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Abstract
The electron-rich nature of aminoaromatic compounds and the electrophilic character of fluoroalkyl  RF radicals allow for a 
special match in substitution reactions. We herein present visible light photocatalyzed fluoroalkylation reactions of aniline 
derivatives, with a study of the reaction mechanisms. The examples evaluated make use of different photocatalysts, such as 
polypyridyl complexes of Ir or Ru transition metals, organic dyes such as Rose Bengal, phthalocyanine-metal organocatalysts, 
or visible-light activated complexes. Different visible light sources that span from the blue region of the electromagnetic 
spectrum to low power red light irradiation sources deliver the excited photocatalysts that ensue into the production of 
fluoroalkyl  RF radicals. In turn, many sources of  RF radicals can be employed, such as fluoroalkyl halides, Togni’s reagents, 
Umemoto’s reagent, etc. All these protocol variants demonstrate the expansion of the methodology and the versatility of 
photocatalytic techniques applied to a special family of organic compounds such as aminoaromatic substrates, which has 
been studied by different groups. Contributions from our own laboratory will be given.
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1 Introduction

The late-stage introduction of perfluoroalkyl  RF groups into 
organic substrates is a subject of great interest, specially so 
for compounds with biological relevance, as the properties 
imparted by  RF groups substantially modify the physical 
chemical characteristics and sometimes biological potency 
of the substituted bioactive candidates [1–6]. For this very 
same reason, introducing the fluoroalkyl group onto bioac-
tive compounds later in the reaction sequence becomes a 
primordial target.

The aniline motive is found in many pharmaceuticals with 
a great variance of activities. As an example, sulfa drugs 
containing N-substituted sulfonamide moieties at the para 
position of an aniline ring  (NH2ArSO2NHR) have long 
been used as antibacterial agents. Halogenated derivatives 
of N-substituted-4-aminobenzenesulfonamides and triazine 
sulfa drug derivatives, have found important activity towards 
carbonic anhydrase isozymes [7, 8] and as anticancer agents 
[9]. Candidates such as anilino enaminones are considered 
potential anticonvulsant agents, and the fluoro, trifluorome-
thyl, and trifluoromethoxy derivatives are also very active 

compounds [10]. In the same lines, widely prescribed anes-
thetics such as procaine and benzocaine contain aminoaro-
matic (vide infra) functionalities.

The electron-rich nature of aminoaromatic compounds 
and the electrophilic character of fluoroalkyl  RF radicals 
allow for a special match in substitution reactions [11–13]. 
This reactivity marriage has encouraged profuse studies, and 
come up with different protocols and alternative approaches 
to substitute free aniline derivatives with  RF moieties.

There are plenty of methods devoted to achieving the 
perfluoroalkylation of aniline derivatives. Early thermal 
protocols such as the use of perfluoroalkyl halides in the 
presence of  Cu2O in DMSO as solvent at high tempera-
tures, (Scheme 1a) [14] or sulfinatodehalogenation reac-
tions of aniline derivatives with perfluoroalkyl chlorides 
(Scheme 1b) [15–17], or the direct irradiation of mixtures 
of perfluoroalkyl(di)iodides and aminoaromatics [18], all 
afford perfluoroalkyl-substituted anilines.

Transition metal-mediated cross coupling reactions can 
also be used to achieve aryl-RF compounds. Recently, the 
transition-metal-catalyzed fluoroalkylations with aryl hal-
ides or aryl metals have come up as effective protocols to 
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Scheme 1  Thermal methods for perfluoroalkylation of aniline derivatives
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form fluoroalkylated compounds [19–21]. However, these 
latter strategies make use of pre-functionalized starting 
substrates.

Homolytic aromatic substitution approaches consisting of 
Pd-catalyzed electron-transfer reactions of amino-substituted 
arenes with fluoroalkyl groups (Scheme 1c) [22, 23], the 
Ni(II)-catalyzed fluoroalkylation of anilines with Togni’s 
reagent (Scheme 1d) [24], or the more recent transition 
metal-mediated thermal regioselective  CAr-H perfluoro-
alkylation strategies developed by Beller and collaborators 
(Scheme 1e) [25], and the silver-catalyzed trifluoromethyla-
tion of anilines (Scheme 1f) [26, 27] have augmented the 
chemists’ armamentarium to substitute electron-rich sub-
strates such as anilines with  RF groups.

Other free radical pathways are available for anilines tri-
fluoromethylation and fluoroalkylation reactions through 
direct C–H functionalization by photoredox catalysis or 
electrochemistry [28–37]. Notably, photocatalytic methods 
gather a cluster of advantages over conventional methods 
that range from the absence of chemical radical initiators, 
tolerance of different functional groups pre-assembled on 
the aniline scaffolds, milder reaction conditions as vis-
ible light energy in replacement of high temperatures, and 
organo(metallic) photoactive catalysts in catalytic or sub-
stoichiometric quantities. The notorious absence of strong 
oxidants or reducing species in photocatalytic reactions is 
accounted for by the prominent redox properties of photo-
catalysts in their excited states, which render them much 
stronger oxidants or reducing agents.

In the next sections, a study of the different visible light 
photocatalyzed fluoroalkylation reactions of aniline deriva-
tives is conducted, with emphasis on their reaction mecha-
nisms, to show the reader the different approaches under-
taken by the authors to attain substitution of free anilines 
with  RF groups. At the end of the manuscript, a comparison 
of visible light photocatalytic techniques is made, employing 
a unique substrate and a single perfluoroalkyl radical source. 
Although the different approaches illustrated all afford good 
substitution yields, considerations regarding regioselectiv-
ity, employment or absence of photocatalyst, heteroleptic or 
organic photocatalysis, and fluoroalkyl radical source, will 
make each strategy unique. Contributions from our own 
laboratory will be given.

2  Discussion

As observed before, the photoredox perfluoroalkylation of 
aniline derivatives has been performed with different pho-
tocatalysts and can be considered a convenient and environ-
mentally benign strategy for the syntheses of these com-
pounds, even more so taking into account the possibility 

of a late fluoroalkyl-group functionalization, which is very 
appealing to the pharmaceutical industry.

Zhu, Ma and colleagues [38] have reported the visible 
light photocatalyzed trifluoromethylation of free aniline 
derivatives employing Togni’s reagent, Ir(ppy)3 as photo-
catalyst, in DMF as solvent under blue LED irradiation. The 
scope of the reaction is depicted in Scheme 2.

Both electron withdrawing and donating groups on ani-
lines afforded reasonable-good yields of trifluoromethylated 
products. The authors [38] studied the reaction mechanism 
through a series of experiments. Kinetic isotope effects anal-
yses, radical trapping experiments, and theoretical calcula-
tions threw some light into the reaction mechanism. Single 
electron transfer from excited Ir(ppy)3* to Togni’s reagent 
generates Ir(IV) and the radical anion of the Togni’s rea-
gent, which decomposes to  CF3 radicals and 2-iodobenzo-
ate. These  CF3 radicals add to the aniline derivative to form 
a cyclohexadienyl-substituted radical intermediate which is 
oxidized to a carbocation intermediate by the upper oxida-
tion state of the photocatalyst (i.e., Ir(IV)). Deprotonation of 
the carbocation intermediate affords the substituted product 
(Scheme 3).

In 2015, our group [39] developed a Rose Bengal-photo-
catalyzed perfluoroalkylation reaction of aniline derivatives 
with perfluoroalkyl iodides  RF-I, in the presence of  Cs2CO3 
as additive, in MeCN as solvent irradiating with a compact 
fluorescent lamp (CFL). The reaction scope is depicted in 
Scheme 4.

Aniline, N-methylaniline, and N,N-dimethylaniline gave 
good yields of perfluoroalkylated products. Anilines with 
electron-donating groups  (CH3,  OCH3) gave excellent yields 
of  RF-substituted products. Aniline with electron-poor 
groups  (NO2) afforded low yields of products.

The authors attempted the perfluorobutylation of two 
bioactive compounds, mefenamic acid (anti-inflammatory 
drug), and benzocaine (anesthetic), obtaining good yields 
of the fluorinated compounds, as shown in Scheme 4. Also 
large-scale reactions of aniline derivatives worked very well.

The authors [39] attempted to study the reaction mecha-
nism, and proposed the catalytic cycle shown in Scheme 5.

In the proposed mechanism visible light-excited photo-
catalyst Rose Bengal (RB*) has enough reductive poten-
tial to reduce n-C4F9-I (DG = − 1.53 V) to  C4F9 radicals, 
which add to the aniline derivative to yield a cyclohex-
adienyl-substituted radical intermediate (I, Scheme 5), 
which in turn, by an oxidative ET to n-C4F9-I, generates 
the Wheland intermediate which suffers deprotonation by 
the base. The photoactive photocatalyst RB is re-generated 
from its radical cation by reduction with carbonate anion, 
yielding carbonate radical anion and thermoneutral RB. 
In another study [40], we postulated an alternative regen-
eration of the photoactive catalyst Rose Bengal which is 
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Scheme 2  Selected examples 
for the scope of trifluoromethyl-
ation of free aniline derivatives
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ensued by the reductive ET from cyclohexadienyl-substi-
tuted radical intermediate I to the radical cation of Rose 
Bengal.

Replacing the inorganic base  Cs2CO3 for N,N,N′,N′-
tetramethylethylenediamine (TMEDA), we uncovered that in 
the presence of molecular iodine and absence of organic dye 
Rose Bengal as photocatalyst, the complex formed between 
TMEDA and  I2 (i.e., [(TMEDA)I.I3]) was capable of produc-
ing  RF radicals when irradiation took place with a compact 
fluorescent lamp (CFL) [41]. Thus, the visible light-acti-
vated complex [(N,N,N`,N`-tetramethylethylenediamine)
I.I3] (i.e., [(TMEDA)I.I3]) in the presence of perfluoroalkyl 
iodides,  RF-I produced  RF radicals efficiently, making possi-
ble substitution reactions on amino-aromatics. A brief scope 
of the reaction is illustrated in Scheme 6 [41].

It is observed from Scheme 6 that for 2,5-dimethoxyani-
line and 2,3-dimethylaniline, the reactions are quite regi-
oselective in the sense that mostly one perfluoroalkylated 
product is obtained when using n-CnF2nY-I (n = 4, 6, 10, 
Y = F or I).

The authors [41] postulated a reaction mechanism based 
on an electron catalysis, by which, upon visible light-
decomposition of [(TMEDA)I.I3] complex into iodine 
atoms (plus molecular iodine and TMEDA), these latter 
react with  RF-I, to produce  RF radicals (and molecular 
iodine, which re-combines with TMEDA).  RF radicals 
substitute the aniline derivative, generating a cyclohex-
adienyl-substituted radical intermediate which, by ulte-
rior ET to  RF-I is converted to a Wheland intermediate 
(and more  RF radicals that re-enter the chain reaction). 

Scheme 6  Selected examples of 
the perfluoroalkylation reaction 
of aniline derivatives employing 
[(TMEDA)I.I3] complex in the 
presence of n-CnF2n+1-I

a.-ortho : para ra�o. b.- meta : para ra�o. 

NH2

R + n-CnF2N+1-I + [TMEDA]I.I3

visible light (CFL)

MeCN, Ar, 20 h

NH2

R

CnF2n+1

NH2

OCH3

NH2

H3CO

OCH3

C4F9

63%

NH2

H3CO

OCH3

C4F8I

NH2

H3CO

OCH3

C6F12I

76% (1 : 1)b18%

C4F9

57% (1 : 5)a

NH2

H3CO

OCH3

C10F21

10%

NH2

CH3

CH3

C4F9

24%

NH2

CH3

CH3

C8F17

58%

NH2

CH3

CH3

C6F12I

54%

NH2

CH3

CH3

C4F8I

37%

NH2

CH3

CH3

C10F21

6% (1 : 2)a

TEMEDA + 2 I2
[TMEDA]I . I3

visible light
(CFL)

TMEDA + I2 + I * + I

n-C4 F9

NH2

H

C4F9

R

NH2

R

n-C4F9-I

NH2

R

C4F9

TMEDAH+

TMEDA

n-C4 F9-I

I2

Scheme 7  Proposed reaction mechanism



Photochemical & Photobiological Sciences 

1 3

The carbocation is deprotonated by TMEDA to render the 
substituted thermoneutral product (Scheme 7) [41].

Zhang et al. [42] have developed an efficient method 
from free anilines to obtain perfluoroalkylated aniline 
derivatives via a photoredox catalysis process. This reac-
tion allows the use of an important variety of substituted 
anilines, including those with electron attracting groups, 
obtaining perfluoroalkylated products with high efficiency 
and good regioselectivity. The optimization study was car-
ried out with 4-iodoaniline and perfluorohexyl iodide. The 
selection of aniline as a substrate is because amino group 
was considered a versatile group for further transforma-
tions. The reaction was carried out with different catalysts: 
Ru(bpy)3(PF6)2, Ru (bpy)3Cl2, fac-Ir(ppy)3. Irradiation 
was done by a blue light-emitting diode (LED) bulb (12 
w) for 24 h. Different bases  (K2CO3,  NaHCO3,  Cs2CO3, 
 Na2CO3,  Na2HPO4) and solvents (DCE, DCM, DMF, diox-
ane, DMSO) were tested.

The best results were obtained using fac-Ir(ppy)3 as cata-
lyst and  K2CO3 and DCE as base and solvent. When the 
reaction was carried out without a photocatalyst or light 
source, there was no reaction, demonstrating that a visible-
light-promoted photoredox process is involved. The scope 
of the transformation is illustrated in Scheme 8.

A variety of anilines were tested to check the extent of 
the reaction. Good to excellent yields were obtained from 
substrates with electron-poor substituents and electron 
donors. Yields were good even with anilines substituted 
with electron-withdrawing groups. These results highlight 
the good tolerance of the reaction conditions. Perfluoro-
alkylated products containing aryl halides and aryl boronates 
allow a good opportunity for further transformations. When 
3-amino-4-iodobenzoate was used as a substrate, a mixture 
of regioisomers was obtained in a 1/1 ratio (ortho/para). 
The method allows to prepare other perfluoroalkylated ani-
lines, with high yields. Trifluoromethyliodide is a useful 

Scheme 8  Visible-light-medi-
ated direct perfluoroalkylation 
of free  anilinesa

aReac�on condi�ons (unless otherwise specified): aniline 1 (1.2 mmol, 3.0 equiv), 2 (0.4 
mmol, 1.0 equiv), K2CO3 (2.0 equiv), fac-Ir(ppy)3 (0.1 mol %), 1,2-dichloroethane (4 mL), 
argon atmosphere, blue LEDs, room temperature,
24 hours. All reported yields are those of the isolated products.
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Scheme 9  Visible-light-medi-
ated direct perfluoroalkylation 
of free  anilinesa

a.-Reac�on condi�ons (unless otherwise specified): free anilines 1 (1.2 mmol, 3.0 equiv), CF3I 4 (a solu�on 
in 1,2-dichloroethane, 0.4 mmol, 1.0 equiv), K2CO3 (2.0 equiv), fac-Ir(ppy)3 (1 mol %), 1,2-dichloroethane 
(4 mL, together with CF3I solu�on), argon atmosphere, blue LEDs, room temperature, 24 hours. All 
reported yields are those of the isolated products. b.- The reac�on was conducted in DMSO with a solu�on 
of CF3I in DMSO.
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trifluoromethylating reagent, however, due to its gaseous 
state at room temperature, its accurate measurement is dif-
ficult. The authors found that a  CF3I solution in DCE or 
DMSO could be stored at room temperature without losing 
titer, allowing for convenient handling. Under these modified 
conditions trifluoromethylation of various anilines was car-
ried out in good to high yields. Good tolerance to the vari-
ous functional groups was demonstrated (Scheme 9). When 
aniline was used as a substrate, a mixture of regioisomers 
was obtained in a ratio of 1.6/1 (ortho/para). The same was 
observed when using naphthylamine.

A possible mechanism in shown in Scheme  10. The 
photoredox catalytic cycle is initiated, upon irradiation of 
Ir(ppy)3 with blue LEDs, from the excited state of the pho-
tocatalyst *[Ir(ppy)3] (III).The perfluoroalkyl radical is then 
generated by single electron transfer from III to  RFI and 
Ir(IV)(ppy)3 (IV). This formed radical reacts with the aniline 
to give intermediate V, which is oxidized by IV, to Wheland 
intermediate VI followed by abstraction of a proton by the 
base to give the perfluoroalkylated product.

In another report [43] the unprecedented perfluoroalkyla-
tion reaction of aniline derivatives employing this time low 
power red-light irradiation sources (red LEDs) and com-
mercially available zinc phthalocyanine as photocatalyst has 
been presented. Perfluoroalkyl iodides were employed as 
perfluoroalkyl radical sources, ascorbic acid, sodium acetate 
and 2,4,6-collidine as additives in MeCN:DMF mixture of 
solvents. Irradiation took place with 635 nm red LEDs. The 
scope of the transformation regarding aniline derivatives is 
illustrated in Scheme 11.

It is observed from Scheme 11, that substitutions of 
electron-rich anilines are carried out efficiently and in a 

regioselective manner, purporting that  C4F9 radical pro-
duction under red-light photocatalysis is an convenient and 
competent methodology.

The reaction mechanism was inspected through a series 
of experiments. Radical scavenger TEMPO suppressed the 
reaction completely. The presence of 1,4-dinitrobenzene, 
a well-known radical anion scavenger, affords a notorious 
decrease in the perfluorobutylation of aniline (30% product 
yield). The reaction in the presence of oxygen, afforded 
only a slight decrease in product yield. In the absence of 
illumination, the reaction (dark reaction) does not afford 
product, whereas the reaction carried out under white light 
illumination led to 30% yield of substitution product, prob-
ably from white-light-induced homolysis of  C4F9-I bond. 
The reaction under red light irradiation in the absence of 
photocatalyst (i.e., zinc phthalocyanine) afforded less than 
5% yield of substitution product. These results indicate 
that excitation of PC under red-light is required for sub-
stitution to proceed. A proposed mechanism is depicted 
in Scheme 12.

Initially, the red-light-photoexcited PC accepts one elec-
tron from 2,4,6-collidinium ascorbate to form the anion 
radical of the photocatalyst (Stern Volmer results confirm 
that fluorescence of PC* is suppressed by 2,4,6-collidinium 
ascorbate), along with formation of ascorbate radical anion 
 Asc⋅−, and concomitant loss of  H+ and one electron. This 
process has a favorable Gibbs energy (ΔGET =  − 0.775 V) 
The anion radical of the photocatalyst should reduce  RF-I to 
 RF radicals, which in turn substitute the aniline derivative. 
Further comparative mechanistic studies on perfluoroalkyla-
tion of anilines derivatives under red-light photocatalysis 
was carried out by Yerien and colleagues, where radical 

a.-para : ortho ra�o

Scheme 11  Selected examples for the perfluorobutylation of aniline derivatives under red-light photocatalysis
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chain lengths were compared between different photocata-
lysts [40].

In a parallel study [40] the efficiency of different pho-
tocatalysts (Rose Bengal, (Ir[(dF(CF3)ppy]2(dtbbpy)+, 
and zinc phthalocyanine) on the perfluorobutylation of 

4-methylaniline was compared, employing different light 
sources (green LEDs, violet LEDs, and red LEDs, respec-
tively). The perfluorobutylation of 4-methylaniline under 
Rose Bengal photocatalysis is made possible through an 
oxidative quenching cycle of the photocatalyst, whereas 

Scheme 12  Proposed reaction mechanism

Scheme 13  Proposed reaction 
mechanisms for the per-
fluorobutylation of 4-methyl-
aniline under oxidative (A) and 
reductive (B) quenching cycles 
of the photocatalysts, employ-
ing (Ir[(dF(CF3)ppy]2(dtbbpy)+ 
(PC-1), zinc phthalocyanine 
(PC-3) and Rose Bengal (PC-2)

(a) (b)
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the same reaction under Ir[(dF(CF3)ppy]2(dtbbpy)+, or zinc 
phthalocyanine photocatalysts are conducted under reductive 
quenching cycles of the photocatalysts. A pictorial represen-
tation of the photoredox cycles within each photocatalyst is 
given in Scheme 13.

From Scheme 13, it is observed that, under the oxidative 
quenching cycle (left, part A, Scheme 13) of Rose Bengal 
(PC-2) as photocatalyst,  RF radicals are produced through 
the reductive ET from excited RB* to  RF-I, leading to the 
radical cation of Rose Bengal, which is re-generated into 
its photoactive state through the ET reduction of intermedi-
ate VIII (cf. Scheme 5). Two catalytic cycles can be distin-
guished: a closed course, in which  RF radicals are produced 
through the initial ET reduction by PC* (path I, Scheme 13), 
and an open catalytic cycle (path C, Scheme 13) where fur-
ther  RF radicals are generated through the ET reduction by 
intermediate VIII. Oxidation of intermediate VIII to inter-
mediate IX is accomplished, in the oxidative quenching 
cycle, by oxidation from the radical cation of the photocata-
lyst (Rose Bengal radical cation).

Regarding the reductive quenching cycles of (Ir[(dF(CF3)
ppy]2(dtbbpy)+ (PC-1) and zinc phthalocyanine photocata-
lysts (PC-3) (B, Scheme 13), the closed catalytic courses 
(path II, Scheme 13) comprise the reduction of  RF-I through 
the lower oxidation state of the photocatalysts (PC-1 and 
PC-3), which are produced by the reductive ET from 
intermediate VIII to the excited state of PC* (path III, 
Scheme 13). On the other hand, the open catalytic cycles 
with PC-1 and PC-3 are attained when intermediate VIII 
reduces  RF-I to  RF radicals by ET (path D, Scheme 13).

Table 1 summarizes the photochemical parameters for the 
photocatalyzed perfluorobutylation of 4-methylaniline under 
three photocatalytic systems (employing PC-1, -2, and -3).

As observed from Table 1, the largest reaction quan-
tum yield for the perfluorobutylation of 4-methylaniline is 
obtained with (Ir[(dF(CF3)ppy]2(dtbbpy)+ (PC-1) photocata-
lyst, followed by that with Rose Bengal (PC-2). The lowest 
reaction quantum yield is obtained when zinc phthalocya-
nine (PC-3) photocatalysis was employed. The excited state 

quenching fraction Q refers to the proportion of the excited 
state of the PC which is used in the very productive photo-
catalytic cycle (generation of  RF radicals). As observed from 
Table 1, both PC-1 and -3 have productive excited states 
involved in the production of  RF radicals, whereas for Rose 
Bengal (PC-2), only 34% of its excited state is devoted to 
the production of  RF radicals (the other 66% of the excited 
state are likely involved in radiative or internal conversion 
processes). Regarding the radical chain lengths L, PC-1 
(i.e., (Ir[(dF(CF3)ppy]2(dtbbpy)+) affords the longest radi-
cal chain, purporting on the efficiency of the open cata-
lytic cycle (path D, Scheme 13). The lowest radical chain 
is that for PC-3 (i.e., zinc phthalocyanine), where path D, 
Scheme 13, seemed not to play a relevant role when PC-3 
is employed. Experimental evidence supports these obser-
vations when comparing photoreaction times (PC-3 needs 
prolonged reaction times, as compared to PC-1 and -2) [40].

3  Conclusions

On account of the excellent electronic match between ani-
lines and the electrophilic nature of fluoroalkyl radicals  RF, 
substitution reactions with  RF groups can be accomplished 
efficiently and in high yields by radical methodologies. On 
the other hand, photocatalytic methods have been estab-
lished as convenient tools to generate the incipient fluoro-
alkyl radical that ensues substitution of the aniline scaffold, 
being a mild, environmentally benign method as compared 
to other radical-generating strategies. We have shown differ-
ent visible-light photocatalytic methods to achieve fluoro-
alkylation of free aniline derivatives. Diverse photocatalysts 
have been explored, such as polypyridyl complexes of Ir and 
Ru transition metals, 18-π electron planar metal-isoindole 
systems such as zinc phthalocyanine, and organic dyes such 
as Rose Bengal have all been successfully employed as pho-
tocatalysts. These photocatalysts can undergo either oxida-
tive or reductive quenching cycles. Also, light sources span-
ning from the blue region of the electromagnetic spectrum 
to red light from power LEDs have been used. Mechanistic 
aspects have been discussed for each photoredox transforma-
tion. A comparative study of the photocatalytic mechanisms 
employing different photocatalysts within a unique fluoro-
alkylation reaction of an aniline derivative has thrown light 
into the open and closed catalytic cycles operating within 
each photocatalytic mechanism, bringing out the lengths of 
radical chains and catalytic efficiency for each photoredox 
transformation.

Future work or studies in the area should be directed to 
studying the visible light photocatalyzed fluoroalkylation 
of free aniline derivatives employing more environmentally 
convenient protocols such as reactions in water, photocata-
lyst recycling, and employing photocatalysts that operate in 

Table 1  Measured values of Stern–Volmer constants  (KSV), reaction 
quantum yields (ϕ), excited state quenching fractions of PC (Q), and 
radical chain lengths (L), employing PC-1–3

a Stern–Volmer constant, in  M−1

b Quantum yields at the maximum absorption wavelength of the PC
c Excited state quenching fractions of PC
d Radical chain lengths

Entry PC KSV
a ϕb Qc Ld

1 1 402 3.81 ± 0.16 0.979 3.9
2 2 4.3 0.51 ± 0.03 0.340 1.5
3 3 162 0.17 ± 0.01 0.951 0.18
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photocatalytic cycles with long radical chains to minimize 
irradiation time and photocatalyst degradation/consump-
tion. Also, a study on photocatalyst efficiency should come 
up with the best photoredox choice for accomplishing the 
fluoroalkylation of free aniline derivatives.
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