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SYMMETRIC STRUCTURE FOR CLOSURE ALGEBRAS

J. PATRICIO DÍAZ VARELA

ABSTRACT. The aim of this paper is to investigate the variety of symmetric closure alge-
bras, that is, closure algebras endowed with a De Morgan operator. Some general properties
are derived. Particularly, the lattice of subvarieties of the subvariety of monadic and linear
symmetric algebras is described and an equational basis for each subvariety is given.

1. INTRODUCTION

This paper deals with the variety of symmetric closure algebras (S C ), that is, closure al-
gebras with a symmetric operator (a De Morgan negation), introduced in [9]. An important
characteristic of these algebras is that the set of open elements forms a symmetric Heyting
algebra [21] (a Heyting algebra with a de Morgan negation [24]). Section 2 provides all
necessary background on closure algebras and symmetric Heyting algebras. We describe
the subdirectly irreducible algebras of the variety of symmetric closure algebras in Section
3. The rest of the paper is devoted to the study of the subvariety S M of monadic sym-
metric algebras and the variety S C L of linear closure algebras. We determine its lattice of
subvarieties and we find equational bases for each subvariety of S C L.

Throughout this paper, B and H will denote the equational classes of all Boolean alge-
bras and all Heyting algebras, respectively. If K is a class of similar algebras we will use
the following notation: Si(K ) (resp. Sifin(K ), Simpfin(K )) for the class of subdirectly
irreducible (resp. finite subdirectly irreducible, finite simple) algebras in K . H(K ) for the
class of algebras that are homomorphic images of algebras in K ; and S(K ) for the class
of algebras that are subalgebras of algebras in K . The lattice of congruences of an algebra
A ∈K is denoted by ConK (A) or Con(A).

In general, for a variety K and A,B ∈K , A�K B means that A is a K -subalgebra of
B. The subalgebra generated by a part X of A ∈K is denoted by [X ]K . If K is a subclass
in a variety V , we will denote V (K ) the subvariety generated by K , and Λ(V ) (or simply
Λ) the lattice of subvarieties of V .

2. PRELIMINARIES

In a paper of paramount importance titled “The algebra of topology” J. C. C. McKin-
sey and A. Tarski [17] started the investigation of a class of algebraic structures which
they named closure algebras. A closure algebra is an algebra (A;∨,∧,−,∇,0,1) such that
(A;∨,∧,−,0,1) is a Boolean algebra and ∇ is a closure operator, that is, ∇ is a unary
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operator on A that satisfies the “Kuratowski axioms”, for all x, y ∈ A: ∇(0) = 0, x ≤
∇(x), ∇(∇(x)) = ∇(x), ∇(x∨ y) = ∇(x)∨∇(y).

The simplest example of closure algebras is the variety M of monadic Boolean algebras.

Closure algebras have been extensively studied by several authors. Particularly, W. Blok
in an exhaustive and very deep work, developed in [6] the general properties of the lattice
of subvarieties of the variety of closure algebras.

An important feature in the structure of a closure algebra is the set of open elements. In
a continuation of their work on closure algebras, McKinsey and Tarski showed in [18] that
the set of open elements of a closure algebra is a Heyting algebra. Conversely, any Heyting
algebra can be embedded as the lattice of open elements of a closure algebra.

With the operators ∇ and − we can define a new unary operator Q (interior operator) by
means of Q(x) = −∇(−x), for all x ∈ A. This operator satisfies the conditions: Q(1) =
1, x ≥ Q(x), Q(Q(x)) = Q(x), Q(x∧ y) = Q(x)∧Q(y). Closure algebras can be defined
by means of these equations and in that case, by defining ∇(x) = −Q(−x) we obtain the
closure operator.

The equational class of closure algebras will be denoted by C . These algebras were
named interior algebras by W. Blok in [6]. If A ∈ C then Q(A) is a (0,1)-sublattice of A,
and it is a Heyting algebra if we define a→ b = Q(−a∨b), for every a,b ∈ A. If b ∈ Q(A),
b is said to be open.

It is known that if A ∈H , then the lattice Con(A) of congruences of A is isomorphic to
the lattice F(A) of all filters of A. If F ∈ F(A) then the congruence θ associated to F is
defined by (a,b) ∈ θ ⇔ a∧u = b∧u for some u ∈ F.

If A ∈ C and F is a filter in A, F is said to be an open filter if Q(x) ∈ F whenever x ∈ F .
It is known ([18]) that ConC (A) is isomorphic to the lattice FQ(A) of all open filters of A,
and it is not difficult to see that FQ(A) and F(Q(A)) are isomorphic. So we have:

Theorem 2.1. ([5]) Let A ∈ C . Then ConC (A) and ConH (Q(A)) are isomorphic.

Recall that a Heyting algebra A is subdirectly irreducible if and only if A = A1⊕1, with
A1 ∈H and A1⊕1 is the lattice obtained by adjoining a new 1 to A1.

Thus from Theorem 2.1 and this remark it follows immediately the following corollary:

Corollary 2.2. Let A∈C . Then A is subdirectly irreducible if and only if Q(A) is subdirectly
irreducible as Heyting algebra. Moreover, A is subdirectly irreducible if and only if Q(A) =
A1⊕1, for some A1 ∈H .

A symmetric Heyting algebra is a system (A;∨,∧,⇒,∼,0,1) such that (A;∨,∧,
⇒,0,1) is a Heyting algebra and (A;∨,∧,∼,0,1) is a De Morgan algebra ([21], [12], [24],
[4]). The variety of symmetric Heyting algebras will be denoted by S H .

Observe that if A,B∈S H and h : A→ B is a homomorphism then h−1(1) = Ker(h) is a
filter with the property that if a⇒ b ∈ Ker(h), then∼ b⇒∼ a ∈ Ker(h). Any filter F of an
algebra A ∈S H satisfying the condition that if a⇒ b ∈ F then ∼ b⇒∼ a ∈ F , is called
a kernel of A. A. Monteiro [21] proved that if, for a given kernel F in a symmetric Heyting
algebra A we define xθFy if and only if x⇒ y∈ F and y⇒ x∈ F , then θF is a congruence.
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Symmetric Structure for Closure Algebras 81

Moreover, every congruence on A is determined by a kernel, and the mapping F 7→ θF is a
lattice isomorphism between the lattice of kernels of A and the lattice ConS H (A).

A slightly more amenable to work with, the following theorem gives an equivalent con-
dition for a filter to be a kernel. As usual, ¬a = a⇒ 0.

Theorem 2.3. ([21]) A filter F of a symmetric Heyting algebra A is a kernel if and only if
¬ ∼ a ∈ F whenever a ∈ F.

In the case of a principal filter Fa = {x ∈ A : a ≤ x}, this condition is equivalent to the
condition a∧ ∼ a = 0.

Consider the following terms: (¬ ∼)0x = x and (¬ ∼)n+1x = ¬ ∼ (¬ ∼)nx. Observe
that ¬ ∼ (a∧b) = ¬ ∼ a∧¬ ∼ b and ¬ ∼ ¬ ∼ a ≤ a, for all a,b ∈ L ∈S H . Thus, for
n ∈ ω, (¬ ∼)n(a∧¬ ∼ a)≥ (¬ ∼)n+1(a∧¬ ∼ a).

We say that L ∈ S H is of finite range if for all a ∈ L there exists n ∈ ω such that
(¬ ∼)n(a∧¬ ∼ (a)) = (¬ ∼)n+1(a∧¬ ∼ a).

Let Cen(A) = {x ∈ A : ¬ ∼ x = ∼ ¬x} be the center of A, that is, the sublattice of com-
plemented elements of A.

Theorem 2.4. ([24]) For A∈S H of finite range and |A| ≥ 1, the following are equivalent:
1. A is simple.
2. A is subdirectly irreducible.
3. A is directly indecomposable.
4. Cen(A) = {0,1} or Cen(A) = {0,a =∼ a,¬a,1}.

If A satisfies the Kleene condition (∼ x∧∼ y≤∼ x∨∼ y) then in Theorem 2.4, condition
[4] is just Cen(A) = {0,1}.

To close this section we recall the following important results.

Theorem 2.5. ( [21]) Any finite symmetric Heyting algebra is a direct product of (finite)
simple symmetric Heyting algebras.

Corollary 2.6. Every finite subdirectly irreducible symmetric Heyting algebra is simple.

The variety S H is generated by its finite members ([21]). Thus

Corollary 2.7. S H = V (Si f in(S H )) = V (Simp f in(S H )).

3. SYMMETRY ON CLOSURE ALGEBRAS

In this section we study the variety of symmetric closure algebras introduced in [9]. This
variety consists of closure algebras with a De Morgan negation “∼” such that Q(∼Q(x)) =
∼ Q(x), and in particular, the set of open elements form a symmetric Heyting algebra.

First we need some properties of the variety of symmetric Boolean algebras S B ([4],
[21]). A symmetric Boolean algebra is an algebra (A;∼) such that A is a Boolean algebra
and ∼ is a De Morgan negation.

Observe that these algebras are symmetric Heyting algebras. In addition, ∼ −x∨ ∼ x =
∼ (−x∧ x) = ∼ 0 = 1, and ∼−x∧ ∼ x = ∼ (−x∨ x) = ∼ 1 = 0. So ∼−x =−∼ x. Then
∼ is a dual isomorphism of Boolean algebras.
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A cyclic Boolean algebra of order two is an algebra (A;T ) such that A is a Boolean
algebra and T is a unary operation which is an automorphism such that T 2 = Id (see [22]).
If (A;∼) ∈ S B and we put T (x) = ∼ x⇒ 0 = − ∼ x∨ 0 = − ∼ x = ∼ −x, then T is
an automorphism such that T 2 = Id , that is, (A;T ) a cyclic Boolean algebra of order two.
Conversely, if (A;T ) is a cyclic Boolean algebra or order two and we put∼ x =−T (x), then
(A;∼) is a symmetric Boolean algebra. We say that this two varieties are equivalent in the
sense of R. Lewin ([14]).

Congruences in the variety S B (or in the variety of cyclic Boolean algebras of order
two) are given by symmetric filters, that is, by those filters F satisfying the condition T (x)∈
F (or equivalently −∼ x ∈ F) whenever x ∈ F .

There are two subdirectly irreducible algebras in S B, which in addition, are simple,
namely: the algebra 2 = {0,1} and the algebra 2×2, where∼ (0,1) = (0,1) and∼ (1,0) =
(1,0), (or T (0,1) = (1,0)).

Now we are in a position to define symmetric closure algebras.

Definition 3.1. We say that an algebra (A;∨,∧,−,Q,∼,0,1) is a symmetric closure algebra
if the following conditions are satisfied:
1. (A;∨,∧,−,Q,0,1) ∈ C .
2. (A;∨,∧,−,∼,0,1) ∈S B.
3. Q(∼ Q(x)) = ∼ Q(x).

Let S C denote the variety of symmetric closure algebras. Observe that if A∈S C , then
Q(A) ∈S H .

Lemma 3.2. For A,A1 ∈S C and h : A→ A1 an S C -homomorphism, it holds that
(i) h(Q(A))⊆ Q(A1), (ii) h�Q(A) : Q(A)→ Q(A1) is an S H -homomorphism, and
(iii) if h is onto, then h�Q(A) is onto.

Our objective now is to characterize the congruences and the subdirectly irreducible al-
gebras in S C .

A filter F is called an open kernel if F is open, that is, Q(x) ∈ F whenever x ∈ F , and
∼ b→∼ a ∈ F whenever a→ b ∈ F .

Observe that an open filter F is an open kernel if and only if F is symmetric. Indeed, if
F is an open kernel and x ∈ F , then 1→ x ∈ F and thus ∼ x→ 0 ∈ F . So Q(− ∼ x) ∈ F
and then − ∼ x ∈ F . Consequently F is symmetric. Conversely, let F be an open filter
such that if x ∈ F , −∼ x ∈ F , and suppose that x→ y ∈ F . Then Q(−x∨ y) ∈ F , and thus
−x∨ y ∈ F . This implies that ∼−(−x∨ y) = ∼ x∨ ∼ −y ∈ F . Hence Q(∼ x∨ ∼ −y) ∈ F ,
and consequently, ∼ y→∼ x ∈ F . Therefore F is a kernel.

Let NS C (A) denote the family of all open kernels of A. Then we have the following
theorem ([9, 10]).

Theorem 3.3. For any A ∈S C , ConS C (A)∼= NS C .

It is easy to see that if F is an open kernel of an algebra A ∈S C , then Q(F) is a kernel
of Q(A) considered in S H . Conversely, if F is an kernel of Q(A), then the filter generated
in A by F , [F)A, is an open kernel of A and Q([F)A) = F . Then we have the following
corollary.
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Corollary 3.4. Let A∈S C . Then ConS C (A)∼= NS C (A)∼= NS H (Q(A))∼=ConS H (Q(A)).

Corollary 3.5. Let A ∈S C . Then A is subdirectly irreducible if and only if Q(A) is subdi-
rectly irreducible in S H .

Then by Theorem 2.4 we have the following theorem.

Theorem 3.6. Let |A| ≥ 1, with A ∈ S C and Q(A) of finite range. Then the following
conditions are equivalent:

1. A is simple.
2. A is subdirectly irreducible.
3. A is directly indecomposable.
4. Cen(Q(A)) = {0,1} or Cen(Q(A)) = {0,a =∼ a,¬a,1}.

Corollary 3.7. Let A ∈S C , A finite. Then A is subdirectly irreducible if and only if A is
simple.

As a consequence of the above results, we have the following.

Theorem 3.8. Let A ∈S C , A finite. Then A is a direct product of finite simple algebras.

4. SUBVARIETIES AND FINITE GENERATION OF S C

In this section we will prove that the variety S C is generated by its finite members. We
will follow a path similar to that of McKinsey and Tarski in [18] for closure algebras. We
will also give some general results about the relationship between the lattice of subvarieties
of symmetric closure algebras and the lattice of subvarieties of symmetric Heyting algebras.

Lemma 4.1. Let (A;∧,∨,−,Q,∼,0,1) be a symmetric closure algebra and let a1, . . . ,ar ∈
A. Then there exists A1 ⊆ A and an interior operator Q1 on A1 such that the following
conditions hold:

(i) (A1;∧,∨,−,Q1,∼,0,1) is a symmetric closure algebra.
(ii) ai ∈ A1 for i = 1, . . . ,r.

(iii) A1 contains at most 222r
elements.

(iv) If x ∈ A1 and Q(x) ∈ A1 then Q1(x) = Q(x).

Proof. Let A1 be the symmetric Boolean subalgebra generated in A by a1, . . . ,ar. Then
|A1| ≤ 222r

, and (ii) and (iii) hold. Let K = {x ∈ A1 : Q(x) ∈ A1} and Q(K) = {Q(x) : x ∈
K}. Observe that if x ∈ Q(K) then ∼ x ∈ Q(K). Indeed, since A1 is a symmetric Boolean
algebra, ∼ x ∈ A1, whenever x ∈ Q(K). But A is a symmetric closure algebra, so Q(x) =
∼ x ∈ Q(K). Let L be the De Morgan algebra generated by Q(K) in A1. Then L defines an
interior operator Q1 on A1. Let us see that if x ∈ A1 and Q(x) ∈ A1 then Q(x) = Q1(x). First
we prove that L = [Q(K)]ID01

. Indeed, if x ∈ L then there exist subsets {Hx} ⊆ Q(K) and
{Sx} ⊆ ∼ Q(K) such that

x =
∧
Hx

∨
yi∈Hx

yi∨
∧
Sx

∨
y j∈Sx

y j.

But we know that ∼ (Q(K)) ⊆ Q(K). So we can state that there exist {Rx} ⊆ Q(K) such
that

x =
∧
Rx

∨
yi∈Rx

yi
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and then L = [Q(K)]ID01
. Observe that if x ∈ L, Q1(x) = x = Q(x). If x ∈ A1

Q1(x) =
∨
{a ∈ L : a≤ x}.

Since Q(a) = a ≤ Q(x), it follows that Q1(x) ≤ Q(x). In addition, x,Q(x) ∈ A1, and thus
Q(x) ∈ Q(K). So Q(x) ∈ {a ∈ L : a≤ x}, which implies that Q(x)≤ Q1(x). �

Definition 4.2. A finite sequence of terms in the language of S C , f1, . . . , fr, (all with the
same number of variables) is called a chain for the term f if:
(i) fr = f
(ii) fh(x1, . . . ,xn) = xi, or fh = fi∧ f j, (h > i, j), or fh = fi∨ f j, or fh = ∼ fi, or fh =− fi,
or fh = Q( fi), or fh = 1.

The number r is the length of the chain. The smallest length of the chain is called the
order of f . In the next theorem we use the fact that any equation in S C , p(x1, . . . ,xn) =
q(x1, . . . ,xn), can be written in the form t(x1, . . . ,xn) = 1.

Theorem 4.3. If f (x1, . . . ,xn) = 1 is an identity for every finite algebra in S C , then it is
an identity for every algebra in S C .

Proof. Let A ∈ S C infinite such that f (x1, . . . ,xn) = 1 is not an identity for A, that is,
there exist a1,a2, . . . ,an ∈ A such that f (a1, . . . ,an) 6= 1. Let f1, . . . , fr be a chain for f ,
of length r, where r is the order of f . Let us put f1(a1, . . . ,an) = b1, f2(a1, . . . ,an) =
b2, . . . , fr(a1, . . . ,an) = f (a1, . . . ,an) = br 6= 1. By the previous lemma, there exists a fi-
nite closure algebra A1 ⊆ A such that a1, . . . ,an,b1, . . . ,br ∈ A1. Then f1(a1, . . . ,an) = b1 ∈
A1, f2(a1, . . . ,an) = b2 ∈ A1, . . . , fr(a1, . . . ,an) = f (a1, . . . ,an) = br ∈ A1 and br 6= 1. So
f (x1, . . . ,xn) = 1 is not an identity for the finite algebra A1, a contradiction. �

Corollary 4.4. The variety S C is generated by its finite members.

Corollary 4.5.
S C = V (Sifin(S C )) = V (Simpfin(S C )) .

Next, as in the case of closure algebras and Heyting algebras (see Blok [6]), we will find
a strong relationship between the lattice of subvarieties of S H and the lattice of S C . If
K ∈ Λ(S C ) then we denote

Q(K ) = {Q(A) : A ∈K }
and for K ∈ Λ(S H ), we put

K S C = {A ∈S C : Q(A) ∈K }.
It is long but computational to check that

Theorem 4.6.
(i) If K is an equational class of symmetric closure algebras, then Q(K ) is an equa-

tional class of symmetric Heyting algebras.
(ii) If K is an equational class of symmetric Heyting algebras, then K S C is an

equational class of symmetric closure algebras.

Theorem 4.7.
(i) If K ⊆S C , then Q(V (K )) = V (Q(K )).

(ii) if K ⊆S H is such that Si(V (K ))⊆K , then V (K )S C = V (K S C ).
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(In this case, K is not necessarily a variety).

Then we define the functions

O1 : Λ(S C )−→ Λ(S H ), O1(K ) = Q(K ).

and
O2 : Λ(S H )−→ Λ(S C ), O2(K ) = K S C .

The functions O1 and O2 are well defined and they commute with the operators P, H and
S. By Jónsson’s Theorems [13] we have that the distributive lattices Λ(S C ) and Λ(S H )
are complete. Now we will see some important properties of these functions.

Theorem 4.8. O1 is a complete surjective lattice homomorphism. O2 is a lattice embed-
ding. Moreover, O1 ◦O2 = Id and consequently Λ(S H ) is a retract of Λ(S C ).

Proof. We prove the theorem for O2, the other case being similar. If 0S C is the trivial
variety of symmetric closure algebras, then O1(0S C ) = 0S H , with 0S H the trivial
variety of symmetric Heyting algebras. In addition, it is clear that O1(1S C ) = O1(S C ) =
S H = 1S H . If {K i : i ∈ I} ⊆ Λ(S C ), then

O1

(∨
i∈I

K i

)
=O1

(
V

(⋃
i∈I

K i

))
= Q

(
V

(⋃
i∈I

K i

))
=V

(⋃
i∈I

Q(K i)

)
=
∨
i∈I

O1(K i).

On the other hand, O1 preserves arbitrary infima:

O1

(∧
i∈I

K i

)
= O1

(⋂
i∈I

K i

)
= Q

(⋂
i∈I

K i

)
=
⋂
i∈I

Q(K i) =
⋂
i∈I

O1(K i) =
∧
i∈I

O1(K i)

Finally, O1 is onto, as if K ∈ Λ(S H ) then O1(K C ) = Q(K C ) = K . �

Observe that an identity characterizing a subvariety of symmetric Heyting algebras can
be translated into an identity characterizing a subvariety of symmetric closure algebras.
Indeed, if

pV (a1, . . . ,an) = qV (a1, . . . ,an)
is the characteristic identity for a subvariety V ⊆S H then the subvariety VS C of S C is
determined by the equation

pV (Q(a1), . . . ,Q(an)) = qV (Q(a1), . . . ,Q(an)).

In this way we can study many subvarieties of symmetric closure algebras obtained from
subvarieties of symmetric Heyting algebras.

5. SYMMETRIC MONADIC ALGEBRAS

In this section we study the variety S M of symmetric monadic algebras. This variety
consists of those symmetric closure algebras in which Q is a quantifier, that is, Q(x∨
Q(y)) = Q(x)∨Q(y), and it will play an important role for the study of the linear case. We
reproduce here some known results, the proof of which can be found in [9].

In [4], M. Abad and L. Monteiro introduced the variety of cyclic monadic algebras.
A cyclic monadic algebra is a Boolean algebra endowed with a unary operation which
is a (monadic) automorphism of period two. We prove in this section that the variety of
symmetric monadic algebras and the variety of cyclic monadic algebras are equivalent in
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the sense of [14]. We describe the lattice of subvarieties of S M and we determine an
equational basis for each subvariety.

As the previous section, A ∈ S M is a simple (subdirectly irreducible) algebra if and
only if Q(A) is a simple symmetric Boolean algebra, that is, if and only if either Q(A) = 2
or Q(A) = 2×2, where ∼ (0,1) = (0,1) and ∼ (1,0) = (1,0).

Let A ∈ S M and let T ∗ = − ∼. We know that T ∗ is a Boolean automorphism. Let
us prove that T ∗(Q(x)) = Q(T ∗(x)). It is easy to see that S M is locally finite, and con-
sequently, S M is generated by its finite members. Thus it is enought to prove that the
equation T ∗(Q(x)) = Q(T ∗(x)) holds in all finite subdirectly irreducible (simple) algebras
of S M .

Let B be a simple algebra in S M such that Q(B) = {0,1}. Let x ∈ B. If x = 1, then
Q(x) = 1 = x. Thus − ∼ Q(x) = − ∼ x = − ∼ 1 = −0 = 1 = Q(− ∼ 1) = Q(− ∼ x). If
x 6= 1, then Q(x) = 0 and − ∼ x 6= 1. Then − ∼ Q(x) = − ∼ 0 = 0 = Q(− ∼ x). The case
in which Q(B) = {0,1,a =∼ a,−a} is similar. So we have the following theorem.

Theorem 5.1. Let A ∈S M . Then (A;T ∗) is a cyclic monadic algebra of order two.

Now, let (A;T ) be a cyclic monadic algebra of order two. Let∼∗=−T . We know that∼∗
is a De Morgan negation. In addition, if x ∈ A, as A ∈M , Q(∼∗ Q(x)) = Q(−T (Q(x))) =
Q(−Q(T (x))) = −Q(T (x)) = −T (Q(x)) = ∼∗ Q(x). So (A,∼∗) is a symmetric monadic
algebra.

Observe that −∼∗=−−T = T . We have proved the following result.

Theorem 5.2. Let (A;T ) a cyclic monadic algebra of order two, and let ∼∗= −T. Then
(A;∼∗) ∈S M .

If M 2 is the variety of cyclic monadic Boolean algebra of order two, then the varieties
S M and M 2 are equivalent in the sense of [14]. This equivalence will allow us to use
both operations ∼ and T , related by T =−∼.

We say that a simple algebra A is of type I if Q(A) = {0,1}, whereas A is said to be of
type II when Q(A) = {0,a = ∼ a,−a,1}.

Let At(A) denote the set of atoms of a finite algebra A, let F(At(A)) = {a∈At(A) : T (a) =
a} denote the set of atoms fixed by the action of T , and let F′(At(A)) = {a∈ At(A) : T (a) 6=
a} denote the set of atoms non-fixed by T . Observe that if a ∈ F′(At(A)) and T (a) = b,
(a 6= b), then T (b) = T (T (a)) = a. So T (a) ∈ F′(At(A)). Thus |F′(At(A))| is an even
number. It is clear that At(A) = F(At(A))∪̇F′(At(A)).

Let C2×s,t denote the finite simple algebras of type I with 2s non-fixed atoms and t fixed
atoms. A simple finite algebra of type II has an even number of atoms as the number of
atoms preceding a equals the number of atoms preceding −a. We denote Dk a finite simple
algebra of type II with 2k atoms.

Since S M is a congruence distributive locally finite variety, we can apply the well-
known results of Davey [8] for the lattice of subvarieties Λ(S M ). In this section we char-
acterize the poset J f in(Λ(S M )) of finite join-irreducible elements of Λ(S M ). Recall
that a variety is said to be finitely generated if it is generated by finitely many subdirectly
irreducible finite algebras. We consider separately the finitely generated and non finitely
generated join-irreducible varieties.
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Recall that the ordering in J f in(Λ(S M )) is given by V (A) ≤Λ V (B)⇐⇒ A ∈ HS(B),
where A is a subdirectly irreducible algebra (see Jónsson [13]). Since every subdirectly
irreducible algebra in S M is simple, then V (A) ≤Λ V (B)⇐⇒ A ∈ IS(B). Thus we only
have to characterize the subalgebras of a simple algebra.

Let V2×s,t = V (C2×s,t) . The above properties give us a description of the ordering of the
join-irreducible varieties generated by a simple algebra of type I.

Theorem 5.3. ([9, 10]) V2×k,l ≤Λ V2×s,t if and only if k ≤ s and k + l ≤ s+ t.

Let S be the variety generated by the algebras of type I. Then we can describe the poset
J f in(Λ(S )) of finite join-irreducible elements of Λ(S ): Let C be a chain of type ω and
C[2] the set of increasing functions from 2 into C and consider the set C[2] \ {(0,0)}. Let
ϕ : J f in(Λ(S ))−→C[2] \{(0,0)} be defined by ϕ(V2×s,t) = (s,s+ t).

Theorem 5.4. The mapping ϕ is an order isomorphism.

Observe that the subvariety S is determined by the equation T (Q(x)) = Q(x). Indeed,
this equation holds in any subdirectly algebra in S and does not hold in the simple algebras
of type II, as T (Q(a)) = T (a) =−a 6= a = Q(a) for an open element a 6∈ {0,1}.

Now we investigate the varieties of type II. Observe that a variety contained in S cannot
be greater that (in Λ(S M )) a variety of type II. The reason is that a simple algebras of type
I contains no subalgebras of type II.

Let us look at the ordering for join-irreducible varieties generated by algebras of type II.
We denote Uk = V (Dk).

The following theorem completes the description of the ordering in the set of finite join-
irreducibles of Λ(S M ).

Theorem 5.5. ([9, 10]) Uk ≤Ul if and only if k≤ l and V2×s,t ≤Λ Uk if and only if 2s+t ≤ k.

Now we will determine the infinite join-irreducible subvarieties of S M , and we will
prove that any variety is a finite join of join-irreducible varieties in Λ(S M ). This result
will play an important role in determining equational bases for subvarieties in S M .

Consider the following subvarieties: for h≥ 0,

Sh = V (C2× j,k : k ≥ 1, j ≤ h) =
∨

k≥1, j≤h

V2× j,k = V

(⋃
k≥1

C2×h,k

)
.

From the definition of S , it follows that S =
∨

k≥1, j≥0V2× j,k =
∨

k≥1 Sk. Hence

S0 ⊂ S1 ⊂ S2 ⊂ . . .⊂ Sn ⊂ . . .⊂S .

We have that S , {Si}i≥0 and S M are the unique infinite join-irreducible varieties .

Theorem 5.6. ([9, 10]) The unique infinite join-irreducible varieties in Λ(S M ) are S M ,
S and {Si}i≥0.

The poset J(Λ(S M )) of join-irreducible elements of Λ(S M ) looks like the diagram
in the following figure, in which we simply write Vst instead of V2×s,t .
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Observe that Ut is covered only by Ut+1. Also, s+ t 6= 0. So, in C[2] \{(0,0)}, (s,s+ t +1)
covers (s,s + t). For t ≥ 1, (s + 1,s + t) also covers (s,s + t), and these are the only pairs
that cover (s,s+ t). Recall that ϕ(V2×s,t) = (s,s+ t). Hence V2×s,t+1, V2×s+1,t−1 and U2s+t
are the unique elements in J(Λ(S M )) which cover V2×s,t .

The following theorem will be used in the next section.

Theorem 5.7. ([9, 10]) Any variety in Λ(S M ) is a finite join of finitely many join-irreduc-
ible varieties in Λ(S M ).

6. EQUATIONAL BASES FOR S M

In this section an equation that characterizes each subvariety in S M is given. First we
characterize equationally the join-irreducible varieties, and then we determine an equation
for the join of finitely many join-irreducible varieties.

We have already shown that the variety S is characterized, relative to S M , by the
equation T (Q(x)) = Q(x).

Observe that s(x,y,1,0) = x↔ y = Q(x→ y)∧Q(y→ x) is a switching term for the
variety S (see [24]). Then x↔ y ∈ {0,1} for any x, y in a subdirectly irreducible algebra
A ∈S . This remark will be strongly used in what follows.
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Let ΓSn(x1, . . . ,x2n) denote the term[
(

n∧
i=1

(T (x2i−1)↔ x2i))∧ (
2n∧

i 6= j, j,i=1

((xi∧ x j)↔ 0))∧ (
2n+1∧
i=1

−(xi↔ 0))

]

→

[
T (

2n+1∨
i=1

xi)↔ (
2n+1∨
i=1

xi)

]
The next theorem shows a set of equations that characterize the varieties Sn within S M .

Theorem 6.1. (see [9, 10]) The variety Sn is characterized by the following equations: If
n = 0, T (x) = x, and if n > 0, T (Q(x)) = Q(x) and ΓSn(x1, . . . ,x2n) = 1

Consider now the following terms:

T 1
1 (x1) = x1,

T p
1 (~x) =

[
p∨

i, j=1, i 6= j

∇(xi∧ x j)∧ (
p∧

k 6=i, j, k=1

∇(xk))

]
∨

[
p∨

i=1

(xi∧ (
p∧

k 6=i, k=1

∇(xk)))

]
,

T 1
2 (x1) = ∇x1 and T p

2 (~x) =
p∧

i=1

∇(xi),

where T p
i (~x) stands for T p

i (x1,x2, . . . ,xp).

In [23], [1] and [9] it is shown that the equation T p
1 (~x) = T p

2 (~x) is an equational basis for
the variety generated by the simple algebra Bp ∈M , for a fixed p.

Let Γ2n,t(x1, . . . ,x2n) denote de term[
(

n+t∧
i=1

−(xi↔ 0))∧ (
n+t∧

i 6= j, j,i=1

((xi∧ x j)↔ 0))∧ (
n+t∧
i=1

(T (xi)↔ xi))

]
→

[
(

n+t∨
i=1

xi)↔ 1

]
.

The following theorem gives an equational basis for the join-irreducible subvarieties of
type I, V2×s,t .

Theorem 6.2. Let n > 0. The equations T 2n+t
1 (~x) = T 2n+t

2 (~x) and Γ2n,t(x1, . . . ,x2n) = 1
characterize the subvariety V2×n,t within Sn.

Now we give an equational basis for the subvarieties Uk = V (Dk).

Lemma 6.3. ([9, 10]) The subvariety Uk =V (Dk) is characterized by the equation T k
1 (~x) =

T k
2 (~x).

We have determined an equational basis for each join-irreducible subvariety. Now we
are going to give an equational basis for every subvariety. From Theorem 5.7, we only have
to find an equation for every finite join of join-irreducible subvarieties.

Observe that any variety V ∈ J(Λ(S M )) is determined by a single equation, that is,
there exists an equation of the form γV (x1, . . . ,xr) = 1, with r as needed, that determines V
within S M .
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Let V =
∨n

i=1Vi with Vi ∈ J(Λ(S M )), for all i = 1, . . . ,n. Let

γV(x1, . . . ,xrV) =
n∨

i=1

(
γVi(x

i
1, . . . ,x

i
ri
)↔ 1

)
∧
(
∼ γVi(x

i
1, . . . ,x

i
ri
)↔ 0

)
.

In [9, 10] it is shown that γV(x1, . . . ,xrV) = 1 is an equational basis for V.

7. LINEAR SYMMETRIC CLOSURE ALGEBRAS

This part of the work is devoted to an exhaustive investigation of the variety of those
closure algebras whose open elements form a linear symmetric Heyting algebra. We first
present some general results obtained in [10] and then we characterize the subvarieties of
linear closure algebras. In 7.2 we will carry out a deep study of finitely generated subdirectly
irreducible algebras and of the ordering between the varieties generated by them. This will
allow us to give in 7.3 a precise description of finitely generated subvarieties. In 7.4 we will
describe the infinitely generated subvarieties of the locally finite subvarieties. Finally in 7.5
we will give an equational bases for each subvariety of locally finite subvarieties.

7.1. Linear Symmetric Heyting Algebras. A. Monteiro comprehensively investigated the
variety of symmetric Heyting algebras and several of its subvarieties in his very important
work “Sur les algèbres de Heyting symétriques” [21]. Particularly, he studied the subvariety
of linear symmetric Heyting algebras, that is, symmetric Heyting algebras satisfying the
identity

(x⇒ y)∨ (y⇒ x) = 1.

Linear symmetric Heyting algebras form an equational class S H L. In this section we
consider the lattice of subvarieties of this variety. We describe the structure of the poset
of its join-irreducible elements and we find equational bases for each subvariety of S H L.
This description is based on that given in [2] and consequently some of the proofs will be
ommited.

Linear symmetric Heyting algebras can be characterized by the condition that the poset
of filters containing a prime filter is a chain [21].

The importance of the following examples of linear symmetric Heyting algebras will be
clear later.

Let Cn, n ≥ 2, be the Heyting algebra of all fractions
i

n−1
, i = 0,1, . . . ,n− 1 ([21],

p. 136), with ∼ x = 1− x, and let Dn be the Heyting algebra Cn×Cn, with ∼ (x,y) =
(1− y,1− x). Cn and Dn are linear symmetric Heyting algebras.

An In-algebra is a symmetric Heyting algebra satisfying the Ivo Thomas identity:

γn(x0,x1, . . . ,xn−1) = βn−2⇒ (βn−3⇒ ( . . .⇒ (β0⇒ x0) . . . )) = 1,

where βi = (xi⇒ xi+1)⇒ x0 for i = 0,1, . . . ,n−2 (see [21], p. 136).

The algebras Cn and Dn are examples of symmetric Heyting algebras that satisfy the
identity γn = 1.

The following result is a characterization of the In-algebras.

Lemma 7.1. [21] For a linear Heyting algebra A, the following are equivalent:
(1) The identity γn = 1 holds.
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(2) The poset of proper prime filters containing a prime filter P is a chain of length at
most n−1.

A. Monteiro proved ([21], p. 138, Th.1.6) that the variety I∼n of In-algebras is generated in
S H L by Dn×Dn−1.

It is clear that a finite linear symmetric algebra is an In-algebra for some n. Then we have
the following theorem:

Theorem 7.2. If A is a finite algebra in S H L, then A is subdirectly irreducible if and only
if there exists n such that either A is isomorphic to Dn or A is isomorphic to Cn.

Since the variety of linear Heyting algebras is locally finite, then it is easy to see that
S H L is locally finite. In addition, S H L has the congruence-distributive property, being
that the lattice of congruences in an algebra A is a sublattice of the lattice of congruences of
the Heyting algebra A, and the latter is congruence-distributive.

We conclude this section by recalling the characterization of subalgebras of the algebras
Cn and Dn.

Let n ≥ 2. If n is even, then the subalgebras of Cn are the algebras C2k, k ≤ n/2. If n is
odd, then Ck is a subalgebra of Cn for every k ≤ n.

Let SY = Cn−Y , where Y ⊆ Cn−{0,1}. Let SH be the set of Heyting subalgebras of
Cn. Then SH = {SY : Y ⊆ Cn−{0,1}}. For every j, 2 ≤ j ≤ n, let Y ∈ SH be such that
|Y |= n− j. Then A = SY ×S∼Y is a subalgebra of Dn isomorphic to D j. In addition, Di⊆D j
if and only if i ≤ j. If A is a subalgebra of Dn and A is not isomorphic to Dk, for any k,
then A'Ct , for t ≤ n. We have that A = {(x,α(x)),x ∈ p1(A)}, where α is an isomorphism
from p1(A) onto p2(A), p1, p2 the projections in Dn = Cn×Cn.

The order in Si(L ) (and in Sifin(L )) is the following:

A≤ B if and only if A ∈ IS(B)

being that if A ∈ Si(L ) then A is simple, that is, the unique homomorphic images are the
trivial ones.

Let D∼n and C∼n denote the varieties generated by Dn and Cn, respectively, that is, D∼n =
V (Dn) and C∼n = V (Cn), and for a distributive lattice R, J (R) denotes the ordered set of all
join-irreducible elements of the distributive lattice R.

Let K∼=V (
⋃

n≥2Cn). This is the variety called by A. Monteiro the variety of totally linear
symmetric Heyting algebras.

Let P∼=V (
⋃

n≥1C2n).

It is clear that P∼⊆K∼. Furthermore, P∼6= K∼. Indeed, for A ∈ Sifin (P∼), A is isomorphic to C2n,
and then, for odd t, there isn’t A ∈ Sifin(P∼), such that Ct ∈ S(A). Thus, P∼⊂K∼.

Therefore, J (Λ(S H L)) is the poset indicated in fig. 1.

Theorem 7.3. K∼, P∼ and S H L are join-irreducible in Λ(L ).
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Observe that from the definitions of K∼, P∼ and S H L, it follows that they are not com-
pletely join-irreducible. Furthermore, they are not finitely generated. The following theo-
rem can be found in [8].

Theorem 7.4. K∼, P∼ and S H L are the unique join-irreducible varieties that are not finitely
generated. Every variety V ∈Λ(S H L) is a join of finitely many varieties in J (Λ(S H L)).

Now we will find equational bases for each subvariety of S H L.

Consider the terms γK∼
(x) = ¬x⇒∼ x and γP∼

(x) = ¬ ∼ (∼ x⇒ x)⇒¬¬∼ (x⇒∼ x).

In [2] it is proved that

Theorem 7.5. [21]. The equation γK∼
(x) = 1 characterizes the variety K∼ within S H L,

and the equation γP∼
(x) = 1 characterizes the variety P∼ within K∼.

As we pointed out in Section 1, the variety In is generated by Dn×Dn−1. Nevertheless,
we proved that Dn−1 is a subalgebra of Dn, thus In is the variety generated by Dn, that is, the
variety In is the variety D∼n

, and consequently, the Ivo Thomas identity γn(x0, . . . ,xn−1) = 1
determines the variety D∼n

, for n≥ 2.
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The variety that A. Monteiro called I∼n
K∼ is defined as the subvariety of S H L character-

ized by the identities γn(x0, . . . ,xn−1) = 1 and γK∼
(x) = 1. Monteiro proved ([21], p. 152, Th.

1.1) that I∼n
K∼= V (Cn) = C∼n

, for n odd, and I∼n
K∼= V (Cn×Cn−1), for n even. Then we have:

Theorem 7.6. The equations γn(x0, . . . ,xn−1) = 1 and γK∼
(x) = 1 determine the variety C∼n

for n odd, and the equations γn(x0, . . . ,xn−1) = 1, γK∼
(x) = 1 and γP∼

(x) = 1 determine the

variety C∼n
for n even.

7.2. The linearity in S C . The structure of the lattice of subvarieties of the variety of
linear closure algebras has been extensively studied by Blok in [6]. In this variety, the image
of the closure operator is a linear Heyting algebra, and hence the subdirectly irreducible
algebras are those closure algebras such that the image of the operator is a chain with a dual
atom. More precisely we have the following theorem proved by Blok in [6].

Theorem 7.7. (W. Blok)
(i) The equation

(Q(x)→ Q(y))∨ (Q(y)→ Q(x)) = Q(−Q(x)∨Q(y))∨Q(−Q(y)∨Q(x)) = 1,

determines the variety C L in C .
(ii) Si(C L) = {A ∈ C : Q(A) is a chain with a dual atom}.
(iii) C L = V (Si(C L)).
(iv) C n

L = V ({A ∈ C : Q(A)∼= Cn,and A is finite}.
(v) C L = V

(⋃
n≥1 C n

L
)
.

(vi) C 1
L ⊂ C 2

L ⊂ . . .⊂ C L.

Observe that the class C 1
L is the class of monadic Boolean algebras and the class C 2

L is
the class C T of three-valued closure algebras investigated by M. Abad and J. P. Díaz Varela
in [1] and [10]. Also observe that the finite subdirectly irreducible algebras in C L are those
closure algebras in which the set of open elements is isomorphic to a chain Cn, for some
n. Let Bk1,k2,...,ks denote the subdirectly irreducible closure algebra with n = ∑

s
i=1 ki atoms

and Q(Bk1,k2,...,ks) =Cs = {0 = a0 < a1 < .. . < as−1 < as = 1}, where the intervals [ai,ai+1]
have ki+1 atoms for i = 0, . . . ,s−1, that is, there are k1 atoms of Bk1,k2,...,ks preceding a1, . . . ,
there are ∑

j
i=1 ki atoms preceding a j, . . . . Thus, the finite subdirectly irreducible algebras

in C L are the algebras Bk1,k2,...,ks . In addition, these algebras generate the variety C L, that
is, C L is generated by its finite members.

Let us consider the following subvarieties:

Vk1,k2,...,ks = V (Bk1,k2,...,ks) .

In order to give a characterization of the ordering for the subvarieties Vk1,k2,...,ks , ww consider
the set IN f of all finite sequences of positive integers. Given X = x1, . . . ,xs ∈ IN f we will
abbreviate VX for Vx1,...,xs and BX for Bx1,...,xs . For X ,Y ∈ IN f , we have that VX ≤ VY if and
only if BX ∈HS(BY ). Hence we can define an ordering in IN f by means of

X ≤N Y ⇐⇒ BX ∈HS(BY ).

The mapping ϕ : Sifin(C L)−→ IN f defined by ϕ(BX) = X is clearly an order isomorphism.
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The following theorem gives us a useful characterization of the order relation defined on
IN f . Let X ,Y ∈ IN f with X = x1, . . . ,xk and Y = y1, . . . ,yl.

Theorem 7.8. (W. Blok) X ≤N Y if and only if there exist 1 = i1 < i2 < .. . < ik ≤ l such
that x j ≤ yi j for j = 1,2, . . . ,k.

In [9] an equation is given for each subvariety of the variety

C n
L = V ({BX , where X is a k−tuple, k ≤ n})

Consider now the variety S C L of linear closure symmetric algebras. This variety con-
sists of those symmetric closure algebras that satisfy the linearity condition on the set of its
open elements, that is,

(Q(x)→ Q(y))∨ (Q(x)→ Q(y)) = 1.

This variety is the symmetric counterpart of linear closure algebras. Observe that if A ∈
S C L then Q(A) is a linear symmetric Heyting algebra, so the results of the previous section
will be useful.

Since the variety of linear closure algebras is not locally finite then S C L is not locally
finite. Of course, it is congruence-distributive.

The proof of the following theorem is similar to that of its analogous for linear closure
algebras (see [6]).

Theorem 7.9. Any subvariety V of S C L is generated by its finite members.

7.3. Finitely generated subvarieties of S C n
L. Now we will study the subvarieties of

S C n
L, where S C n

L is the subvariety of S C L characterized by

(CLn)
n∨

i=0

(Q(xi)→ Q(xi+1)) =
n∨

i=0

Q(−Q(xi)∨Q(xi+1)) = 1.

Observe that if A∈ Si f in(S C L), then Q(A)∈ Si f in(S H L) and then Q(A) is isomorphic
to a subalgebra of Dn, for some n. From this we can deduce that S C n

L is locally finite.
Indeed, let A ∈ Si(S C n

L), A finitely generated. Let g1,g2, . . . ,gm be generators of A. Then

A = [g1,g2, . . . ,gm]S C = [g1,g2, . . . ,gn, Q(A)]S B .

But |Q(A)| ≤ n2, so |A| ≤ 222(m+n2)
. Hence A is finite. Consequently we can conclude that

S C n
L is locally finite, and thus, generated by its finite members.

In the following we will study the ordering between the finitely generated subvarieties.
To this end we need to characterize the simple algebras generating finitely generated join-
irreducible subvarieties.

If Q(A) ∼= Ct , (t ≤ n), then A ∼=C BX , with X = (x1,x2, . . . ,xt). In addition, if t is even,
there exists a ∈ Q(A) such that ∼ a = a. Thus x1 = xt , x2 = xt−1, and in general, if i≤ t/2,
xi = xt−i+1. If t is odd then for i ≤ t+1

2 , we have xi = xt−i+1, as ∼ (a1] = [at−1), and in
general, ∼ (ai] = [at−i) where Q(A) = {0 = a0 < a1 < .. . < at−1 < at = 1}. Observe also
that T =∼−, when restricted to the atoms of A, T : At(A)→ At(A), is a bijection, by means
of which the set Axi = At(ai) \At(ai−1) of atoms that precede ai and do not precede ai−1
corresponds to the set A−xi

= At(−at−i+1) \At(−at−i). If t is even then the atoms of A are
non-invariant by T , as T (Axi)∩Axi = /0.
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After these considerations we will analyze the structure of the finite subdirectly irre-
ducible closure algebras of S C n

L. Let A ∈ Sifin(S C n
L). We consider three cases.

I. Q(A) ∼= Dn. In this case there exists a ∈ B(Q(A)) \ {0,1} such that A ∼=C (a]× [a).
Observe in addition that (a] ∼= BX with X ∈ N f , X = (x1,x2, . . . ,xn−1,xn), and that [a) ∼=
BX∗ with X∗ ∈ N f and X∗ = (xn,xn−1, . . . ,x2,x1). Taking ∼d (x,y) = (d−1(y),d(x)), where
d : BX → BX∗ is the application such that x ≤ y if and only if d(y) ≤ d(x), we state that
A ∼=S C (BX ×BX∗ ,∼d). Indeed, it is clear that d is a negation over BX ×BX∗ . Let us
see that every negation that can be defined on BX ×BX∗ that maps a −→ a equals d, up to
isomorphism.

Let (BX ×BX∗ ,∼1) and (BX ×BX∗ ,∼2), two structures of symmetric closure algebras
with the same universe BX ×BX∗ . Let T1 = ∼1 − = − ∼1 and T2 = ∼2 − = − ∼2 . Since
Ti(a) =−a with i = 1,2 and a∈ B(Q(A))\{0,1}, it follows that all atoms are non-invariant,
that is, both structures are isomorphic as symmetric Boolean algebras, by means of an
isomorphism α such that αT1 = T2. So α = T2T−1

1 = T2T1 as T 2
1 = Id . In addition

α |̀Q(A)(ai,a j) = T1T2(ai,a j) = ∼1∼2 (ai,a j).

Since the negation of Q(A) is the negation of Dn, as ∼ a = a, then in Q(A), ∼1= ∼2 . Then

α |̀Q(A)(ai,a j) = (ai,a j),

that is, α |̀Q(A) = IdQ(A). Hence α is an S C−isomorphism. Thus the structure is unique up
to isomorphism. We then denote

Dn
X
∼= (BX ×BX∗ ,∼d),

where (n+1)2 = |Q(A)|.
II. Q(A) ∼= Cn, n even. Then there exists a ∈Cn such that ∼ a = a. So every element is

non-invariant, and consequently, as in the previous case, there exists a unique structure of
symmetric closure algebras, up to isomorphism. Observe that A∼=C BX and from the action
of ∼, xi = xn−i+1, for all i = 1, . . . , n

2 .

III. Q(A) ∼= Cn, n odd. As in the previous case, A ∼=C BX and xi = xn−i+1, for all i =
1, . . . , n+1

2 . Let a0 = 0,a1, . . . ,an the open elements of A. Observe that if b ∈ At(a n−1
2

), then
T (b) = − ∼ b ≤ −a n+1

2
. Since At(a n−1

2
)∩At(−a n+1

2
) = /0, it follows that T (b) 6= b. So if

b ∈ At(a n−1
2

), b in non-invariant. In the same way it can be proved that if b ∈ At(−a n+1
2

), b
is non-invariant. Hence, if b is an invariant atom, b ∈ At(a n+1

2
)\At(a n−1

2
). Thus there can be

at most x n+1
2

invariant atoms in A. In addition, if we fix a negation with its invariant atoms
and its non-invariant atoms and with the structure of closure algebra of BX , there exists a
unique structure of symmetric closure algebra for A. So there exist so many structures of
closure algebras as negations that can be defined on BX , such that

• ∼ (ai) = an−i.
• − ∼: At(a n−1

2
)→ At(−a n+1

2
) is a bijection.

Then we have that if x n+1
2

= 2s + t with 2s non-invariant atoms and t invariant atoms, then

the notation C2s+t
X describes a unique structure of algebra A, up to isomorphism.

We will denote U n
X =V (Dn

X), V n
X =V (CX), V n

X ,2s+t =V (C2s+t
X ). Also X

2
+ = (x1, . . . ,x n−1

2
)

if n is odd and X
2

+ = (x1, . . . ,x n
2
) if n is even.
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The following lemmas will be important to obtain the ordering on the algebras C2s+t
X .

Lemma 7.10. Let x∈CX . Then x∧Q(x)∧Q(∼ x)∈ [0,a n
2
] if n is even and x∧Q(x)∧Q(∼

x) ∈ [0,a n−1
2

] if n is odd.

Proof. Let n be even. If Q(x) = a n
2
, there is nothing to prove. If Q(x) > a n

2
, then Q(x) ≥

a n
2 +1, so Q(∼ x)≤ a n

2
. Hence x∧Q(x)∧Q(∼ x)≤ a n

2
. The case n odd is similar. �

By the previous lemma, it is immediate that if x ∈ CX then ∼ (Q(x)∧Q(∼ x)) = ∼
Q(x)∨ ∼ Q(∼ x) ∈ [a n

2
,1] if n is even and ∼ (Q(x)∧Q(∼ x)) = ∼ Q(x)∨ ∼ Q(∼ x) ∈

[a n+1
2

,1] if n is odd.

Lemma 7.11. Let x ∈Cn
X , with n even. Then

1. x = Q(x), x∧ ∼ x = x and x∨ (Q(y)∧Q(∼ y)) = x for all y ∈ Cn
X , if and only if

x = a n
2
.

2. x = Q(x), x∨∼ x = x and x∧ (∼Q(y)∨∼Q(∼ y)) = x for all y ∈Cn
X , if and only if

x = a n
2 +1.

Proof. If x = Q(x), then x is open, that is, x = ai. Then ∼ x = an−i. Since x ≤ ∼ x then
i≤ n− i and i≤ n

2 . From the hypothesis, x∨(Q(a n
2
)∧Q(∼ a n

2
)) = x∨a n

2
= x. Thus, x≥ a n

2
.

So x = a n
2
. Conversely if x = a n

2
, it is easy to check that these properties hold. The rest of

the proof is analogous. �

Lemma 7.12. Let x ∈Cn
X , with n odd. If Q(x) = Q(∼ x) and x∨ (Q(y)∧Q(∼ y)) = x for

all y ∈Cn
X , then x ∈ (a n−1

2
,a n+1

2
).

Proof. ⇐) If x ∈ (a n−1
2

,a n+1
2

), it is easy to see that ∼ x ∈ (a n−1
2

,a n+1
2

). So Q(x) = Q(∼
x) = a n−1

2
. In addition, x > a n−1

2
, and by the previous lemma Q(y)∧Q(∼ y) ≤ a n−1

2
. Hence

x∨ (Q(y)∧Q(∼ y)) = x.
⇒) If x∨Q(y)∧Q(∼ y) = x for all y ∈Cn

X , then x∨ (Q(a n−1
2

)∧Q(∼ a n−1
2

)) = x, and con-
sequently x∨ (a n−1

2
∧a n+1

2
) = x∨a n−1

2
= x, that is, x ≥ a n−1

2
. Since Q(x) = Q(∼ x), x is not

open. So x > a n−1
2

. If Q(x) 6= a n−1
2

then x > a n+1
2

is not open and∼ x <∼ a n+1
2

= a n−1
2

. There-
fore Q(∼ x) < a n−1

2
< a n+1

2
≤Q(x). So Q(x) 6= Q(∼ x), a contradiction. Hence Q(x) = Q(∼

x) = a n−1
2

. Thus x > a n−1
2

and thus a n−1
2

< ∼ x < a n+1
2

. From this, a n−1
2

< x < a n+1
2

, which
concludes the proof. �

After this description of subdirectly irreducible (simple) algebras, we will provide an
order for the join-irreducible finitely generated varieties. First observe that U n

X 6≤ V n
X for

any X and n, being that the algebras CX satisfy the Kleene condition γK(Q(x)) = 1 for its
open elements and Dn

X does not. Similarly, V n
X 6≤ V m

X for n− 1 odd and m− 1 even, since
V m

X satisfies the condition γP(Q(x)) = 1 for its open elements and V n
X does not.

The ordering for J f in(Λ(S C L)) is given by the following theorems.

Theorem 7.13. Let n,m be odd. Then V n
X ,2k+l ≤ V m

Y,2s+t if and only if X
2

+ ≤Nf
Y
2

+
, x n+1

2
≤

y m+1
2

, k ≤ s and k + l ≤ s+ t.
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Proof. ⇒) If V n
X ,2k+l ≤ V m

Y,2s+t there exists an S C -embedding i : C2k+l
X → C2s+t

Y . Ob-
serve that i is a C -embedding, and in addition i|Q(C2k+l

X ) is an S H -embedding. If
a0 = 0,a1, . . . ,an are the open elements of C2k+l

X and b0 = 0,b1, . . . ,bm are the open ele-
ments of C2s+t

Y then

i(Q(x)∧Q(∼ x)) = Q(i(x))∧Q(∼ (i(x)))≤ b n−1
2

.

That is, i|[0,a n−1
2

] : [0,a n−1
2

]→ [0,b n−1
2

] is a C -embedding. So X
2

+ ≤Nf
Y
2

+
. Also, as i is

an S C -morphism, the images of the elements satisfying the equations of Lemma 7.12
satisfy the same equations. Then i((a n−1

2
,a n+1

2
))⊆ (b n−1

2
,b n+1

2
). If (a n−1

2
,a n+1

2
) = /0 the case

is trivial. Suppose (a n−1
2

,a n+1
2

) 6= /0. If z ∈ (a n−1
2

,a n+1
2

) then Q(z) = a n−1
2

and i(a n−1
2

) =
i(Q(z)) = Q(i(z)) = b n−1

2
. So i(a n+1

2
) = i(∼ a n−1

2
) = ∼ b n−1

2
= b n+1

2
. Then i|[a n−1

2
,a n+1

2
] :

[a n−1
2

,a n+1
2

]→ [b n−1
2

,b n+1
2

] is an S C−embedding and, by the previous section, x n+1
2
≤ y m+1

2
,

k ≤ s y k + l ≤ s+ t.
⇐) Let X

2
+ ≤Nf

Y
2

+ and let P1 the partition associated to a C -subalgebra isomorpphic to
[0,a n−1

2
] in the C−algebra [0,b n−1

2
] (with the C−structure inherited from C2s+t

Y ). Observe

that T (P1) = ∼ −(P1) generates a partition in At(C2s+t
Y ) \ At([0,b n+1

2
]) = At([0,−b n+1

2
]).

If x n−1
2
≤ y m−1

2
, k ≤ s and k + l ≤ s + t, then there exists a partition P2 of the atoms of

At([0,b n+1
2

]) \ At([0,b n−1
2

]) that generates a S C -subalgebra isomorphic to [a n−1
2

,a n+1
2

] in
[b n−1

2
,b n+1

2
], (recall that there exists a bijection between the atoms of [b n−1

2
,b n+1

2
], and

At([0,b n+1
2

]) \At([0,b n−1
2

])). Then, it is easy to see that P = P1 ∪T (P1)∪P2 is a partition

that generates a symmetric closure subalgebra isomorphic to C2k+l
X . �

Theorem 7.14. Let n,m be even. Then V n
X ≤ V m

Y if anf only if X
2

+ ≤Nf
Y
2

+
.

Consider the term γDn
Y

= [(γY ↔ 1)∨ (T (γY )↔ 1)]∧ [(γY ∗ ↔ 1)∨ (T (γY ∗)↔ 1)]

Lemma 7.15. Dn
Y satisfies the equation = 1, where γY = 1 is the equation that characterizes

C Y , the variety of linear closure algebras with Y = (y1, . . . ,yr). (See [9, 10]).

Proof. Recall that Dn
Y
∼=C CY ×CY ∗ . Let (xi,yi)r

i=1 ∈CY ×CY ∗ , with r as needed. Then

γY ((x1,y1), . . . ,(xr,yr)) = (γY (x1, . . . ,xr),γY (y1, . . . ,yr)) = (1,a).

Then (γY ↔ 1) = (1,a)↔ (1,1) = (1,c) with c open. In addition

(T (γY )↔ 1) = T ((1,a))↔ (1,1) = ∼−(1,a)↔ (1,1) = ∼ (0,−a)↔ (1,1) =

(d−1(−a),d(0))↔ (1,1) = (a′,1)↔ (1,1) = (c′,1).
So

(γY ↔ 1)∨ (T (γY )↔ 1) = (1,c)∨ (c′,1) = (1,1).
In a similar way it can be proved that

(γY ∗ ↔ 1)∨ (T (γY ∗)↔ 1) = 1,

which concludes the proof. �

Theorem 7.16. U n
X ≤U m

Y if and only if X ≤Nf Y and X∗≤Nf Y ∗ or X∗≤Nf Y and X ≤Nf Y ∗.
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Proof. ⇒) Let i : Dn
X → Dm

Y , a,−a ∈ B(Dn
X) \ {0,1}, and b,−b ∈ B(Dn

Y ) \ {0,1}. Then
i(a) = b and i(−a) =−b or i(a) =−b and i(−a) = b. In the first case, i|[0,a] : [0,a]→ [0,b]
and i|[0,−a] : [0,−a]→ [0,−b] are C -embeddings and so X ≤ Y y X∗ ≤ Y ∗. In the other
case, i|[0,a] : [0,a]→ [0,−b] and i|[0,−a] : [0,−a]→ [0,b] are C -embeddings and so X ≤Y ∗

y X∗ ≤ Y.
⇐) If X ≤Y then BX is a subalgebra of BY . Then there exists a C−embedding i : BX →BY .
In addition, BX∗ ∼=C di(BX) ∈ SC (BY ∗). Thus Dn

X
∼=S C i(BX)× d i(BX) ∈ SS C (Dn

Y ).
�

Theorem 7.17. Let n be odd. Then V n
X ≤U m

Y if and only if X ≤Nf Y and X ≤Nf Y ∗.

Proof. ⇒) By Lemma 7.15, Cn
X satisfies the equation γDn

Y
= 1. Then, as Q(Cn

X)∼=Cn, γY = 1
or T (γY ) = 1. But T T (γY ) = γY = T (1) = 1. Hence γY = 1 in Cn

X , and consequently X ≤Nf Y.
The other part of the equation proves that X ≤ Y ∗.
⇐) Suposse that X ≤Nf Y and X ≤Nf Y ∗. Recall that X = X∗. Then X∗ ≤Nf Y ∗. Let A∼=S C
(Cn

X ×Cn
X ,∼) with ∼ (x,y) = (∼ y,∼ x). Then A ∼=S C Dn

X , and by the previous theorem,
A ∈ SS C (Dn

Y ). The S C−subalgebra of A, D = {(x,x) ∈ A} is isomorphic to Cn
X , and

hence Cn
X ∈ SS C (Dn

Y ). �

Observe that the proof of the previous theorem does not make use of the fact that n is
even, so the theorem is also true for n odd. So we have:

Theorem 7.18. Let n be odd. Then V n
X ,2s+t ≤U m

Y if and only if X ≤Nf Y and X ≤Nf Y ∗.

Lemma 7.19. Let n be even. Then V 1
2s+t ≤ V n

Y if and only if 2s+ t ≤ y1.

Theorem 7.20. Let n be odd and m be even and let X
2

+ + 1 = (x1,x2, . . . ,x n−1
2

,x n+1
2

). Then

V n
X ,2s+t ≤ V m

Y if and only if X
2

+ +1≤Nf
Y
2

+
.

Proof. ⇒) If V n
X ,2s+t ≤S C V m

Y then we have an embedding i : Cn
X ,2s+t → Cm

Y . Since in
7.13, if a0 = 0,a1, . . . ,an are the open elements of C2k+l

X and b0 = 0,b1, . . . ,bm are the open
elements of CY , then

i(Q(x)∧Q(∼ x)) = Q(i(x))∧Q(∼ (i(x)))≤ b m
2
,

that is, i|[0,a n−1
2

] : [0,a n−1
2

]→ [0,b m
2
] is a C -embedding. Then X

2
+ ≤Nf

Y
2

+
. In addition,

i(a n−1
2

) = bh. Observe that h 6= m
2 , as ∼ b m

2
= b m

2
, and this does not occur with a n−1

2
, and

h 6> m
2 since otherwise bm−h ≤ bh and i(a n+1

2
) < i(a n−1

2
), a contradiction. So h < m

2 . Then
i|[a n−1

2
,a n+1

2
] : [a n−1

2
,a n+1

2
]→ [bh,bn−h] is an S C−enbedding, and by the previoues lemma,

x n+1
2
≤ yh+1, h≤ m

2 −1. Thus X
2

+ +1≤Nf
Y
2

+
.

The converse is similar to Theorem 7.13. �

Then we have given the ordering for each subvariety of J f in(Λ(S H )).

7.4. Infinite Subvarieties of S C n
L. We recall the ordering for infinite subvarieties of linear

closure algebras. These results can be seen in [9].
Consider the following s−tuples

X = (x1,x2, . . . ,xs),
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where there exists a (nonempty) subset of indexes i1 < i2 < .. . < it∗ ≤ s such that xi j = ∗ and
another (possibly empty) h1 < h2 < .. . < ht ≤ s such that xhl = khl , with khl ∈ IN, t∗+ t = s.

By way of example, for s = 5, X = (3,∗,∗,2,∗) is a 5−tuple.

Let χs denote the set of all such s−tuples, and consider the following subvarieties:

UX
s = V

(
{Br1,...,rs : ri j ≥ 1, j = 1, . . . , t∗, rhl = khl , l = 1, . . . , t}

)
.

Observe that U (∗,∗)
2 = C 2

L = C T , and in general, C n
L = UX

n , where X = (∗,∗, . . . ,∗︸ ︷︷ ︸
n times

).

The following propositions prove that these varieties are join irreducible and they are the
unique non finitely generated join-irreducible subvarieties in C n

L.

Proposition 7.21. ([9]) The varieties of the form UX
s , with s ≤ n, are join-irreducible in

Λ(C n
L).

Let χd
t denote those t−tuples X of the set χt , satisfying the condition xi = xt−i+1. Observe

that this only holds for the even case or the odd case with x n+1
2

= ∗. It remains the case
x n+1

2
= ∗h and x n+1

2
= 2s+ t (odd case).

Recall that the ordering in χt , (see [9]) is Y s ≤∗ X t if and only if
• s≤ t
• There exist 1 = i1 < i2 < .. . < ik ≤ l such that y j ≤∗ xi j for j = 1,2, . . . ,k, where

y j ≤∗ xi j

– y j and xi j are positive integers and y j ≤ xi j ,
– y j is a positive integer and xi j = ∗,
– y j = ∗ and xi j = ∗,

(observe that if xi j is a positive integer and yi = ∗, then y j 6≤∗ xi j ).
For the symmetric case we define an order in χt , in the following way.

• For s, t even, Ys
2

+
= y1, . . . ,y s

2
, and Xt

2

+
= x1, . . . ,x t

2
. Then we put Y s ≤ X t if and

only if
Ys

2

+

≤ Xt

2

+

.

• For the case t,s odd, we have new n-tuples, those that represent the non-invariant

elements of y s+1
2

(see the previous section). Let us put Ys
2

+
= y1, . . . ,y s−1

2
, and Xt

2

+
=

y1, . . . ,y s−1
2

. Nor y s+1
2

can take any of these three values: ∗, 2s+ t and ∗h whis is the
one that corresponds to the monadic variety Sh. Then the ordering is Y s ≤ X t if and
only if

Ys

2

+

≤ Xt

2

+

,

and
– y s+1

2
= ∗ ≤ x t+1

2
= ∗.

– y s+1
2

= ∗h ≤ x t+1
2

= ∗k or x t+1
2

= ∗ , if h≤ k.
– y s+1

2
= 2h+ l ≤ x t+1

2
= ∗k or x t+1

2
= ∗ , if h≤ k.

– y s+1
2

= 2h+ l ≤ x t+1
2

= 2k + r , if h≤ k, h+ l ≤ k + r.
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• The case s odd, t even, Ys
2

+
+ 1 = y1, . . . ,y s−1

2
,y s+1

2
and Xt

2

+
= y1, . . . ,y s−1

2
. Observe

that ∗h < ∗. Then the ordering is Y s ≤ X t if and only if

Ys

2

+

+1≤ Xt

2

+

,

To simplify the notation when introducing the irreducible infinite varieties, we order the
n−tuples X of Nd

f and the n−tuples Y of χd
t , by means of Xs ≤∗ Y t if and only if there exist

1 = i1 < i2 < .. . < ik ≤ t
2 such that x j ≤ yi j for j = 1,2, . . . , s

2 , where x j ≤ yi j if x j is a
positive integer and yi j is equal to ∗ or a greater positive integer, and for the case s, t odd we
put x s+1

2
≤ y t+1

2
with the ordering

• x s+1
2

a positive integer and y t+1
2

= ∗.
• x s+1

2
= 2h+ l ≤ y t+1

2
= ∗k , if h≤ k.

• x s+1
2

= 2h+ l ≤ y t+1
2

= 2k + r , if h≤ k, h+ l ≤ k + r.

We denote the ordering in χd
t by ≤∗ . In a similar way as for linear closure algebras we

construct the following subvarieties: If t is even

PX
t = V

⋃
Y≤X

Cs
Y

 , Pt = V

( ⋃
s≤t,s=odd

Cs
X

)
and is t is odd

KX
t = V

 ⋃
Y≤∗X

Cs
Y

 , Kt = V

( ⋃
s, s≤t

Cs
X

)
.

For the case of algebras in which their open elements asr isomorphic to Dn for some n, we
define

IX
t = V

 ⋃
Y≤∗X

Ds
Y

 , It = V

(⋃
s≤t

Ds
Y

)
.

Observe that It = S C t
L.

>From the results of the previous section and the beginning of this section, and making
use of the ordering for finite join-irreducible varieties, the following theorem can be proved.

Theorem 7.22. The varieties PX
s , Ps, KX

t , Kt , IX
t , It are the unique infinite join-irreducible

varieties in Λ(S C L).

Theorem 7.23. Every variety is a finite join of join-irreducible varieties in Λ(S C L).

7.5. Equational Bases in S C n
L. Our purpose is to determine equations characterizing

each join-irreducible variety, and then, equations characterizing a finite join of join-irreduc-
ible varieties. By Theorem 7.23 we will have equations for every subvariety in Λ(S C n

L).

Observe that if x 6= y, x,y ∈ A and x,y ∈ Q(A)∼= Cn, then, if x = ai, y = a j and x≤ y, we
have that

x↔ y = Q(−x∨ y)∧Q(−x∨ y) = (ai→ a j)∧ (a j→ ai) = 1∧ai = ai∧a j = ai.

This simple observation will be useful for the proof of the following theorems.
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Consider the following terms:

A1(z0,z1, . . . ,z n+1
2

) =

x n+1
2∧

i=1

Q(∼ zi)↔ Q(zi),

A2(z0,z1, . . . ,z n+1
2

) =

x n+1
2∧

i=1

zi∨ (Q(z0)∧Q(∼ z0))↔ zi,

A3(z0,z1, . . . ,z n+1
2

) =

x n+1
2∧

i6= j, j,i=1

Q(zi∧ z j)↔ (zi∧ z j),

A4(z0,z1, . . . ,z n+1
2

) = Q

x n+1
2∨

i=1

zi

↔
x n+1

2∨
i=1

zi

 ,

and
γγx n+1

2
(z0,z1, . . . ,z n+1

2
) = (A1∧A2∧A3)→ A4

Theorem 7.24. Cn,2s+t
X satisfies the equation. γγx n+1

2
(z0,z1, . . . ,z n+1

2
) = 1.

Proof. We have the following cases:
1. Suppose that A1 6= 1. Then there exists zi such that Q(∼ zi) 6= Q(zi). Then Q(∼

zi)↔ Q(zi) ≤ Q(∼ zi)∧Q(zi) ≤ a n−1
2

. So
∧3

i=1 Ai ≤ (Q(∼ zi)∧Q(zi)) ≤ Q(zi) ≤

Q(
∨x n+1

2
i=1 zi)≤ A4, and consequently γγx n+1

2
= (
∧3

i=1 Ai)→ A4 = 1.

2. Suppose that A2 6= 1. Then there exist zi and z0 such that zi∨ (Q(z0)∧Q(∼ z0) 6= zi.
Then A2 ≤ Q(zi), and arguing as in the previous case, we have that γγx n+1

2
= 1.

3. Suppose that A3 6= 1. Then there exist zi and z j such that Q(zi∧ z j) 6= (zi∧ z j). Thus
A3 ≤ Q(zi∧ z j) and so A1∧A2∧A3 ≤ A4, and γγx n+1

2
= 1.

4. Suppose that A1 = A2 = 1. Then, by Lemma 7.11 we have that zi ∈ (a n−1
2

,a n+1
2

)
and if A3 = 1 then the elements zi are distinct atoms (necessarily all the atoms) of
[a n−1

2
,a n+1

2
]. Then

Q(

x n+1
2∨

i=1

zi) = (

x n+1
2∨

i=1

zi),

and hence γγx n+1
2

= 1.

�

Theorem 7.25. Let m be odd. Then Cm,2k+l
Y satisfies γγx n+1

2
= 1 if and only if y m+1

2
≤ x n+1

2
.

Proof. ⇒) Suppose that y m+1
2

> x m+1
2

. Let b1, . . . ,bm the open elements of Cm,2k+l
Y and

z1, . . . ,z m+1
2

, the atoms of [b m−1
2

,b m+1
2

]. Let {z1, . . . ,z n+1
2
} be a proper subset of atoms of

[b m−1
2

,b m+1
2

] and z0 = b n−1
2

. Then it is easy to check that A1 = A2 = A3 = 1. But Q(
∨x n+1

2
i=1 zi) =

b n−1
2
6= (
∨x n+1

2
i=1 zi), and thus A4 6= 1. So γγx n+1

2
6= 1. A contradiction.

⇐) We have already seen in the proof of the previous theorem that if A1,A2,A3 are distinct
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from 1, then the equation holds. Observe that if y m−1
2

< x m−1
2

then A1 or A2 or A3 are distinct
from 1, and consequently the equation holds. If y m−1

2
= x m−1

2
and there exist z1, . . . ,z n+1

2
,

such that A1,A2,A3 = 1, then z1, . . . ,z n+1
2

are the atoms of [b m−1
2

,b m+1
2

]. Then A4 = 1 and the
equation holds. �

As we have already proved, the elements of the form x∧A(x0) with A(x0) = Q(x0)∧
Q(∼ x0) in Cn,2s+t

X belong to the interval [0,a n−1
2

] in the odd case, and to [0,a n
2
] in the

even case. We can algebrize the interval [0,A(x0)] with C -terms and we can put A =
([0,A(x0)],∧A,∨A,−A,QA,1A,0A), where the A−operations are defined: ∧A = ∧, ∨A = ∨,
−A(x) = −x∧A(x0), QA = Q, 1A = A(x0), 0A = 0. With these operations it is easy to see
that [0,A(x0)] is a closure algebra. Observe that [0,A(x0)] = [0,ai] with i ≤ n

2 or i ≤ n−1
2 ,

and [0,A(a n−1
2

)] = [0,a n−1
2

], for the odd case and [0,A(a n
2
)] = [0,a n

2
], for the even case. So

[0,A(x0)] ∈ S(B X
2

+) for every x0. Thus [0,A(x0)] satisfies tha equation

γ
A(x0)
X
2

+ (x0,x1, . . . ,xr) = 1,

where γ
A(x0)
X
2

+ is the equation γ X
2

+ that characterizes the subvariety of closure algebras CX
2

+

(ver [Tesis][UMA]), where the C -operations are replaced by the A−operations. Observe
that if Cm,2k+l

Y satisfies this equation, then [0,b m−1
2

], satisfies γ X
2

+ , hence Y
2

+ ≤N f
X
2

+
. So we

have proved the following theorem.

Theorem 7.26. Cn,2s+t
X satisfies the equation γ

A(x0)
X
2

+ = 1. Moreover if Cm,2k+l
Y satisfies this

equation then γY
2

+ ≤N f γ X
2

+ .

As we have already seen in Lemma 7.12 the elements x∈C2s+t,n
X that satisfy Q(x) = Q(∼

x) and x∨ (Q(y)∧Q(∼ y)) = x for all y ∈C2s+t,n
X , are those that belong to (a n−1

2
,a n+1

2
). In

addition, Q(x) = a n−1
2

and ∼ Q(x) =∼ a n−1
2

= a n+1
2

. In this way we can define, for every x
satisfying this equation, in the interval M = [Q(x),∼Q(x)] a structure of symmetric closure
algebra if we write (M,∧M,∨M,−M,QM,∼M,1M,0M) where the operations are defined by
∧M = ∧, ∨M = ∨, QM = Q, ∼M=∼, 1M =∼ Q(x), 0M = Q(x), and −M(y) = (−y∧ ∼
Q(x))∨Q(x). In this way we have TM(y) = −M ∼M (y) = (− ∼ y∧ ∼ Q(x))∨Q(x) =
(T (y)∧∼Q(x))∨Q(x). Observe that c is an invariant atom of C2s+t,n

X if and only if c∨a n−1
2

is an TM-invariant atom of M. Indeed, if c is T−invariant then

TM(c∨a n−1
2

) = (T (c∨a n−1
2

)∧ ∼ Q(x))∨Q(x) = ((c∨−a n+1
2

)∧a n+1
2

)∨a n−1
2

=

(c∧a n+1
2

)∨a n−1
2

= c∨a n−1
2

.

Conversely if c∨a n−1
2

is TM-invariant then

c∨a n−1
2

= TM(c∨a n−1
2

) = (T (c)∧a n+1
2

)∨a n−1
2

= T (c)∨a n−1
2

and T (c)∧−a n−1
2

= c. As T (c) is an atom, then T (c) = c. Hence (M,TM) is a symmetric
monadic algebra isomorphic to C2s,t where 2s is the number of non–invariant atoms and t
is the number of invariant atoms of M.

By these remarks and the results obtained for monadic algebras we have the following
theorem.
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Theorem 7.27. Cn,2s+t
X satisfies the equation

ββ2s(z0,z1, . . . ,z2s+1) =
(

2s∧
i=1

(Q(∼ zi)↔ Q(zi))

)
︸ ︷︷ ︸

A1

∧

(
2s∧

i=1

(zi∨ (Q(z0)∧Q(∼ z0))↔ zi)

)
︸ ︷︷ ︸

A2

∧

(
2s∧

i=1

Q(zi∧ z j)↔ (zi∧ z j)

)
︸ ︷︷ ︸

A3

∧

(
s∨

j=1

s∧
i=1

(TM(z j)(z2i−1)↔ z2i)

)
︸ ︷︷ ︸

A4

→


s∨
i=1

TM(zi)

(
2s+1∨
i=1

zi

)
↔

(
2s+1∨
i=1

zi

)
︸ ︷︷ ︸

A5

= 1.

Proof. 1. Suppose that A1 6= 1. Then, as in the proof of Theorem 7.24, there exists zi
such that

∧4
i=1 Ai ≤ Q(zi). But TM(zi)

(∨2s+1
i=1 zi

)
=
((∨2s+1

i=1 zi
)
∧ ∼ Q(zi)

)
∨Q(zi)≥

Q(zi), that is,
∧4

i=1 Ai ≤ Q(zi)≤ A5. So ββ2s = 1.
2. If A2 6= 1 or A3 6= 1 the proof is similar.
3. Suppose that A1 = A2 = A3 = 1. Then zi ∈ (a n−1

2
,a n+1

2
), and thus TM(zi) = TM. Sup-

pose that there exists z2i−1 such that TM(z2i−1) 6= z2i. Then TM(zi)(z2i−1)↔ z2i is an
open element less than Q(z2i), and arguing as in the first item,

∧4
i=1 Ai ≤ Q(z2i) ≤

A5. Hence ββ2s = 1.
4. In the case that

∧4
i=1 Ai = 1, the elements zi for i = 1, . . . ,2s are all distinct and

non-invariant. Thus, as for monadic algebras, we have that
∨s

i=1 TM(zi)
(∨2s+1

i=1 zi
)

=(∨2s+1
i=1 zi

)
, and consequently A5 = 1. Then ββ2s = 1.

�

In a similar way it can be proved the following.

Theorem 7.28. Cn,2s+t
X satisfies the equation

ββs+t(z0,z1, . . . ,zs+t) =(
s+t∧
i=1

(Q(∼ zi)↔ Q(zi))

)
∧

(
s+t∧
i=1

(zi∨ (Q(z0)∧Q(∼ z0))↔ zi)

)
∧(

s+t∧
i 6= j, j,i=1

Q(zi∧ z j)↔ (zi∧ z j)

)
∧

(
s∨

j=1

t∧
i=1

(TM(z j)(zi)↔ zi)

)]
→[(

s+t∨
i=1

zi

)
↔

(
s+t∨
i=1

∼ Q(zi)

)]
= 1.

As a consequence of the previous theorems we have the following.
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Theorem 7.29. For n odd, the following equations form an equational basis for V n
X ,2s+t:

γK(Q(x0))∧ γP(Q(x1)) = 1, ββ2s = 1, ββs+t = 1, γγx n−1
2

= 1, γ
A(x0)
X
2

+ = 1.

Theorem 7.30. For n even, the following equations form an equational basis for V n
X :

γK(Q(x0)) = 1, γ
A(x0)
X
2

+ = 1.

γγ
∼Q(x0)
X (x1, . . . ,xr) = [(x0↔ x0∨ (Q(y)∧Q(∼ y)))∧ (Q(x0)↔ Q(∼ x0))]

→
[(

γ
∼Q(x0)
X
2

+ ↔ 1
)
∨ ∼ Q(x0)

]
= 1.

Proof. We know that Cn
X satisfies the two first equations. Let x0 ∈ Cn

X and suppose that
x0 = x0∨ (Q(y)∧Q(∼ y)). Then x0 ≥ a n

2
and Q(∼ x0)≤∼ x0 ≤ a n

2
≤ Q(x0). Then if Q(∼

x0) = Q(x0) we have that ∼ x0 = x0 = Q(∼ x0) = Q(x0) = a n
2
. So the third equation holds.

If A is subdirectly irreducible and satisfies these equations then Q(A) is a chain, A∼= Cm
Y and

Y
2

+ ≤N
X
2

+
. If m is even, Cm

Y ∈ S(Cn
X). If m is odd, then if the third equation holds, it holds

for x0 = b m−1
2

. So γ
∼Q(x0)
X
2

+ = 1, which implies that Y
2

+ + 1 ≤N
X
2

+, and from the previous

section, Cm
Y ∈ S(Cn

X). �

Observe that all these varieties are within S C n
L and consequently they satisfy que equa-

tions characterizing this variety.

Theorem 7.31. The variety Un
Y is characterized by the following equation

γDn
Y

=

(γY ↔ 1)∨ (T (γY )↔ 1)︸ ︷︷ ︸
A1

∧
(γY ∗ ↔ 1)∨ (T (γY ∗)↔ 1)︸ ︷︷ ︸

A2

= 1.

Now we give an equational basis for each infinitely generated join irreducible subvari-
ety. As for the finitely generated varieties, we use the equations of the infinitely generated
varieties in C n

L (ver [9]).

Observe that in the odd case, we can consider three different types of varieties PX
s , ac-

cording the value of x s+1
2

.

1. PX ,h
s , where x s+1

2
= ∗h, that is, if CX ∈ PX ,h

s , then [a s−1
2

,a s+1
2

] ∈ Sh, where Sh is the
variety in troduced in [9].

2. PX ,2h+t
s , where x s+1

2
= 2h+ t, that is, if CX ∈ PX ,2h+t

s , then [a s−1
2

,a s+1
2

] ∈ S(B2s+t).

3. PX ,∗
s , where x s+1

2
= ∗, that is, if CX ∈ PX ,h

s , then [a s−1
2

,a s+1
2

] ∈ S. S is the variety
introduced in [9].

In the following theorem, we give an equational characterization of these varieties.

Theorem 7.32. (1) An equational base for the variety Ps is :
γK(Q(x0))∧ γP(Q(x1)) = 1, γIs(Q(x1), . . . ,Q(xs)) = 1.

(2) An equational base for the variety PX ,∗
s is:

γK(Q(x0))∧ γP(Q(x1)) = 1, γIs(Q(x1), . . . ,Q(xs)) = 1, γ
A(x0)
X
2

+ = 1.
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(3) An equational base for the variety PX ,h
s is:

γK(Q(x0))∧ γP(Q(x1)) = 1, γIs(Q(x1), . . . ,Q(xs)) = 1. γ
A(x0)
X
2

+ = 1. ββ2h = 1.

(4) An equational base for the variety PX ,2h+t
s is: γK(Q(x0))∧γP(Q(x1)) = 1, γIs(Q(x1),

. . . ,Q(xs)) = 1, γ
A(x0)
X
2

+ = 1 ββ2h = 1, ββh+t = 1, γγx n+1
2

= 1,

(5) An equational base for the variety Ks is:
γK(Q(x0)) = 1, γIs(Q(x1), . . . ,Q(xn)) = 1.

(6) An equational base for the variety KX
s is:

γK(Q(x0))(Q(x1)) = 1, γIs(Q(x1), . . . ,Q(xs)) = 1, γ
A(x0)
X
2

+ = 1, γγ
∼Q(x0)
X

= 1.

(7) An equational base for the variety IX
s is:

γIs(Q(x1), . . . ,Q(xs)) = 1,

[(γX ↔ 1)∨ (T (γX)↔ 1)]∧ [(γX∗ ↔ 1)∨ (T (γX∗)↔ 1)] = 1.

(8) An equational base for the variety Is is:
γIs(Q(x1), . . . ,Q(xs)) = 1.

As in the case of symmetric Heyting algebras the following theorem can be proved for
join reducible varieties.

Theorem 7.33. Let V ∈ Λ(S C L), V =
∨n

i=1Vi with Vi ∈ J(Λ(S C L)). Then

γV (x1, . . . ,xrV ) =
n∨

i=1

(
γVi(x

i
1, . . . ,x

i
ri
)↔ 1

)
∧ (∼ γVi(x1, . . . ,xri)↔ 0) = 1

is an equational basis for V en S C L.
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