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Abstract The theoretical formulation of the Green-Ampt infiltration model has been extended to conditions of
decreasing flooding depth in an isolated system. By defining dimensionless variables of flooding depth s and
time 7, an implicit dimensionless equation t(s) was obtained, which contains a single fundamental dimension-
less parameter y controlling the process, named “infiltration delay parameter”. The characteristics and functional
behaviour of y were analysed, and its physical meaning discussed. A parametric expression s(7) has been obtained,
which uses a unique descriptive parameter a, which in turn depends only on y and on four generic coefficients
valid for a wide range of soil properties and conditions occurring in nature. By means of numerical simulations
using different values of soil parameters and initial flooding depths, it was proved that the proposed parametric
function generates similar infiltration rates and cumulative storages to those that are obtained starting from Darcy’s
equation in the extended Green-Ampt scheme.

Key words infiltration; Green-Ampt model; Darcy’s equation; dimensionless variables; parametric solution

Extension du modele de Green-Ampt aux conditions de hauteur de submersion décroissante, avec
solution paramétrique adimensionnelle efficace

Résumé La formulation théorique du modele d’infiltration de Green-Ampt a été étendue a des conditions de
hauteur de submersion décroissante au sein d’un systéme isolé. En définissant des variables adimensionnelles de
hauteur, s et de temps t de submersion, une équation adimensionnelle implicite 7(s) a été obtenue, qui comporte
un parametre adimensionnel fondamental simple y de contrdle du processus, appelé “parametre de retard de
I’infiltration”. Les caractéristiques et le comportement fonctionnel de y ont été analysés et sa signification physique
discutée. Une expression paramétrique s(7) a été obtenue, qui s’appuie sur un paramétre descriptif unique a, qui
dépend a son tour seulement de y et de quatre coefficients génériques valides pour une large gamme de propriétés
et de conditions pédologiques naturelles. Au moyen de simulations numériques basées sur différentes valeurs
des parametres pédologiques et de la hauteur de submersion initiale, il a été prouvé que la fonction paramétrique
proposée génere des taux d’infiltration et des stockages cumulés semblables a ceux que 1’on obtient avec 1’équation

de Darcy dans le schéma de Green-Ampt étendu.

Mots clefs infiltration; modele de Green-Ampt; équation de Darcy; variables adimensionnelles; solution paramétrique

INTRODUCTION

Green and Ampt (1911) proposed a simplified
model of the infiltration process that contains real-
istic physics and, at the same time, enables one to
obtain an analytical solution, starting from Darcy’s
and the continuity equations. They provided the
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first physically-based equation which describes the
infiltration process of water into the soil. They
introduced the concept of “sharp wetting front” as
a horizontal surface that goes down, leaving behind
a saturated soil fringe, while, below the front, the
soil remains at its initial water content. The sharp
wetting front is a flat and abrupt frontier with a
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discontinuity in the vertical profiles of water content
and of capillary suction. This last variable remains
constant at the wetting front independently of its posi-
tion and of the elapsed time. Later, Philip (1954) gave
firm physical arguments to this model.

On another line of theoretical research, Richards
(1931) developed an equation for the simplest case
of unsaturated flow that expresses the water move-
ment in transient conditions through an unsaturated
porous medium, starting from Darcy’s and the con-
tinuity equations. Richards obtained a second-order
partial differential equation that does not have analyt-
ical solutions unless some simplifications are made.
Several authors developed infiltration equations start-
ing from Richard’s work. Philip (1957a) developed a
theory of infiltration. Then, making simple assump-
tions for the hydraulic conductivity and the diffusivity
in unsaturated soil, he obtained an ordinary differen-
tial equation, and by means of a numerical method
he arrived to an approximate solution: a mathemat-
ical expression of the infiltration rate as a function
of time for a ponding layer of negligible thickness
(Philip 1957b).

The Green-Ampt method gives satisfactory
results especially when the soil is initially dry, and
in particular for soils with a thick texture that exhibit
an abrupt wetting front (Hillel 1971). Green and
Ampt also assumed that, in the whole soil profile,
the porosity and the saturated hydraulic conductivity
are uniform. Morel-Seytoux and Khanji (1974) intro-
duced a viscous correction factor, which is a function
of the initial soil water content, with a strong variation
near saturation. By means of this factor the authors
explained the existence of a transition zone instead of
the above-mentioned abrupt front. The Green-Ampt
scheme has been the object of considerable develop-
ment in the fields of soil physics and hydrology due to
its simplicity and satisfactory versatility for a wide
variety of infiltration problems in which the pond-
ing depth can be considered as constant. The implicit
equations for the infiltration rate, f, and their cumu-
lative value, F', obtained after integration of Darcy’s
equation must be solved numerically by means of an
iterative method, because the required functions f(#)
and F(¢) are implicit in the form of transcendental
equations. Salvucci and Entekhabi (1994) obtained
explicit parametric expressions for these variables by
means of further development as time series. With
a truncation in the fourth term of the time series
obtained for f(r), where t is a dimensionless time
variable, they reported satisfactory adjustments for
any lapse of time, with errors smaller than 2%.

In the case of flatlands with very small
slopes, runoff is very weak and often the rainwater
accumulates at the soil surface, flooding it after the
rain has ceased, or at least ponding the depressions.
In this context, only vertical infiltration is relevant
for short time scales; other transfers, such as runoff,
subsurface flow and evapotranspiration, become less
significant. In this case, the flooding layer decreases
its depth with time as the water infiltrates, and there-
fore the classical Green-Ampt model does not apply.
In one case, Philip (1992) treated the case of falling-
head ponded infiltration for an isolated system, and
arrived at a transcendental equation where the wet-
ting front depth is an implicit function of time. He
also obtained an analytical expression for the time it
takes the pond to empty. More recently, Warrick et al.
(2005) applied the classical Green-Ampt model to
compute cumulative infiltration under variable pond-
ing depths by considering constant depths for very
short intervals and varying them in successive inter-
vals. They found the results “reasonably robust” when
comparing them against field-measured values from
two irrigation events.

The general objective of this work is to obtain
explicit expressions for the decreasing depth of the
flooding layer and for the infiltration rate for Darcy’s
equation in the Green-Ampt “sharp wetting front”
model, assuming that a prescribed amount—and
depth—of water is initially flooding the terrain and
that the only active process is infiltration.

PHYSICAL BASIS AND THEORETICAL
FORMULATION

The Green-Ampt scheme for falling-head
infiltration

Figure 1 depicts the outline of the Green-Ampt
scheme for infiltration for any time ¢ after its begin-
ning, in an isolated system with mass conservation

h, }—1nitial flooding height
h Flooding height at time t ———

Flooding layer
—_—0 Level 1: Soil surface

H=0 Hp=h
Wetted Soil

z, Level 2: Wetting front at time t—a— I-h:zf Hp =y
Capillary potential Yt

z (negative direction)

Fig. 1 Green-Ampt model of falling head ponded infiltra-
tion and acting gravity and pressure potential heads.
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and transfer between the ponded water and the wetted
zone.

The wvariable, A6, which is the difference
between initial and saturated soil water content,
expresses the relative volume of pores to be suddenly
filled by water during the passage of the sharp wetting
front, except for a very small fraction correspond-
ing to the volume of air bubbles trapped in the soil
pores during its wetting. The effective saturated con-
ductivity K,, also called “hydraulic conductivity to
re-saturation”, is a fraction of the saturated conduc-
tivity, K, because of the presence of bubbles which
retard the movement of water. According to Vieux
(2004), the value of K, = 1/2K is usually taken,
whereas Morel-Seytoux and Khanji (1974) proposed
closer values of K and K, with a ratio K/K, that varies
between 1.7 and 1.

It is assumed, as in the Green-Ampt scheme, that
the soil is initially unsaturated, with the following
characteristics:

— The soil matrix is incompressible and the soil
texture is homogeneous, which implies that the
porosity is constant in time and uniform in the
profile.

— The initial soil water content, 0;, is uniform in
the whole profile. Additionally it is assumed that
water migration by vapour diffusion does not
occur in the soil. Therefore, the saturation deficit,
A6 (or available pore space in the soil) is constant
and uniform.

— The capillary potential at the wetting front, v/,
is uniform in the vertical profile and constant in
time.

— The effective hydraulic conductivity of the wet
soil, K., is uniform in the vertical profile and
constant in time.

— At the beginning of the infiltration, a flooding
water layer of height 4 is present at the surface,
with a contiguous layer of wetted soil of infinitesi-
mal thickness (in which Darcy’s equation is valid)
followed by a deep layer of unsaturated soil. The
outline also admits the pre-existence of an already
wetted soil layer of given depth contiguous to the
surface, as if the process had begun before the
instant considered as initial.

Mathematical description of the falling-head
infiltration process based on the Green-Ampt
model

We start from Darcy’s equation in a similar form
to that in the Green-Ampt infiltration model—as

presented in Chow et al. (1994)—considering the
potentials of pressure, H, (hydrostatic pressure and
capillarity) and gravity, H, expressed as units of
energy per unit weight, or potential head (in units
of length). We call L the soil layer thickness which
becomes saturated behind the wetting front; thus, L
increases downward, i.e. L = —z. Also, we denote
the suction head at the wetting front, or the capillary
potential v/, expressed as positive.

Thus, the difference in the potential head at any
time, when comparing level 1 (with z = 0 at the soil
surface) with level 2 (z = zr at the wetting front), is:

AH = (Hg+ H,), — (Hg+ Hy), =h+ L+ (1)

and Az = z; —zp = 0 + L. Therefore, Darcy’s equation
for the flux ¢ downward through the wetted soil can be
expressed, when replacing the partial derivatives by a
difference approximation, as follows:

oH h+L
()2

For simplicity, we use K instead of K,. The left-hand
term in equation (2) expresses the uniform (and nega-
tive) flow in the wet soil layer, and has the same
absolute value and different sign as the infiltration
rate f in the Green-Ampt scheme of the sharp wetting
front.

In our case, the decreasing rate of flooding depth
is equal to /" in absolute value and of opposite sign:

dh
S = =q 3)

From equations (2) and (3) we have:

dh h+L+y

==k ( L ) @
We now propose a treatment of equation (4) which,
contrary to the original Green-Ampt model, does not
require that the flooding or ponding layer keep a con-
stant thickness. We assume that the flooding layer is
continuously reducing in thickness as water infiltrates,
changing from an initial value /¢ to a smaller one 4(¢)
at time ¢.

The Green-Ampt development idealizes the infil-
tration process for a sharp wetting front, and the
cumulative infiltration, F, at a given instant, #, is equal
to the product L - A#. In analogy with this scheme,
we assume that at time ¢z, the depth of infiltrated water
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(ho — h) corresponds to an advancement of the wet-
ting front through a soil layer of thickness, L, which
increases its water content by A6 :

hy —h
A6

F=hy—h=L-A0 = L= (5)

This implies that neither lateral flow (runoff and/or
sub-surface flow), nor evapotranspiration exist, or that
these fluxes are exactly compensated by additional
rain. The relationship assumed in equation (5) was
proposed earlier by Philip (1992).

We now define the positive variable « = 1 — A#.
By replacing A6 in equation (5) and combining it
with equation (4), one obtains:

dh hy—ah+ (1 —a)y
— = _K 6
dt ( ho—h ©)
We also define the dimensionless variable, s:
h
- = 7
= ™

which expresses the flooding depth relative to its
initial value. We now define the auxiliary variable:

AG -

=1
X + o

®)

By using these two variables in equation (6), we
obtain:

ds K(X—as) ©)

az_h_o l1—=s

We now put the time variable in a dimensionless form:

K-y 1 AO -
ho (ho h? ) (19)

and define a new variable:

o 1— A8
y:;:—Aﬁ-\// arn
(1+—ho)

By using equations (10) and (11) in equation (9) we
obtain:

|- |-
E:_( Vs)édfz_ds( S) (12)
dr 1—s 1 —ys

In this differential equation, all the information refer-
ring to the soil type and its initial conditions are
condensed into the parameter y and the dimensionless
variables s and 7.

Integrating both members of (12), yields:

t=y21|:ln<l VS)]+1 a (13)
Y l—y Y
This is the equation that we were looking for: the
Green-Ampt model dimensionless implicit equation
for falling head in an isolated system. Similarly to
what happens in the classical approach for constant
ponding depth, it is not possible to obtain the inverse
expression s(t) analytically.

Before solving equation (13), it is interesting to
analyse some particular cases. First, we can calcu-

late the dimensionless time, 7, for which the pond
empties, i.e. s = 0:

- 1
)= —5 In(1—y)+— (14)
y y

The variation of t( as a function of y is shown in
Fig. 2; y varies from 1, at saturation, to near 0. In
nature, values of y close to zero occur when the soil
is very dry, and therefore v is much larger than /4. It
is interesting to note that both 7¢ and y depend only
on the initial conditions in the soil and above it, and
they are independent of the hydraulic conductivity.

Functional characteristics and physical meaning
of the parameter gamma

The parameter gamma is a dimensionless number
which allows the falling-head infiltration equation
to be expressed for a sharp wetting front in its
simplest form, that is, dimensionless in time and

1

0.9
0.8

(@]
© 07

0.6

%% 02 04 06 08 1

Y

Fig. 2 Dimensionless time at completion of the infiltration
process T vs parameter y .
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space, and as a function of a single, physically-based
parameter.

It can be seen from equation (11) that y increases
when A6 and i decrease, which in turn implies that
the infiltration rate will be slower at all times; also, y
increases with /. In both cases, a higher value of y
means that the completion of the infiltration process
will take more time—the time needed to empty
the flooding water—as shown in equation (14) and
Fig. 2.

It is interesting to highlight the functional
behaviour of y varying along with Ao, ¥ and A6,
which is shown in Fig. 3. From a functional point
of view, it is convenient to treat y as a function of
saturation deficit A9 and the quotient v /Ay between
the front suction to initial hydrostatic heads, because
y depends only on A6 if this quotient remains con-
stant. In Fig. 3(a), we can see that higher values of A6
and v /Ay result in lower values of y. For almost sat-
urated soils, y takes relatively high values (>0.5) and

200

becomes weakly dependent on v /hg, and inversely
for dry soils. In Fig. 3(b) (y vs A6), the isolines
correspond to v /hg; when the soil is initially satu-
rated the variation of y with A6 is linear (straight
line on top with slope equal to —1), and almost lin-
ear for ¥ /hg < 0.5. For very high values of v /hq,
the fall of y is very fast for soils near saturation,
and very slow for drier soils. Figure 3(c) (v vs ¥ /ho)
shows the isolines of Af. In the range of small values
of the quotient v /hg, a very small increase in v /hg
for fixed AO causes a rapid decrease in y, which is
faster for drier soils. For (y/hg) > 20, the parameter
y is also higher for soils with higher water contents,
but it decreases slowly when the quotient between
potentials increases. Figure 3(d) shows the isolines of
suction head i for very dry soils at a fixed satura-
tion deficit (A6 = 0.42), the axes being y and /¢. The
three isolines describe the function y (k) for typical
suction values of loamy sand (¢ = 0.05 m), silt loam
(¢ = 0.15 m) and clay (v = 0.45 m). The increase

8 o o o \%3 Isolines: Quotient of front suction
3 = B = o
2 > to initial hydrostatic heads
(=]
= 0.8
@ 150H 4
e
=N
z £
= g 06
IS & Isolines of [
2 1004 ¥ parameter gamma 5
c o ]
g \ g
[=]
E ,{“ 0.4F
c
S
% S0p
= 0.2¢
i
g 10 —_— |
3 %
o N . % . 1
[¥] 01 0.2 0.3 0.4 05 0.1 02 0.3 0.4 0.5
(a) Saturation deficit (b) Saturation deficit
1 T T T T 0.6 T T T T
\ . loamy sand
2 0.002 /’/J
4 \‘\—\
0.8 i 0.5+ i silt loam ]
Isolines of
saturation deficit
£ £
E o8l % £ 04f
] [y ]
=] o
. o
2 i)
[} Q
E o E
T 0.4F - O 0.3} )
& £ Isolines of front suction head {m)
) !
"é‘ {.?
b A0 =042
L ) 4
0.2 / ‘_.3\ 0.2
qﬁs\
0 'l 1 1 ' 0 1 Il 1 1 1
0 20 40 60 80 100 4] 02 0.4 0.6 0.8 1
(C) Quotient of front suction to initial hydrostatic heads (d) Initial hydrostatic head (m)

Fig. 3 Functional behaviour of parameter y .
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in y for rising values of A is more uniform for higher
values of suction head. Also, for 4y > 0.5 m, thereis a
slow variation in y for all soil types, and a very slow
one for medium to coarse soils. We can see that for
fixed A8 and constant i along each of the isolines, y
rises asymptotically towards its upper bound (1 — A6)
when A increases.
We can also put equation (11) in the form:

_ h() (I—AQ) _ Olh()
Y e e+ 000 o+ A6

(15)

In this equation, the numerator is the product of «
(the fraction of soil volume which is unavailable for
filling with infiltration water) and /¢ (the total water
layer to be infiltrated). Then, the numerator expresses
the degree of difficulty for the process to be com-
pleted, in terms of the soil layer needed to contain
the flooding water layer. In turn, the two terms in
the denominator of y contain the initial conditions
which are responsible for speeding up the process: the
hydrostatic and suction heads, and the available pore
space. The greater either of the terms is, the faster the
infiltration will be. Therefore, y is a dimensionless
fundamental number, which accounts for all the initial
(extrinsic) conditions affecting the infiltration dynam-
ics. It does not depend on the hydraulic conductivity
(intrinsic condition), which acts as an expansion—
contraction timing factor regulating the dimensionless
time, T (see equation (10)).

From equation (14), we can see that 7y (the
dimensionless time needed to complete the infiltra-
tion process) depends only on y and increases along
with y (see Fig. 2). Based on the discussion above, we
propose to denote y as the “infiltration delay param-
eter”. Also, the parameter y, like a scaled index,
ranges between 0 and 1; these bounds correspond,
respectively, to initially dry and initially saturated
soils.

Let us now express the parameter y in terms of
acting potentials. From equation (5), denoting Lenq as
the final depth reached by the wetting front, we can
see that A6 is equal to (hg/Lend), i.e. the quotient
between the initial hydrostatic potential at the sur-
face and the final gravitational potential at the wetting
front. By combining equations (5) and (11) we obtain:

Lend - hO

B Lend + lﬁ (16)

It is easily deduced that this equation contains the
total variations of acting potentials—expressed as

starting minus initial values—when the flooding
water is completely infiltrated. In fact, Ay is the
variation of hydrostatic potential at the soil surface;
Lend = —Zend 18 the variation of gravitational poten-
tial at the wetting front, and — = ¥/, expresses the
negative variation of suction potential in the wetted
soil, which changes from an initially negative value
to zero. Denoting these variations as AH,,, AH, and
AH,, we obtain:

_ AH, — AH,

= (7
AHg — AH,

v

where AH, and AH, are positive and AH, is
negative.

As may be seen, the parameter y accounts for
the total variations of all acting potentials, relating
them in such a way that it expresses the degree of dif-
ficulty for a flooding layer to infiltrate, measured in
dimensionless space and time scales.

OBTAINING AN EXPLICIT PARAMETRIC
SOLUTION OF THE MODEL

Selection of an approximate functional form for
s(7)

Two cases of particular interest in the relationship
between s, T and y are the limit values y = 0 and
y =1, for a completely dry soil and saturation,
respectively. By taking limits from equation (13), it
follows that:

-2t y—>0
S(‘L’)—){l_r y =1 (18)
In the case of initially saturated soil y = 1 and

s(t) becomes a linear function with slope —1; this,
in turn, implies that A(f) becomes a linear function
with slope —K which corresponds to the constant infil-
tration regime at saturation. In this case, the pond
empties at tg = 1, while for completely dry soils
(y =0)itis o = 0.5 (see Fig. 2).

In order to obtain s(7) for any intermediate value
of y, a numerical procedure was followed; by assign-
ing to y incremental values from 0.05 to 0.95, equa-
tion (13) was solved for small increments in 7 in the
interval [0, to]. The Newton-Raphson method was
used to solve the equation.

From the table of multiple results, many curves
representing s(t) for particular values of y were
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0 02 04 06 08 1
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Fig. 4 Relative flooding depth s vs dimensionless time, 7,
for different values of parameter y .

derived; these are shown in Fig. 4, where the straight
line of unitary slope corresponds to an initially satu-
rated soil for which y = 1.

As can be seen from Fig. 4, the factors accompa-
nying the time variable, ¢, in equation (10) not only
allow one to obtain a dimensionless time variable
7, but also act as a grouped reducing factor which
bounds the range of 7 between 0.5 for completely dry
soils and 1 for saturated soils. As expected, higher val-
ues of the hydraulic conductivity K and the initial con-
ditions A6 and v shorten the lapse of the infiltration
process, while the ponding depth /¢ acts in the oppo-
site way, retarding the completion of that process. We
can see from equation (10) that K, A6 and i act as
expanding factors of t, while a greater value of /g
contracts t. Therefore, t also performs as a reduced
time variable. However, it is clear from Fig. 4 that
the value of parameter y determines the shape of the
curve s(7) and, consequently, the infiltration rate and
cumulative infiltration at any dimensionless time t.

A number of candidate parametric functions were
adjusted to the curves representing s(t). Thereafter,
the functions were ranked according to their respec-
tive goodness of fit. Among the best, the following
function was chosen because it had the lowest number
of parameters:

\b

s(t)y=1— (E) (19)

In order to be consistent with equation (13), in the lat-
ter equation the parameters ¢ and b must depend only
on y. In addition, equation (19) must match the func-
tions shown in the right-hand side of equation (18) for
both limit cases, i.e. when y takes the values 0 and 1.
These conditions are accomplished when ¢ and b are
equal to tg, given the relationship between 7o and y
shown in Fig. 2. Also, the asymptotic behaviour of 7

when y tends to 1, as shown in Fig. 2, is performed
by equation (19) when ¢ and b are equal to 7¢. To
ensure the best fit of equation (19) to the analytical
implicit solution given by equation (13) for any set of
values of initial conditions, it is convenient to make
the exponent b = 7y — a, where a can be considered
as a perturbation of .

The final obtained function depends implicitly on
the parameter y through t( (see equation (14)) and a:

s(t)=1- (i>m_a (20)

70

In order to obtain a(y), several fitting functions were
tested. The chosen function was the following:

ary +ayy?
a = 21
») (1+a3y+a4y2) 2D

with:
a1= 0.05339671
o
as= 0.34984288

As we can see from the constants aji,. . ., a4 found,

a(y) in equation (21) takes, respectively, the values
1.467 x 107 for y = 1 and 0 for y = 0, while 7o(y)
takes correspondingly the values 1 and 0.5 (see equa-
tion (14) and Fig. 2). It is clear that a acts always
as an almost negligible perturbation of 7y in equa-
tion (20), just to better fit the relationship given by
equation (13).

The function s(7) was tested for different values
of y and 7 in their respective whole ranges of varia-
tion. It was verified that, in all cases, the error in s was
less than 7% when comparing equation (20) against
the derived function from the original relationship in
equation (13). The largest discrepancies occur for the
highest values of 7, which demonstrates the quality
of the adjustment, keeping in mind that for those val-
ues (which mean large times after the beginning of the
infiltration) the value of s tends to zero, and for these
conditions any adjustment in general is very difficult
to control.

Verification of the proposed parameterization

In Fig. 5 we show how this parameterization (equa-
tion (20)) fits with the s(t) values calculated from the
original implicit solution (equation (13)). In this case
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Fig. 5 Performance of the proposed relative flooding
depth curve s(t). The asterisks show values obtained from
Darcy’s law (equation (13)). The solid line describes the
explicit parametric solution (equation 20). y = 0.3029 in
this example.

y = 0.3029, corresponding to an initially dry loamy
sand with A9 = 0.4 and ¢ = 6.13 cm—according to
Rawls ef al. (1983). We also set ip = 2.5 cm. As can
be seen, the fit is very good. We obtained similar fit-
tings for several other values of y corresponding to
different initial conditions.

Infiltration rates and cumulative storage have also
been computed starting from the proposed parameter-
ization for a wide range of different conditions, and
compared to the results obtained by an iterative proce-
dure for solving equation (6). To do this, five different
cases were chosen by combining different values of
Y, A6, K and hy in order to get values of y covering
its whole range of variation (between 0 and 1). These
cases are shown in Table 1; the two first cases corre-
spond to loamy sand, the third one to silt loam and the
last two to clay. The data of suction head and effec-
tive porosity were taken from Rawls et al. (1983), and
the values of A8 were chosen as the effective porosity
and half of this value for each type of soil texture.

We also show the inverse values of the time scal-
ing factor (K x /ho). As may be observed, these values
vary in several orders of magnitude, from seconds to
weeks. The range of variation could be even greater
if values of the hydraulic conductivity are taken
at the extremes of the experimental range. Rawls
and Brakensiek (1989) suggested that the hydraulic
conductivity at saturation can vary from 3 x 10 m/s
for certain clays to more than 3 x 10~ m/s for coarse
sands.

As shown in Table 2, the parameterization is very
satisfactory for such diverse soil types and initial
conditions. As mentioned before, the largest relative
discrepancies occur for long periods of time after the
beginning of the infiltration, which implies that the
remaining ponding depth is already very low.

All the above calculations allow one to determine
h(?) for any conditions, but assuming that there is no
saturated soil layer immediately below the surface. If
this was the case, it would be necessary to calculate
first sy corresponding to the moment when infiltra-
tions starts; to do this, the amount of water already
infiltrated must be calculated using equation (5), then
added to the ponding depth. Then, x and y can be
computed using equations (8) and (11). Finally, s and
7 should be calculated by means of equation (13)
using the new initial time.

In order to reduce the quantity of required param-
eters, the suction head at the sharp wetting front can
be estimated from the initial soil water content value
by applying empirically fitted relationships such as
the ones of Brooks and Corey (1964), Van Genuchten
(1980) or Morel-Seytoux et al. (1999), who proposed
two modifications to the Brooks-Corey curve, one at
each end of the suction range.

CONCLUSIONS

The theoretical formulation of the infiltration pro-
cess for the Green-Ampt scheme has been extended
to decreasing flooding depth in an isolated system,
starting from Darcy’s equation applied to the “sharp
wetting front” scheme. By defining dimensionless
variables of flooding depth, s, and time, 7, the model
was reduced to a simple-infiltration-rate dimension-
less differential equation with one parameter involved,
y, which accounts for the initial ponding depth, satu-
ration deficit and suction head. The implicit solution
7(s) was obtained through integration.

A dimensionless time t was proposed, where the
factor accompanying time ¢ includes the hydraulic
conductivity K and the initial conditions %y, A@ and
Y. In consistency with the physical meaning of these
terms, they are arranged in the proposed expression
for T in such a way that K, A6 and ¥ act as expand-
ing factors of 7, while a greater value of % contracts
7. It was also shown that t performs as a reduced time
variable.

It was proven that 7(, the dimensionless time
needed to complete the infiltration process, depends
only on y, and increases with y .

Concerning the parameter y, its characteristics
and functional behaviour were analysed, and its
physical meaning was discussed. It was shown that
y which is a function of the initial conditions 4y,
A6 and ¥, is a scaled index ranging from 0 to 1
for, respectively, initially dry and initially saturated
soils. It was proven that the value of parameter
y determines the shape of the curve s(tr), and,
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Table 1 Values of y and the inverse of the time scaling factor 4(/(K x) calculated for different soil types and initial

conditions
Case Initial depth 4, Saturation Suction head, Hydraulic y hoy(Kx) (10%s)
(10?m) deficit, AO ¥ (10%2m) conductivity, K
(10° m/s)

1 0.1 0.401 6.13 8.31 0.0234 0.00047

2 10.0 0.201 6.13 8.31 0.7120 1.07140

3 10.0 0.486 16.68 1.81 0.2839 3.05130

4 0.1 0.423 29.22 0.14 0.0046 0.05733

5 10.0 0.212 29.22 0.14 0.4866 44.10600

Table 2 Comparison of values of remaining flooding depths and infiltration rate for different cases, according to Darcy
(equation (6)) and starting from the obtained parametric function (equation (20))

Case Time (10* s) h (eq. 6) h (eq. 20) Error (%) dh/dt (eq. 6)  dh/dt(eq.20)  Error (%)
(10 m) (107 m) (107 m/s) (107 m/s)
1 0.00036 0.6855 0.6857 0.04 —6652 —6661 0.13
1 0.00181 0.2945 0.2942 0.11 —2990 —2992 0.07
1 0.00333 0.0517 0.0516 0.22 —2238 —2233 0.19
2 0.10714 76.7050 77.6283 1.47 —187 —185 430
2 0.53568 37.3027 36.2853 2.73 —109 —111 2.11
2 0.96423 7.0433 6.6222 5.98 —95 -90 5.13
3 0.30513 70.7336 71.0799 0.49 -90 -92 1.64
3 1.52570 31.5683 31.1657 1.28 —43 —44 0.85
3 2.74620 5.6707 5.5187 2.68 —34 -33 2.26
4 0.00573 0.6841 0.6842 0.01 —550 —550 0.03
4 0.02866 0.2932 0.2932 0.02 —246 —246 0.01
4 0.05159 0.0514 0.0514 0.04 —184 184 —0.04
5 4.41060 72.9660 73.6402 0.93 —6 —6 2.88
5 22.0530 33.7678 33.0599 2.10 -3 -3 1.47
5 39.6960 6.1955 5.9186 4.47 -2 -2 3.80

consequently, the infiltration rate and cumulative
infiltration at any dimensionless time 7.

We concluded that parameter y, which we pro-
pose to call the “infiltration delay parameter”, is
a fundamental number which expresses the degree
of difficulty for the infiltration process to be com-
pleted, measured in dimensionless space and time
scales. Also, it was shown that the parameter ¢ can
be expressed in a simple way as a function of the
total variations of all acting potentials: gravitational,
hydrostatic and capillary.

The implicit solution obtained implies a signifi-
cant advancement with respect to the equation derived
by Philip (1992), which is in dimensional form and
depends on four parameters: the three initial condi-
tions included in y and the hydraulic conductivity
included in 7. Additionally, the implicit infiltration
depth equation obtained allows the elapsed dimen-
sionless time 7 to be derived when the pond empties;
in this expression Ty depends only on the parameter
y, showing the functionality relating both vari-
ables. Philip (1992) derived an equivalent, but more
complex, equation in which the time corresponding

to 7o depends on the four parameters included in y
and 7.

Additionally, an explicit parametric solution was
proposed to approximate the implicit solution and was
shown to perform well for a wide range of parame-
ter values covering the conditions present in nature.
The equation obtained for s(zr) depends only on the
descriptive parameter y.
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