (ND), poorly
druggable (PD), druggable (D), and highly druggable (HD).
Good candidate targets are, from a structural standpoint,
proteins that fall either into D or HD classes. Most of the
pockets that actually host a drug in the PDB (80%) could be
classified as druggable or highly druggable by our methodology.

Moving from the structural to a more general druggability
concept, the early steps of rational antimicrobial target
identification usually involve integrating the structural
druggability assessment with the information present in the
host and pathogen whole genomes. This strategy, called
subtractive genomics, allows to select those targets relevant for
the pathogen and absent in the host. Identifying a group of
proteins that are essential to pathogens but are not present in the
host minimizes the chance of unwanted side effects during
treatment (Barh et al., 2011). Three hierarchical levels
(sequence → DNA/protein, structure → protein, and
enzymatic/regulatory reactions → regulatory/metabolic
network) have generally been used alone to select candidate
targets (Radusky et al., 2015; Defelipe et al., 2016; Kaur et al.,
2017; Wadood et al., 2017; Uddin and Jamil, 2018). We drive our
focus to the analysis of these multiple omics layers under an
integrative framework.

Metabolic Reconstruction Contextualizes
Target Importance and Directs Selection in
Early Phases
The first layer of information that can be used to direct target
prioritization efforts is the evaluation of the metabolic
importance of a given protein. Metabolism refers to the set of
biochemical reactions and regulatory pathways leading to cellular
homeostasis and functioning. Early studies on microbial
metabolism elucidated the major pathways related to energy
production, amino acid synthesis, and lipid formation, which,
combined with the current availability of full genomes and
proteomes, helped set the stage for the study of metabolism
on a large-scale. Computational methods that rely on whole-
genome sequences, gene annotations, or both, allow for rapid
generation of an initial metabolic draft for any given organism,
which must be followed by careful manual curation to achieve a
high-quality metabolic reconstruction. Pathway Tools (Karp
et al., 2015) is one of such software providing a module
(PathoLogic) that takes as input the genome and associated
annotations of an organism of interest and, by mapping these
annotations onto enzymatic reactions within the MetaCyc
database using an enzyme-name matching tool, infers the set
of reactions (or the reactome) for the desired species. A pathway-
scoring algorithm is employed to predict pathways within the
expected taxonomic range. Among other capabilities, the tool
allows manual curation to be performed and supports the gap-
filling process of pathways that could not be determined entirely
by name matching alone. This process relies on the gene

sequences. ModelSEED (Devoid et al., 2013) is a web resource
that facilitates the reconstruction, exploration, comparison, and
analysis of organism-specific metabolic models. This tool relies
on an initial genome annotation using RAST and the SEED
ontology, clustering metabolic pathways into subsystems, which
are further subclassified (Devoid et al., 2013). KEGG Mapper
tools (Kanehisa and Sato, 2020) also allow automatic assignment
of enzymatic roles and pathway contextualization using genomes
or proteomes as input and relies on the KEGG ontology to
perform annotations based on sequence similarity. Other tools,
reviewed elsewhere, allow additional curation and pathway-
specific analysis to be performed once a draft reconstruction is
attained (Pitkänen et al., 2010; Abd Algfoor et al., 2017).
Common to all described tools is their dependency upon a
vocabulary of metabolic elements, or ontology, which depicts
the complex, and often multi-level relationships among genes,
proteins, enzymes, biochemical reactions, and regulators (Stobbe
et al., 2012). Accordingly, metabolic reconstructions performed
using different strategies may lead to differing outcomes for the
same organism, as pathway representations and modeling varies
among each developing group (Green and Karp, 2006).

Once a metabolic reconstruction is obtained for the studied
pathogen, this compendium can be used during the early
prioritization step that involves target identification, aiming to
rank the proteins involved in critical metabolic roles or
participate as key intermediaries of multiple pathways. This
analysis can be facilitated using a graph representation of a
metabolism (Ramos et al., 2018). Multiple topological criteria
can then be employed to rank the proteins identified as belonging
to one or more metabolic pathways (Box 1). The rationale behind
this strategy is that drugs that inhibit such targets have higher
chances of success than those that target non-essential cellular
functions.

Target Selection Databases
The increased availability of pathogen genomes and genome-
scale datasets are expected to guide target-based drug discovery
projects. However, a major bottleneck has been the complexity of
capturing and integrating relevant information available, making
them accessible to experimental researchers, thus facilitating the
identification and prioritization of potential antimicrobial targets.
Nowadays, there are several freely available academic resources
designed for antimicrobial target identification. Most of these
tools focus on specific protein characteristics. For example, Drug
Target Database is a useful resource to select potential targets
based on a reverse docking approach. The Therapeutic Targets
Database provides a large volume of data of already known
therapeutic targets. Another database that includes data of
known targets is TargetDB/TargetTrack (Chen et al., 2004), in
spite of its focus on structural information.

There are also a few existing databases and resources aimed at
a particular group of pathogens. TDR targets (Magariños et al.,
2012) is an interesting tool focused on neglected tropical diseases.
Regarding the prioritization of molecular targets in M.
tuberculosis, two specialized databases are currently available,
TuberQ and TargetTB. TuberQ provides a druggability analysis
of theMtb proteome contributing to a better selection of potential
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drug targets for screening campaigns (Radusky et al., 2014).
TargetTB integrates network analysis of the protein-protein
interaction, metabolism, essentiality, sequence analyses, and
structural data (Raman et al., 2008). Some databases allow the
use of metabolic network data to target prioritization, such as
FindTargetsWEB. This web server takes as input an extended
Systems Biology Markup Language (SBML) file of a metabolic
model of the pathogen under study. It performs both flux balance
analysis (FBA) and flux variability analysis (FVA) to prioritize
bacterial molecular targets (Merigueti et al., 2019).

Most of the available user-friendly web servers use few data
sources to prioritize targets. However, continuing efforts to allow
target prioritization by applying integrated multi-data
approaches are in ongoing focus. In this context, by
combining structural druggability, essentiality analysis,
metabolic context, as well as genomic and expression data, our
group has developed Target-Pathogen (TP) (Sosa et al., 2018)
(Figure 1). TP is a web server that enables to select and prioritize
drug targets of several clinical pathogens, including M.
tuberculosis, M. leprae, K. pneumoniae, S. aureus, Schistosoma

BOX 1 | Key concepts used to assign metabolic importance during target prioritization.

Figure Box Network concepts illustrated. (A) The initial four steps of glycolysis. In such traditional textbook representations, the emphasis is usually given to compounds.
Enzyme names abbreviations are depicted in yellow. (B) A reaction-reaction directed graph constructed using the initial reactions shown in A. Here, the emphasis is
given to reactions/enzymes. (C) A toy network with two particularly attractive nodes: node 1 having a high degree; and node 2 having high betweenness centrality. This
example shows a directed graph, in which links are directed from one node to another. In undirected graphs, all links are bidirectional and represented by a single line
connecting a node pair.
Choke-point reaction: A biochemical reaction that uniquely consumes (or synthesizes) a given substrate (or product) (Yeh et al., 2004). Enzymes that perform these
reactions are termed choke-point enzymes, and their blocking could lead to the accumulation of the unique substrate (potentially toxic to the cell) or to the inability to
produce an essential product (impairing the cellular homeostasis). For this reason, the identification of metabolic choke-points is integral to the prioritization of potential
targets.
Reaction-reaction graph: In a graph-oriented study of metabolism (reviewed in (Cottret and Jourdan, 2010), biochemical reactions can be modeled as the network
nodes, which consequently also model the enzyme(s) catalyzing the reaction. A link is placed between two reactions if one consumes a metabolite produced by the
other reaction [Panel Box (A,B)].
Degree centrality (DC): The degree is one of many centrality measures (reviewed in (Jalili et al., 2016; Ashtiani et al., 2018) useful to define important metabolic nodes and
represents the number of links connecting to a node. The higher the DC, the more shared metabolites a given reaction has with other immediate reactions. In directed
graphs, the total DC is the sum of the in-degree (the number of incoming links) and out-degree (the number of outgoing links). An example of a high-degree node is
shown in Panel Box (C), where node 1 has in-degree � 2, out-degree � 6, and a total DC of 8.
Betweenness centrality (BC): Represents the frequency with which a given node appears as an intermediate between the paths of other possible node pairs. In the
metabolic context, a reaction node with high BC would involve a metabolite that participates in many other reactions (not necessarily of the same direct pathway), thus
having an important metabolic role. An example of a node having high BC is shown in Panel Box (C), where node 2 is the only intermediate able to connect reactions on
the left with the three reactions that appear on the right-hand part of the graph. Thus, node 2 is a key intermediate node in this graph.
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FIGURE 1 | A general sketch of Target-Pathogen integrated with LigQ pipeline. Structural druggability and metabolic analyses are integrated with available
experimental data and in silico analysis data. After all, data is integrated into Target-Pathogen, a user-designed scoring function is used to weight different features to
obtain a ranked list of candidate drug targets. Once the target is selected, LigQ pipeline finds all known binders of similar proteins in the PDB and ChEMBL. Target and
putative binders can be used in further molecular docking assays.
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mansoni, Shigella dysenteriae, Toxoplasma gondii, Leishmania
major, Trypanosoma cruzi, Acinetobacter baumannii, and
Bartonella bacilliformis among others. Under the TP
framework, researchers can easily prioritize proteins of interest
quickly and intuitively, running simple queries (such as searching
for proteins with high druggability score or associated with
metabolic reactions of high centrality), filtering by different
data, assigning numerical weights for additional customized
features and merge these results to obtain a ranked list of
targets. A distinct advantage of the Target-Pathogen server is
its capacity to rank, not solely proteins but entire pathways, thus
allowing synergistically to attack several proteins of the same
metabolic pathway. Another attractive feature of TP is that it will
enable users to upload their data to be used in the prioritization
pipeline. As of December 2020, there are 25 of the most relevant
microorganisms from the human health perspective. Users can
also request new genomes to be included in the platform by
emailing target@biargentina.com.ar. By abiding to open-science
practices, data associated with protein structures can be
downloaded to perform further in silico analysis outside TP.

Identifying Lead Compounds to Treat
Bacterial Infections
Once the protein target is selected, the challenge moves from
biology to chemistry and consists of the identification of a small,
usually drug-like, molecule that can inhibit the target’s function,
allows further pharmacological validation of the target, and
ultimately paves the way for the development of a new
antibiotic. To test a molecule’s capacity to inhibit the desired
target, in vitro protein activity (or binding) assays can be
performed, as well as cell culture MIC determinations.
However, the problem is that the universe of molecules that
could act as inhibitors is vast. Conducting experimental high-
throughput screening is beyond the capacity of most academic
research labs in Latinamerican countries, where a typical research
group can afford and test about 100 compounds in a typical one
by one in vitro assay each year. Therefore, usually, only a
moderate number of compounds are tested, and
bioinformatics methods capable of screening for potential
binders are highly appreciated.

The computational selection of potential inhibitors against a
defined target is generally referred to as Virtual Screening (VS).
VS methodologies can be further divided into two main
techniques, which can be applied sequentially to obtain a best
set of potential inhibitors. The first relies mainly on previous
biological information and chemical similarity analysis of the
compounds. It is usually referred to as compound filtering or pre-
selection (as will be described below). The second, which is
computationally demanding, involves molecular docking of
each compound in the protein target, estimating its binding
free energy, and finally performing a ranking. This technique
is commonly and traditionally referred to as VS in the
strictest sense.

Compound filtering traditionally involves selecting drug-like
compounds using a set of driving principles, for instance,
Lipinski’s rules (Lipinski et al., 2001). However, the increasing

amount of information available in public databases allows the
derivation of improved filters, e.g., using the “guilt by association”
principle, as described in our previous work LigQ (Radusky et al.,
2017), and similar developments (O’Boyle et al., 2011; Volkamer
et al., 2012). The idea is that similar proteins bind similar
compounds. Therefore, for a given target, those compounds
that are similar (in chemo-structural properties) to known
binders of similar (homolog) proteins are good candidates.
Starting from the selected target (protein name or UniprotId),
LigQ first finds all known binders of similar proteins. Binders are
classified in groups according to the degree of protein similarity
[starting from high identity >60% homologs to binders to the
same domain in PFAM (Mistry et al., 2020)] and available
information (such as the structure of the protein-ligand
complex) in different databases such as Protein Data Bank
(PDB; http://rcsb.org), Pfam (http://pfam.xfam.org/), and
ChEMBL (EMBL-EBI; http://www.ebi.ac.uk/chembl/).

This set of compounds is called the “seed set.” It is used to
retrieve from large datasets of commercially available
compounds, those that are chemically similar to a specific
-user-defined- degree. Chemical similarity can be defined
based on the Tanimoto Index (Bajusz et al., 2015), and the
similarity retrieval cut-off can be used to select the number of
compounds to be retrieved, which are also organized in clusters
according to their chemical similarity.

The information is extracted for each database, constituting
four individual seed sets (Seed I–IV). Seed I and III are obtained
through the direct search of the protein of interest by its
corresponding identifier (ID) for each base (PDB (Sussman
et al., 1998) and ChEMBL (Gaulton et al., 2012), respectively).
On the other hand, the seeds II and IV are extracted by previously
obtaining the functional domains (Pfam) that compose the
protein of interest by using HMMER and later searching in
PDB and ChEMBL for the compounds that interact with these
domains.

In the following sections, we present and review prioritized
targets and their potential binders, identified using the above-
described methodology for two bacterial pathogens with an
important impact in Latin America: Bartonella bacilliformis
(causal agent of Carrion’s disease) and Mycobacterium
tuberculosis.

BARTONELLA BACILLIFORMIS AND
CARRION’S DISEASE

Carrion’s disease is an ancient vector-borne biphasic illness
dating from the pre-Columbian era, restricted to the South
American Andes, including Peru, Ecuador, and Colombia
(Gomes and Ruiz, 2017). It is an endemic illness found in
Andean valleys at an altitude of 600–3,200 m above sea level.
B. bacilliformis (Bb) is transmitted to humans by female sandflies
belonging to the Lutzomyia genus, which are commonly present
in Andean valleys’ high-altitude regions (Clemente et al., 2012;
Minnick et al., 2014). However, since the end of the last century,
an expansion of the illness into bare areas including jungle and
coastal regions, such as the coastal areas of Guayas andManabi in
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Ecuador, has been reported (Gomes and Ruiz, 2017; Garcia-
Quintanilla et al., 2019). It is also thought that climate change
could favor the expansion of Bb infections, presumably affecting

the vector proliferation. In this sense, it is worthwhile to mention
the El niño phenomenon, the unusual warming of surface waters
in the eastern Pacific Ocean, which leads to a temperature and

FIGURE 2 | Potential druggable targets and putative lead compounds to combat Bartonella bacilliformis. (A) Dihydrofolate reductase (FolA) structure.
Crystallographic structure and a set of attractive features for target prioritization are shown. (B) Number of proteins in Bartonella bacilliformis genome with desirable
properties for drug targets. Different filters are sequentially applied to obtain a shortlist of druggable, essential, and low identities with proteins in the human genome. The
last filter is applied to get the list of proteins with putative binders. (C) Seed Compounds for Bartonella bacilliformis. Venn diagram of the number of seed
compounds corresponding to different sets. Binders are classified into two seed groups. Seed II are those drugs that bind any protein that harbor the same Pfam
domains with Bb proteins and have been co-crystallized with such proteins in the PDB. Seed IV is the set of drugs that bind any protein that shares Pfam domains with
Bartonella bacilliformis proteins and was reported as active in Chembl. (D)Number of proteins in the Bartonella bacilliformis genome for which a ligand can be predicted.
The top panel corresponds to drugs in Seed II. The bottom panel corresponds to drugs in Seed IV.
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FIGURE 3 | Potential druggable targets and putative lead compounds to combatMycobacterium tuberculosis. (A) Inositol-3-phosphate synthase (Ino1) structure.
Crystallographic structure and a set of attractive features for target prioritization are shown. (B)Number of proteins inMycobacterium tuberculosis genomewith desirable
properties for drug targets. Different filters are sequentially applied to obtain a shortlist of druggable, essential, and low identities with proteins in the human genome. The
last filter is applied to get the list of proteins with putative binders (C) Seed Compounds for Mycobacterium tuberculosis. Venn diagram of the number of seed
compounds corresponding to different sets. Binders are classified in groups according to the degree of protein similarity [starting from high identity >60% homologs to
binders to the same domain in PFAM (Mistry et al., 2020)] and available information (such as the structure of the protein-ligand complex) in different databases such as
Protein Data Bank (PDB), Pfam, ChEMBL (EMBL-EBI). Venn diagram of the number of seed compounds corresponding to different sets. Binders are classified into two
seed groups. Seed I and III are obtained through the direct search of the protein of interest by its corresponding identifier (ID) for each base and ChEMBL. Seed II are
those drugs that bind any protein that harbor the same Pfam domains with Bb proteins and have been co-crystallized with such proteins in the PDB. Seed IV is the set of
drugs that bind any protein that shares Pfam domains withMycobacterium proteins and was reported as active in Chembl. (D)Number of proteins in theMycobacterium
tuberculosis genome for which a ligand can be predicted. The top panel corresponds to drugs in Seed II. The bottom panel corresponds to drugs in Seed IV.
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humidity increasing. These climate characteristics especially
favor the sandfly spreading and promoting new Carrion’s
disease outbreaks (Pons et al., 2016).

The infection caused by Bb has two well defined clinical
phases. The early stage, denominated Oroya fever, causes a
severe acute hemolytic anemia. High case-fatality rates as
40–88% have been described in the Oroya fever phase in
patients without any antibiotic treatment. Even with timely
antibiotic treatment, the fatality rate is around 11% (Farfán-
López et al., 2020). The chronic phase of Carrion’s disease is
characterized by the development of dermal eruptions known as
Peruvian warts and commonly present on the head and
extremities. Although this phase is seldom fatal, dermal
eruptions can be accompanied by fever, headache,
lymphadenopathy, and acute pains in joints and bones
(Minnick et al., 2014).

Regarding antimicrobial therapy to treat Carrion’s disease,
different antibacterial agents have been used since the beginning
of the antibiotic era, such as beta-lactams (including penicillins
and cephalosporins), aminoglycosides, and quinolones (Battisti
et al., 1998). Although most Bb strains are sensitive to a broad set
of antimicrobials in vitro, there is still a potential risk of
developing antibiotic-resistance during clinical treatment.
Oroya fever has been traditionally treated with
chloramphenicol, a successful drug due to the frequent
coinfection with Salmonella spp. However, it is nowadays
restricted for humans because of its potential to produce side
effects in the bone marrow. Other drugs to treat Carrion’s disease
include beta-lactams such as ampicillin and penicillin G,
tetracyclines (doxycycline), macrolides (erythromycin,
roxithromycin), trimethoprim-sulfamethoxazole, and
fluoroquinolones (norfloxacin, ciprofloxacin) (Rolain et al.,
2004). Although the second-generation fluoroquinolone
ciprofloxacin is the drug of choice for treating acute cases, it
should be judiciously recommended because of the ability of Bb to
become quinolone resistant. Several studies showed that
quinolone resistance-determining regions (QRDR) are
consequences of synonymous or non-synonymous mutations
and responsible for the intrinsic resistance of Bartonella spp to
this antimicrobial (Valle et al., 2010); (Espinoza-Culupú et al.,
2014). Additionally, mutations conferring resistance to
ciprofloxacin, erythromycin, rifampin, aminoglycosides, and
folate inhibitor targets have been molecularly characterized in
clinical isolates (Biswas et al., 2007). The current scenario is
worse, considering the antibiotic resistance mediated by efflux
pump overexpression (Gomes et al., 2016).

Mycobacterium Tuberculosis
Tuberculosis (TB) is an infectious disease that accounted for
1.2 million deaths in 2019 (Harding, 2020) being one of the top
ten causes of death worldwide and the leading cause of death from
a single infectious agent (ranking above HIV/AIDS). More than
95% of cases and deaths occur in developing countries (Ascenzi
and Visca, 2008). Tuberculosis epidemiology varies markedly
between Latin American countries (Woodman et al., 2019). The
incidence of tuberculosis in Central America (including Mexico),
the Caribbean, and South America were 25.9, 46.2, and 61.2 per

100,000 people. Drug resistance is an increasing problem
throughout the Americas, particularly in Peru, where drug-
resistant tuberculosis accounts for 9% of the cases (Woodman
et al., 2019). In this framework, only 33% of patients received
drug-susceptibility testing, resulting in an estimated 7,000
undiagnosed or untreated patients with drug-resistant
tuberculosis (Woodman et al., 2019). About a quarter of the
Latin American population is latently infected with Mtb.

Immune response toMtb relies on phagocytosis of the bacteria
by macrophages leading to granuloma formation. Inside the
macrophages, bacilli face stressful conditions characterized by
the presence of Reactive Nitrogen and Oxygen Species (RNOS).
Based on this observation, we have hypothesized that identifying
Mtb RNOS protein targets would permit us to select inhibitors
against them and synergize with the macrophages attack in the
latent phase of the infection (Defelipe et al., 2016).

Exploring the Druggable Genomes of
Bartonella bacilliformis andMycobacterium
tuberculosis
We applied the previously described pipeline to the pathogens
mentioned above, Bb and Mtb. Below we present the application
of successive filters (drugability, essentiality, etc.) along their
genomes. Bb genome codes for 1,143 different proteins
(Figure 2B), from which we were able to build a total of
882 high-quality structural models (no experimental structures
are available in the PDB for any Bb protein). Homology-based
models are built for all proteome sequences using MODELLER
(Webb and Sali, 2016) only when an adequate template is
available (coverage 80%, E-value > 1 × 105). Only those
models with GA341 score above 0.7, QMEAN between −2 and
two are retained. It has been shown that the RMSD between the
Modeller models and the native structures is <3 Å (Wallner and
Elofsson, 2005), which shows the quality of the obtained models.
532 (∼60%) of the models harbored a druggable pocket (DS >
0.5). From this subset of structurally relevant proteins, only 73
can be predicted as essential (i.e., close homologs in the Database
of Essential Genes were found). After further filtering those
proteins with close homologs in the human genome, 42
proteins remained (identity < 0.4). When an additional filter
was applied in TP to disclose proteins that could potentially bind
at least one compound, a final set of 33 candidate proteins was
obtained.

Additionally, 18 of the 42 proteins mentioned above also have
a low impact on the gut microbiome, and 17 have putative
binders. Ten targets (all with predicted ligands) are also
associated with choke-points reactions, and four with high-
centrality reactions from the metabolic network point of view
(concepts defined in Box 1). All this information is provided in
the TP database, while a detailed list of mentioned targets is also
presented in Supplementary Table S1.

The Mtb proteome comprises 4,023 proteins (Figure 3B),
being 2,381 structurally defined (382 experimental structures and
1,999 models). From these proteins, 2,047 had DS > 0.5 (∼85%),
831 were also essential, and putative drugs delivered for 762 are
predicted to have a low impact in humans. We could predict
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possible binders for 634 proteins out of this 762. From this subset,
635 satisfy microbiome off-target criteria (527 has possible
binding compounds). If metabolic perspective is also
considered, 140 catalyze choke-points reactions (130 with
potential binders), and seven are associated with-high
centrality reactions (all with predicted ligands). All this
information is provided in the TP database, while a detailed
list of mentioned targets is also presented in Supplementary
Table S2.

The successive steps of the pipeline indicate how the
application of sequential filtering steps narrows the universe of
potential targets. We describe the most promising targets and
their potential inhibitors for Bb andMtb in the following sections.

Bb Prioritized Protein Targets and Their
Potential Inhibitors
In Farfán-López et al. (2020), our group participated in a work that
combined the efforts of scientific groups from Argentina, Brazil,
and Peru to perform an integrative genomic-scale data analysis,
which allowed us to shortlist a set of proteins that could serve as
attractive targets for new antimicrobial discovery projects against
Bb. This study was based on the genomic analysis of Bb USM-
LMMB07, firstly isolated in 2011 during an outbreak in Carmen de
la Frontera district, Huancabamba Province, Piura (Guillen et al.,
2016). The combination of genomic, structural, metabolic, and
functional data integrated inside Target-Pathogen, finally led to
shortlisting six proteins (FabI, FolA, AroA, TrmFO, UppP, and
MurE) with unique characteristics (Table 1). FolA provides the
main dihydrofolate reductase activity in the tetrahydrofolate or
vitamin B9 pathway (Figure 2A). As is well known,
tetrahydrofolate is a crucial intermediate in the biosynthesis of
nucleic acids and proteins, which is biosynthesized de novo in
bacteria. It participates in essential biosynthesis pathways, such as
methionine, purines, and thymidylate. Since dihydrofolate
reductase is essential for cell division and growth, it could
become an attractive target for drug development. Another top-
ranking protein is Enoyl- [acyl-carrier-protein] reductase (FabI),
which is involved in fatty acid biosynthesis processes and was also
described to be essential in many other bacteria, such as E. coli and
Mtb (Heath et al., 1998; Kaplan et al., 2012). The gene product of

aroA also meets the standard requirements to become a potential
molecular target. Our ontology analysis results revealed that this
protein is involved in aromatic amino acids and chorismate
biosynthesis and showed an essential role in Rhodopseudomonas
palustris CGA009 and Caulobacter crescentus (53.3 and 50.9%
sequence identity with Bb aroA, respectively). Another attractive
target found by our subtractive genomic approach is the tRNA
modification enzyme, TrmFO. This protein showed a high identity
against the gid essential gene of Staphylococcus aureus N315.
Interestingly, several pathogens such as E. coli, P. aeruginosa,
and S. enterica (Yim et al., 2006; Gupta et al., 2009; Shippy
et al., 2011) show pleiotropic effects when carrying a mutant
gidA; thus in this line, TrmFO becomes an appealing target in
Bb. Finally, we prioritized UppP and MurE, enzymes involved in
peptidoglycan (PG) biosynthesis, usually considered one of the
principal antimicrobial targets. PG is a crucial component of the
cell envelope of Eubacteria. It has an essential role in bacterial
physiology due to its functions in maintaining the shape and
integrity during growth and cell division, controlling the
internal turgor pressure resistance, and serving as a structural
scaffold to other cell envelope components. We now turn our
attention to their potential inhibitors.

As described in the introduction, we implemented the LigQ
pipeline in the context of Target-Pathogen to allow the
identification of potential ligands that interact with desired
protein targets. As mentioned above, there are no Bb protein
structures in the PDB. There is also no information on
experimental assays in ChEMBL for this pathogen; therefore,
the set of possible inhibitors is based on seed sets II and IV,
i.e., derived from ligands observed for proteins that share domains
with the selected Bb targets. Seed set II consisted of 1,976
compounds, while seed IV was composed of 20,453 drugs. In
contrast, 594 compounds are retrieved from both PDB and
ChEMBL simultaneously (Figure 2C). This fact makes these
drug-like compounds attractive to combat Bb infections. From a
total of 1,143 Bb proteins, we could predict possible binders for 610
in the PDB and 201 in ChEMBL (Figure 2D). Potential inhibitors
for the predicted targets are shown in Supplementary Table S3. As
an example, Isoniazid (CHEMBL64—INH) was indicated as a
potential inhibitor of Bb FabI. INH is one of the most important
first-line drugs against tuberculosis. Although antimicrobial

TABLE 1 | Proteins of Bb with desirable features to become a promising drug target.

Bartonella bacilliformis

Protein name Druggability Choke
point

Centrality Human off-
target

Gut
microbiome

Essentiality

Enoyl-[acyl-carrier-protein] 0,992 Yes High Low Low Yes
Reductase (FabI)
Dihydrofolate reductase (FolA) 0,972 Yes High Low Low Yes
3-Phosphoshikimate carboxyvinyltransferase (AroA) 0,775 Yes High Low Low Yes
FADH(2)-oxidising methylenetetrahydrofolate 0,746 Yes High Low Low Yes
–tRNA-(uracil(54)-C(5))- methyltransferase
(TrmFO)
Undecaprenyl-diphosphatase (UppP) 0,738 Yes High Low Low Yes
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate
ligase (MurE)

0,952 Yes High Low Low Yes

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 64706010

Serral et al. New Approaches in Antimicrobial Discovery

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


activity of INH is thought to be selective for mycobacteria, likely
due to its ability to inhibit mycolic acid synthesis, Bb FabI andMtb
InhA (the protein target of INH) share the same and domains and
are structural homologs, except for the presence of a long loop of
interaction with the substrate found in InhA (Andrade et al., 2008).
Moreover, it was recently shown that isoniazid in conjugation with
nanoparticles could prevent the growth of Enterococcus faecalis,
E. coli, Pseudomonas aeruginosa, and S. aureus (Zargarnezhad
et al., 2020). This prodrug is activated by the heme enzyme
catalase-peroxidase (KatG) endogenous to M. tuberculosis.
Given this information, it is possible to propose INH, or its
Mtb endogenous product (after reaction with KatG), as a
potential compound for future trials against Bb.

Another interesting compound found was Fosmidomycin
(CHEMBL203125). This compound has recently completed
the clinical phase III for Plasmodium infections, although its
mechanism of action is not entirely understood. It is reported that
this compound is active against UDP-N-acetylglucosamine 1-
carboxyvinyltransferase (MurA) in E. coli. MurA shares the same
Pfam domain (PF00275) as Bb. In this way, we can think of
Fosmidomycin as an attractive seed compound to be used in drug
discovery projects against this bacteria.

Mycobacterium tuberculosis Prioritized
Targets and Their Potential Inhibitors
To further analyze the potential of the 743 Mtb proteins, which are
essential and druggable, an analysis of available expression data
under different infection mimicking conditions was previously
performed (Starvation, Hypoxia, RNOS stress, and mice infection)
(Defelipe et al., 2016). We found that 24 of these proteins were also
overexpressed in at least three conditions, including DevS protein,
known to be involved in RNOS sensing and signal transduction,
harboring a druggable kinase ATP binding pocket.

As a last step in the prioritization procedure, a comprehensive
Mtb metabolic network was built. As mentioned above, Target-
Pathogen allowed us to score not individual proteins but entire
pathways, according to their potential to be used as targets in
latent tuberculosis drug discovery projects. In this framework, all
pathways that do not have at least one druggable protein were
ruled out, and a scoring function was developed to combine each
protein data into a global network score.

This analysis revealed several high-scoring “druggable”
pathways, which include a set of targets with great potential
for further drug discovery projects (Table 2). One of themwas the

mycothiol biosynthesis pathway. Mycothiol is crucial for the
intracellular redox balance and plays a crucial role in Mtb
survival within macrophages (Buchmeier et al., 2003). Inositol-
3-phosphate synthase (Ino1, Rv0046c), an enzyme involved in the
early steps of this pathway, is highly druggable and over-
expressed in RNOS stress, hypoxia, and starvation, three of
the four latent infection mimicking conditions (Figure 3A).
Mycolate biosynthesis pathway is also at the top of the
ranking. Mycolate is an integral cell wall component of Mtb
that participates in the survival ability of the bacilli within
infected hosts, virulence, and evasion of the immune system.
This pathway is targeted by first-line tuberculosis drugs such as
isoniazid and ethambutol (Barry et al., 2007) and harbors the
promising target 3-oxoacyl-[acyl-carrier protein] synthase 2
(KasB, Rv2246) involved in meromycolate extension. The
scoring function also reveals the relevance of sulfur
metabolism, essential for the bacilli’s survival and virulence.
Moreover, most genes are absent in humans. Among these
pathways, methionine degradation to homocysteine is
performed by the druggable protein Rv3340
(O-acetylhomoserine amino carboxypropyl transferase),
another interesting target for future developments. Chorismate
biosynthesis was another prioritized pathway. Chorismate is a key
biochemical intermediate, being a precursor for aromatic amino
acids. Within this pathway, 3-phosphoshikimate 1-
carboxyvinyltransferase (Rv3227) could be selected for further
studies. We found that it is druggable, essential, and not present
in humans, and appears overexpressed under different conditions
that mimic infections.

Among other top-scoring pathways revealed by our analysis
are those related to lipoate synthesis. The two key genes (lipA,
Rv2218 and lipB, and Rv2217) are essential, and lipB was also
found to be druggable and expressed under starvation conditions.
Moreover, the druggable pocket of LipB has Cys 176, Tyr22, and
Tyr 91, making the pocket potentially sensitive to RNOS.
Although this process is not ubiquitous in Bacteria, lipoate has
been implicated in microbial pathogenesis, including immune
response-induced oxidative and nitrosative stress in
mycobacteria. It has also been acknowledged that lipoylated
proteins take part in crucial antioxidant processes (Spalding
and Prigge, 2010), thus promoting this high-scoring pathway
from the target-finding aspect. Moreover, LipB has been
structurally characterized and shown to have promising
therapeutic properties (Ma et al., 2006). Other worth
mentioning pathways are the UDP-N-acetyl-D-glucosamine

TABLE 2 | Mtb proteins with worthy properties that make them good candidate targets.

Mycobacterium tuberculosis H37Rv

Protein name Druggability Choke point Centrality Human off-target Gut microbiome Essentiality

Inositol-3-phosphate synthase (Ino1, Rv0046c) 0,946 Yes Low Low Low Yes
3-Phosphoshikimate 1-carboxyvinyltransferase (Rv3227) 0,696 Yes High Low Low Yes
O-Acetylhomoserine aminocarboxypropyltransferase (Rv3340) 0,679 Yes Low Low High Yes
3-Oxoacyl-[acyl-carrier-protein] synthase 2 (Rv2246) 0,709 Yes Low Low Low Yes
Octanoyltransferase (Rv2217 0,703 Yes Low Low Low Yes
Bifunctional protein GlmU (Rv1018c) 0,833 Yes High Low Low Yes
Rv1465 0,802 Yes Low Low Low Yes
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biosynthesis I and iron-sulfur cluster biosynthesis, which harbors
attractive targets, such as Rv1018c (GlmU) and Rv1465 that have
a set of desirable characteristics to be considered as promising
targets to combat latent tuberculosis (Table 2). Regarding
possible binders for Mtb proteome, 82, 10,768, 351, and
65,585 compounds make up seed I, II, III, IV sets,
respectively. Whereas 19 ligands are obtained in the four seeds
in parallel, which make them attractive compounds to treat Mtb
infections (Figure 3C). Concerning the distribution of ligands by
proteins (Figure 3D), 2,123 Mtb proteins interact with at least
one compound, in the case of PDB (Figure 3D, top), 319 interact
with a single ligand, 136 with two, and 1,668 with at least three
(Purple shading). In the case of ChEMBL (Figure 3D, bottom),
125 interact with a single ligand, 55 with two, and 625 with at least
three (purple shading). We could predict ligands for 2,123 Mtb
proteins by searching in the PDB and 805 by looking in ChEMBL.
The putative inhibitors found for the targets mentioned above are
summarized in Supplementary Table S4. Worth to mention is
Disulfiram (CHEMBL964) that was found to target GlmU. This
drug inhibits enzymatic oxidation and is widely used to support
the treatment of chronic alcoholism, different types of cancer, and
parasitic infections. Furthermore, it has recently been proposed as
an antibacterial compound against methicillin-resistant S. aureus
(MRSA) and vancomycin-resistant Enterococcus (VRE) (Frazier
et al., 2019) and particularly Mtb (Horita et al., 2012; Chaudhary
et al., 2020).

DISCUSSION

In the last decades, antimicrobial drug development has observed
a shift from the traditional approaches based mostly on
phenotypic screening of natural/synthetic compounds to a
rational genome-based target-driven lead discovery approach.
Since wet-lab investigations of candidate targets and lead
compounds are time-consuming and expensive, it is
worthwhile to conduct bioinformatic analyses to identify the
proteins and ligands most worthy of experimental follow-up.
In silico analyses are particularly important in developing
countries (such as those from Latin America), where the
research investment is usually limited.

Our developed bioinformatics pipeline and the underlying
methodology, briefly presented here for Bb and Mtb, and freely
available to the scientific community at http://target.sbg.qb.fcen.
uba.ar/patho/, allows starting from a pathogen whole genome, the
modeling and classification of the proteome. General results show
that a large fraction of protein structures harbor a druggable
pocket (60–85%). Interestingly, effects on the essential proteins
yield substantial differences between both bacterial pathogens.
While 20% of Mtb druggable proteins were considered essential,
only 6% of the Bb proteome resulted in druggable and essential
proteins. These differences could be explained by the different
amounts of data available, particularly in terms of essentiality and
knowledge on gene/protein function for both microorganisms,
Mtb and Bb. Although there is vast information available for Mtb,
Bb is a neglected disease with only a regional impact. Specifically,
Mtb essentiality criteria were based on experimental mutagenesis

studies; meanwhile, Bb essential genes were inferred by homology
analysis with the Database of Essential Genes.

The results presented here (further expanded in the web Target-
Pathogen) provide two crucial assets for those researchers in the
field of Bb or Mtb antimicrobial development. In the first place, we
provide a shortlist of attractive protein targets in each pathogen
(Tables 1, 2). We also provide a detailed analysis of those
characteristics that make it a good target for each gene/protein
(essentiality, druggability, biological relevant role, and lack of cross-
reactivity with the host). We hope this analysis will allow wet-lab
researchers to develop upon the targets disclosed herein, moving
research forward. The second, andmore important issue, is that we
provide a list of potential inhibitors and their chemical scaffolds for
several prioritized targets. (Supplementary Tables S3, S4). We
expect that researchers working with those targets and familiar
with whole-cell and protein-based in vitro will become interested
and directly try some of these compounds for their antimicrobial
activity. Furthermore, the current pipeline is also presented for
other targets and pathogens in our freely accessible website, thus
providing the community with a general platform to drive the
development of antimicrobial compounds forward.

In silico approaches are rapid, efficient, and cost-effective
techniques for screening drug targets and narrowing the
search space of drug like-compounds for any given pathogen.
The goal of these techniques is not to replace wet-lab strategies.
Instead, it is to become a useful resource for researchers working
in target identification and drug discovery to translate biological
questions in a computationally tractable way by filtering and
weighting the vast quantity of genome-scale data sets. High-
throughput screening (HTS) campaigns against molecular targets
in vitro, although extremely valuable, typically do not yield
directly good antimicrobial compounds (Payne et al., 2007;
Tommasi et al., 2015). The bacterial cell envelope has evolved
to refract toxic compounds from entering into the cell and even
those drugs that cross the barrier, can be extruded by efflux
pumps in multidrug resistant bugs (Li et al., 2015), thus resulting
in poor in vivo activity. Another limitation of HTS approaches, is
that only a finite amount of chemicals, with limited diversity, are
available in any given library. As this chemical space limitation
will hardly be overcome, novel approaches are needed to tackle
the ongoing problem of bacterial resistance to current treatments.
Our work provides a framework for which such novel strategies
can be developed and further adapted to use by mean sized
research laboratories including those of developing countries.
Our strategy looks first for potential best molecular targets, and
subsequently applies in silico screening to find best drug
candidates. Novel methods for drug delivery, in particular
nanomaterials and molecular transporters have started to be
investigated as alternative antibacterials or anti-infective
carrier systems to improve the internalization of bactericidal
drugs against bacterial infections, which are particularly
problematic in the case of having to reach the cytoplasm,
specially in Gram-negative pathogens. Some of these
promising molecules that could help overcome the bacterial
envelopes and are currently being tested are siderophores,
cyclodextrins, and metal nanoparticles, antimicrobial/cell-
penetrating peptides and fusogenic liposomes (Santos et al.,
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2018). In this sense, we believe in a strategy that combines omics
data and drug screening to discover lead antimicrobials, in which
in silico and wet-lab approaches act synergically to maximize the
success rate of drug discovery projects.
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