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6 ABSTRACT: The problem of optimal profiles tracking
7 control under uncertainties for a nonlinear fed-batch
8 bioprocess is addressed in this paper. Based on the results
9 reported by Pantano et al. [Ind. Eng. Chem. Res. 2017, 56,
10 6043], this work aims to improve the control system response
11 against parametric uncertainty and process disturbances. The
12 methodology is simple and easy to implement, but with
13 excellent results. The design parameters are optimized by a
14 randomized Monte Carlo algorithm. Besides, demonstration
15 of the tracking error convergence to zero when the system is
16 subjected to uncertainties is included in the article. The control system performance is tested through simulations, showing the
17 improvement achieved.

1. INTRODUCTION
18 Bioreactor performance is determined not only by productivity
19 but also by process quality, which is mainly affected by the
20 disturbances in the process variables. Therefore, finding a way
21 to control these distortions is the main task to guarantee
22 quality.2

23 During the past decade, many researchers further inves-
24 tigated several control techniques applied to different
25 bioprocesses,3−7 especially after the implementation of “quality
26 by design” for biopharmaceuticals by the U.S. Food and Drug
27 Administration (FDA).8 Particularly in fed-batch bioreactors
28 many strategies were studied to improve the efficiency and
29 reproducibility of bioprocesses.9−14 However, the problem that
30 arises is the gap between scientific research and the industry
31 requirements. For example, usually research works on
32 optimization and control strategies rarely consider model
33 uncertainties, which are unavoidable in industrial pro-
34 cesses;15−17 this could lead to a poor real-life representation
35 and, consequently, to a bad performance with severe risks.18−20

36 Unfortunately, the high degree of nonlinearity of the
37 bioprocesses and the lack of high-quality experimental data
38 make modeling the system a challenge. Therefore, the resulting
39 model presents a high degree of uncertainty. As a consequence,
40 there are several mathematical models for the same biological
41 process, including different structures and parameters but
42 concordant with the available information on said processes.
43 Uncertainties are one of the main obstacles in the
44 development of advanced controllers for high-accuracy
45 trajectory tracking control.21 Not surprisingly, therefore,
46 parametric uncertainty has remained high on the agenda of
47 unsolved problems in control for the past three decades.22 The
48 main types of uncertainties that can be considered in a
49 bioprocess are the uncertain values of parameters (most
50 frequent), time-varying model parameters, uncertain non-

51linearities, and unmodeled dynamics, among others. Besides
52that, there are external disturbances that are not modeled and
53affect the process variables, too.23−25

54Many existing works focus on the model uncertainty
55quantification due to the lack of knowledge of model
56parameters and the underlying physics by combining the
57results from both computer simulations and physical experi-
58ments.26−31 Generally, one of the most-used strategies for the
59model parameter identification and/or estimation involves an
60off-line optimization using a nominal model of the
61process.32−40 The main disadvantage of this methodology is
62that the variability of microorganisms decreases the possibility
63of batch-to-batch repeatability.
64Other techniques that are used for model parameter
65estimation, which try to improve the results obtained with
66nominal optimization methodologies, are those called “run-to-
67run” optimization, in which the information is extracted from
68previous runs and used to optimize the operation of
69subsequent ones.41−48 However, the value of this improvement
70should be critically evaluated regarding the low-variability
71objective that is so important in the pharmaceutical and
72polymer industries.49

73In the past two decades, several research projects have
74ventured into on-line optimization of the model parame-
75ters.50−54 This kind of optimization is difficult to perform since
76the available models might only be locally valid and thus
77inappropriate for predicting final concentrations.49

78On the other hand, several feedback control strategies are
79studied to deal with bioprocess uncertainties. Adaptive control
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80 techniques, for example, are an important option to control
81 bioreactors under uncertainties.29,55−57 Also, fuzzy control
82 systems have been successfully applied to several bioreac-
83 tors.58,59 Alternative methodologies for controlling biopro-
84 cesses under model uncertainties are trajectory-based con-
85 trol,60 model predictive control,61 and hybrid control.62

86 However, the application of these techniques in a real plant
87 is quite difficult because of its complex design and
88 implementation.
89 For the particular case of recombinant protein production
90 with a double feed stream (Lee−Ramirez bioreactor63),
91 Pantano et al.1 developed a control strategy for tracking
92 control of predefined optimal profiles. In that work, the control
93 design includes a neural network state estimation for
94 unmeasurable variables, enabling the closed loop implementa-
95 tion. The methodology is characterized by its simplicity,
96 versatility, and accuracy. Advanced mathematical knowledge is
97 not required for design; only basic understanding of linear
98 algebra is needed. The main technique advantage is that
99 control actions computed are obtained solving linear system
100 equations, ensuring the convergence to zero of tracking errors.
101 Besides, that control technique has been applied successfully in
102 several systems,5,64−69 and therefore has a high potential for
103 applicability in all bioprocess environments.
104 The objective of this work is to design an improved control
105 strategy to achieve the tracking control of optimal protein
106 concentration, cell density, and volume profiles obtained in ref
107 70, with a minimum tracking error, when the system is
108 subjected to parametric uncertainty and perturbations in the
109 process. To achieve this goal, a term of uncertainty is
110 incorporated into the original controller design, which is
111 used to represent a wide range of model mismatches as well as
112 perturbations in the process. Then, some integral terms of
113 tracking error are incorporated into the controller design to
114 compensate the uncertainty. In a similar way to the original
115 methodology, the necessary and sufficient conditions are
116 analyzed so that the system has an exact solution, but now
117 taking into account the new terms. Finally, the control actions
118 are found solving linear system equations.
119 The main contribution of this work is the extension of the
120 proposed methodology in Pantano et al.,1 to provide a positive
121 answer to the challenging problem of tracking control in
122 multivariable nonlinear systems with additive uncertainty and
123 process disturbances. In this way, a more realistic problem can
124 be solved taking into account that a complete and exact
125 knowledge of the process model is never possible and, usually,
126 the external perturbations in the real process dynamics are
127 unavoidable. It is important to emphasize that this approach is
128 achieved without significantly increasing the controller design
129 complexity. Also, another important contribution is the
130 demonstration of convergence to zero of the tracking error
131 under parametric uncertainties and process disturbances.
132 The paper is organized as follows. First, a review of the
133 original controller design is presented in section 2. Then, the
134 extended controller methodology for contemplation of
135 uncertainties developed in section 3. The results and
136 discussion of the simulation tests, which include the adjust-
137 ment of the parameters of the controller and the control
138 system under parametric uncertainty and perturbations in the
139 control actions, are shown in section 4. Finally, section 5
140 outlines the main conclusions of this work.

2. ORIGINAL CONTROLLER DESIGN
141The controller methodology proposed in ref 1 is mainly based
142on approximating the mathematical model (1) by employing
143Euler method, which, despite its simplicity, presents good
144results. The aim of this controller design is to find the control
145actions values that follow desired paths with minimal tracking
146error.
147The case study proposed in ref 1 for control is the Lee−
148Ramirez fed-batch bioreactor. The mathematical model is
149taken from Tholudur and Ramirez.71

150The fed-batch bioreactor is described by the following
151model (1).
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157A more detailed description of the process can be found in
158ref 1. The nominal model parameter sets were validated and
159presented by Lee and Ramirez.72 The glucose feeding rate, u1
160(L/h), and inducer feeding rate, u2 (L/h), are the two available
161sources as control actions for the fed-batch bioreactor. The
162reactor volume x1, cell density x2, and foreign protein
163concentration x4 are the variables whose optimal profiles are
164proposed to follow.
165Controller Methodology. A differential equation system
166can be approximated according to the numerical integration
167rule of Euler as follow:

̇ =
−+x

x x

Ti
i n i n, 1 ,

s 168(5)

169where xi is the i state variable in n and n + 1 time instants, and
170Ts is the sampling time.
171Although there exist general numerical computation
172algorithms in the literature for model approximation,47,73,74

173the Euler rule is a proper choice for this case since the
174approximation is only used to find the best manner to go from
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175 the current state to the following one, and not to duplicate the
176 entire system evolution.
177 Taking into account eq 5, the mathematical model that
178 represents the bioprocess can be rewritten, as follows:
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180 Denote by zn and zn+1 the state vectors at the current time and
181 at the next one, respectively. ξn(zn) and βn(zn, un) are the input
182 matrices and un is the control actions vector.
183 Then, in a generic form, the system can be expressed as
184 follows:

ξ β= + [ + ]+ Tz z z z u u( ) ( , )n n n n n n1 s185 (7)
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190 where xi,ref,n and xi,ref,n+1 are the reference values obtained from
191 the optimal operating profiles in the n time and the next
192 sample time, respectively, ki is the controller parameter for the i
193 variable, and K is the control parameter matrix; en and en+1 are

194the tracking errors (difference between the reference and
195actual profiles).
196Then, the immediately reachable value for the state variables
197is

  = − −+ +z z K z z

e

( )n n n n

n

1 ref, 1 ref, 198(10)

199It is important to remark that the optimal profiles to follow
200were obtained by an open-loop simulation of the bioprocess
201using the optimal feeding policies achieved by Balsa-Canto et
202al.70

203In this way, the actual state variables in the following
204sampling time (xi,n+1) only depend on the reference profiles,
205the actual state variables at the current time, and the controller
206parameters (all values are known).
207Consequently, substituting (10) in (6) and rearranging the
208system equations:
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210The optimal profiles to follow are those corresponding to x1,
211x2, and x4, which are known. The only unknown variables of
212this system are defined as “sacrificed variables” xi,ez,
213corresponding in this case to x3,ez and x5,ez. As can be seen in
214eq 11, the system normally has no solution (five equations and
215two unknowns). Therefore, the key of the control technique
216proposed in ref 1 is that the values adopted by “sacrificed
217variables” force the equation system (11) to have an exact
218solution, which implies the tracking error is not only minimal,
219but is equal to zero.
220As mentioned above, the equation system (11) does not
221have an exact solution; therefore, to accomplish the target of
222this control methodology, that system must have an exact
223solution. Then, a Gaussian elimination process is carried out to
224find the necessary and sufficient condition for the system to
225have an exact solution (the resultant expression can be seen in
226ref 1). Therefore, the unknown variables, x3,ez and x5,ez
227(“sacrificed variables”) are computed for each sampling time.
228Once the values of the sacrificed variables are found, the
229system (11) has an exact solution and can be solved by the
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230 least-squares method for the calculation of the control variables
231 (u1,n and u2,n, u vector).

= ⇒ = −A A u A b u A A A b( ) ( )T T T 1 T
232 (12)

233 The control actions (u1,n and u2,n) applied at time n allow
234 following the desired trajectories with a minimal error.
235 Tracking Error. The tracking error is defined as the value
236 of the difference between the reference and real trajectories. In
237 a generic way, the tracking error for each state variable is
238 defined as

= − =e x x i, for 1, 2, 3, 4, 5i n i n i n, ,ref, ,239 (13)

240 The dimensionless tracking error (for desired variables) at n
241 instant of time is calculated as
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243 and the total tracking error

∑=E T e
n

nT s ad,
244 (15)

245 The reference final values for the desired variables are x1,ref,max
246 = 1.9 L, x2,ref,max = 13.92 g/L, and x4,ref,max = 3.1 g/L.
247 Note that the total tracking error (TTE, eq 15) is
248 dimensionless.
249 Taking into account eqs 8 and 11, the original control
250 system proposed in ref 1 (that did not take into account
251 parametric uncertainties or process perturbations for the
252 controller design) can be denoted as
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254 Equation 16 demonstrates that the tracking errors for all
255 variables tend to zero when 0 < ki < 1, i = 1, 2, 3, 4, 5, and n →
256 ∞. A demonstration can be seen in ref 1.

3. CONTROLLER DESIGN UNDER PARAMETRIC
257 UNCERTAINTY AND PROCESS DISTURBANCES
258 In this section, a methodology for the parametric uncertainties
259 and process disturbance handling is presented.
260 In order to quantify the model mismatch and process
261 disturbances, an additive uncertainty is incorporated into the
262 original controller design. According to eq 7, the real
263 bioprocess model is assumed:
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265where En quantifies the uncertainty. Note that this term of
266uncertainty can be used to model a wide class of model
267mismatches as well as perturbed systems.
268The mismatch model and external perturbations might
269depend on the state variables or the system input. Therefore,
270considering a real plant: zn+1 = g(zn, un), the additive
271uncertainty can be expressed as En = g(zn, un) − ĝ(zn, un),
272where ĝ(zn, un) is the nonlinear system model in discrete time.
273Now, note that if z and u are bounded and g is Lipschitz, as it
274will be assumed, then En can be modeled as a bounded
275uncertainty.75,76

276Analogously to the procedure followed for eq 16, but now
277taking into account the additive uncertainty, the next
278concluding expression is obtained:
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280Looking at eq 18, it can be seen how the additive uncertainty
281directly affects the tracking error. Anyway, the presence of the
282term En makes the tracking error not converge to zero.
283The main contribution of this work is to compensate the
284uncertainty and achieve the tracking error convergence to zero
285when the process moves forward. Therefore, the objective is to
286compensate the uncertainty and achieve the tracking error
287convergence to zero when the process moves forward.
288Integral Action. In order to deal with the additive
289uncertainty effect on the tracking error, the incorporation of
290an integral action in the state variable system is proposed.
291Therefore, depending on the supposition of the time variation
292of En, a series of the tracking error integrators are added in the
293control actions calculation.
294In a real system, it is assumed that the effects of additive
295uncertainties on tracking errors are unknown and each
296component of Eφ,n can be represented by a polynomial of m
297order.
298As definitions, the first order difference for additive
299uncertainty is δEn = En+1 − En, the second order difference
300δ2En = δ(δEn) = δ (En+1 − En) = En+2 − 2En+1 + En;
301analogously, the qth order difference can be expressed as δqEn
302= δ(δq−1En).

77 Note that the qth order difference of a q − 1
303polynomial order is zero.
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304 Constant Uncertainty. If uncertainties remain constant
305 throughout the process, i.e., En = const, then the first order
306 difference is equal to zero: δEn = En+1 − En = 0.
307 The integral action proposed is defined as

∫= + ≅ ++

+
t t TU U e U e( ) dn n

nT

n T

n n1, 1 1,

( 1)

1, s
s

s

308 (19)

309 where e(t) is the continuous time error in the state vector and
310 U1,n+1 is the integral of the error. The subscript “1” means the
311 first integral of error, and n is the instant of time.

312According to eq 10, but now considering parametric
313uncertainties and process disturbances, the control action can
314be computed taking into account the new terms:

  = − − ++ + +z z K z z

e

L U( )n n n n

n

n1 ref, 1 ref, 1 1, 1 315(20)

316where L1 is the matrix corresponding to integral action with a
317constant uncertainty.
318Then, for each variable:
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320

321 Now, following the procedure carried out for the original
322 controller, eq 21 is replaced in the mathematical model of the
323 system represented in eq 6:

μ

μ
− −

− −

− −
− −

= =

− − + −

− − + −
−

− − + −
+

− − + −
−

− − + −

+ +

+ +

+ +

+ +

+ +

i

k

jjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzz

i
k
jjjjj

y
{
zzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

N x x

I x

u

u

x k x x L U x

T

x k x x L U x

T

x

x
x

x k x x L U x

T
x

Y
x x

x k x x L U x

T

x

x
Rx

x

x

x k x x L U x

T
x

1 1
1 1

( )

1 1
1 ( )

...

( )

( )

( )

( )

( )

n n

n

n

n

n n n n n

n n n n n n

n
n

ez n ez n n n n
n n n

n n n n n n

n
n

n

n

ez n ez n n n n
n

3, 3,

5,

1,

2,

1,ref, 1 1 1,ref, 1, 1,1 1,1, 1 1,

s

2,ref, 1 2 2,ref, 2, 1,2 1,2, 1 2,

s

1,

2,
2,

3, , 1 3 3, , 3, 1,3 1,3, 1 3,

s
1, 2, 1,

4,ref, 1 4 4,ref, 4, 1,4 1,4, 1 4,

s

1,

4,
2,

1,

4,

5, , 1 5 5, , 5, 1,5 1,5, 1 5,

s
1,

324 (22)

325

326 The next step is to find the necessary condition for the
327 system (eq 22) to have an exact solution, which is achieved
328 through a Gaussian elimination process similar to that
329 presented in ref 1. In this way, the values of the variables
330 sacrificed for each sampling time are found. Then, the control
331 actions can be calculated using eq 12.
332 Now, to demonstrate that the tracking error of the real
333 system under perturbations converges to zero, simple
334 mathematical operations are carried out:
335 Expressing eq 18 in the following summarized way:

= − + −+ +e Ke ENLn n n n1 1, 1336 (23)

337 Adding the integral term

= − + + −+ + +e Ke L U ENLn n n n n1 1 1, 1 1, 1338 (24)

339 Replacing eq 19 in eq 24:

= + + + ++ +Te Ke L U L e ENLn n n n n n1 1 1, 1 s 1, 1340 (25)

341 Increasing eq 25 in one sampling time:

= + + + ++ + + + + +e Te K L U e ENL ( )n n n n n n2 1 1 1 1, 1 1 s 1, 2

342(26)

343Clearing the integral term from eq 24, replacing in eq 26, and
344rearranging:

  

δ
= − − − + − − −

+ −

=
+ + +

+

T

E E

E
e e K L Ke( 1 ) (NL NL )

( )

0
n n n n n

n n

n

2 1 1 s 1

2, 1 2,

2,

345(27)

346Therefore, the sets of parameters K and L1 are optimized for
347the stability assurance of eq 27. The nonlinearity term (NLn+1
348− NLn) tends to zero because it depends on the error in the
349sacrificed variables, which tends to zero, too. Then en → 0 as n
350→ ∞ despite the uncertainties, if they are considered constant.
351Linear Uncertainty. If uncertainties can be represented by
352a linear function, where the second order difference is equal to
353zero: δ2En = δ(δEn) = δ(En+1 − En) = En+2 − 2En+1 + En = 0,
354then a new integrator must be considered. In a similar way to
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355 the procedure before, but now introducing two integral actions
356 defined by U1 and U2:

∫= +

≅ +

φ φ φ

φ φ

+

+

+

U U t t

U T

U

U

( ) dn n
nT

n T

n n

,2, 1 ,2,

( 1)

,1

,2, ,1, 1 s

s

s

357 (28)

358 where the subscript “2” means an integrator for a linear
359 perturbation.
360 Then, a new term is added to eq 20:

  = − − + ++ + + +z z K z z

e

L U L U( )n n n n

n

n n1 ref, 1 ref, 1 1, 1 2 2, 1

361 (29)

362 The new parameter L2 corresponds to double integral action.
363 In a similar way as simple integral action, the demonstration of
364 convergence to zero of the tracking error for the double
365 integral action is operating as before, and taking into account
366 that δ2En = 0, the final expression for tracking error is
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367 (30)

368 Now, as can be seen in (30), under constant or linear
369 varying uncertainty, this has no influence on the error
370 dynamics. The parameters K, L1, and L2 are optimized for
371 the stability assurance of eq 30, as shown in the previous case.
372 Now, in a generic way, if the uncertainties can be
373 approximated by q − 1 order polynomial, the influence of En
374 on en will be eliminated by introducing q integrators.
375 Optimization of Controller Parameters. There is a
376 recurrent problem for this kind of controllers, and it is how to
377 define the best tuning parameters to achieve a good closed-
378 loop response. In this subsection an algorithm based on Monte
379 Carlo randomized experiment is proposed to find the optimal
380 controller parameters.
381 In the original controller presented in ref 1, the controller
382 parameters are represented by K = {k1, k2, k3, k4, k5}, and the
383 conditions for the tracking error tending to zero according to
384 eq 27 are that 0 < ki < 1, i = {1, 2, 3, 4, 5}. But now, integral
385 actions are added; therefore the amount of parameters to select
386 increases and the conditions change:
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387 In a generic form, for the integral action, the parameters are
388 denoted by Lm,i, where m is the number of integrators and i
389 corresponds to each state variable.
390 To choose the optimization criteria of the parameters
391 considering the integral actions, resort to the characteristic
392 equations (27) and (30) (simple and double integral actions,

393respectively). In the case of the controller without integral
394action, the characteristic equation can be rewritten as

− =r k 0i 395(31)

396Therefore, the parameters are directly the roots of polynomial.
397For a simple integral action (one integrator, constant
398uncertainty), the characteristic equation is (27) and can be
399rewritten as

+ − − + + =r r k L T k( 1 ) 0i i i
2

1, s 400(32)

401Thus, clearing the parameters according to the roots:

=

= − − + +

k r r
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i

i

1 2

1, 1 2 1 2 s 402(33)

403For a double integral action (two integrators, linear
404uncertainty), the characteristic equation is (30) and can be
405rewritten as

+ − + + − + − +

− =

r r k T L L T r k L T

k

( ( ) 2) (2 1)

0

i i i i i
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3 2
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407Clearing the parameters

=

= + − − −

= − − − − + + + +

k r r r
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2
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409Thus, for the tracking error to tend to zero and to ensure the
410system stability, the roots of the polynomial must be between 0
411and 1.
412The performance index used to optimize the controller
413parameters is to minimize the total tracking error (15):

= EC min( )
K L,

T
414(36)

4. RESULTS AND DISCUSSION
415In this section, the behavior of the controller against
416parametric uncertainty and perturbations in the process is
417evaluated through simulations. First, a Monte Carlo algorithm
418to tune the optimal controller parameters is carried out. Then,
419the system is tested under parametric uncertainty and process
420disturbances, comparing the system responses with and
421without integral action.
422Controller Tuning. In order to determine the optimal
423controller parameters, a Monte Carlo algorithm (MCRA) is
424carried out. This methodology has been recently employed for
425controller tuning1,64,78 with satisfactory results.
426According to the criteria for parameter selection discussed in
427section 3, the procedure for the simulation is detailed below.
428Controller Tuning without Integral Action (m = 0). In this
429case, the methodology employed is the same as in ref 1, where
4301000 simulations are performed. Considering eq 31, for each
431simulation a random value ri ∈ (0,1) is assigned for each state
432variable, then the control actions and the performance index
433(36) are computed. Once the simulations are finished, the
434optimal controller parameter set is corresponding to the
435minimum C.
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436 Controller Tuning with an Integral Action (m = 1). Again,
437 1000 simulations are performed, but now the parameters are
438 calculated according to eq 33.
439 Controller tuning with a double integral action (m = 2).
440 Once the 1000 simulations are performed, the controller
441 parameters are computed according to eq 35.
442 The necessary information to carry out the simulations is
443 taken from ref 1. The final time and sampling time are Tf = 10
444 h and Ts = 0.1 h, respectively.

t1 445 Table 1 shows the optimized values for the controller
446 parameters. Depending on the value of m, there will be 5, 10,
447 or 15 parameters.

448 Disturbances and Uncertainties Handling. For the
449 quantification of uncertainties and disturbances in the
450 simulation work, an approach consists of specifying only the
451 upper and lower limits within which the real disturbance or
452 uncertainty is assumed to evolve. The idea of this approach is
453 thus to replace the knowledge of exact values of unknown
454 inputs by a known range of the values within which they
455 evolve.79

456 Parametric Uncertainty. In the bioprocesses, the model
457 parameters vary in an unpredictable manner.80 This can lead to

458a structural instability in the dynamic behavior of the system.20

459Therefore, a strict and efficient control system is necessary.
460In several research fields, probabilistic methods have been
461found to be useful for dealing with problems related to
462robustness of systems affected by uncertainties.81 In particular,
463the Monte Carlo randomized algorithm has been used for
464uncertainty quantification in many applications such as the
465Rothermel model,48 river flow rate forecast,82 radioactive
466decay, power system generation, and traffic on roads,83 among
467others. From the point of view of process control, Monte Carlo
468methods are effective tools for the analysis of probabilistically
469robust control schemes.65,81 In this subsection the system is
470simulated considering errors on modeling using the MCRA
471method. The procedure consists of replacing the exact model
472parameters values by a range of them within which they can
473vary. The defined range for model parameters is ±20% of the
474nominal values. Then, N = 1000 simulations are executed using
475the optimized controller parameters set.
476Taking into account the worst case of uncertainty, all the
477model parameters are varied. In the first instance, the control
478system is tested without integral action. Then one integrator is
479added and finally, two integrators are added. The results are
480compared below.
481The tracking of optimal profiles for the three cases is shown
482 f1in Figure 1.
483 f2Figure 2 shows the TTE for 1000 simulations to evaluate the
484controller performance under parametric uncertainty for three
485cases: no integrator (a), one integrator (b), and two integrators
486(c). As can be seen, the total tracking error range is visibly
487reduced when integral actions are added.
488 t2In Table 2, the total tracking errors for the three cases are
489shown. Now, taking the average value of TTE for each case
490and translating it to percentage, the improvement of the
491controller with integral action can be easily quantified (see
492 f3Figure 3). Note that the error is reduced by 48% by adding one
493integral action and 61% with two integrators.
494The above figures show that the integral actions
495incorporated into the controller are effective and give
496robustness to the control system.
497Perturbation in the Control Actions. In all processes
498there are also disturbances acting on the plant in addition to
499parametric uncertainties, modifying the expected values of the

Table 1. Optimal Controller Parameters

param m = 0 m = 1 m = 2

k1 0.2805 0.0038 0.0404
k2 0.6761 0.9412 0.9412
k3 0.6520 0.7941 0.6589
k4 0.1694 0.2032 0.3842
k5 0.1266 0.5382 0.5382
L1,1 − 8.8102 0.0851
L1,2 − 0.0088 2.3546
L1,3 − 1.1183 1.2538
L1,4 − 1.4755 2.4587
L1,5 − 0.6504 1.0085
L2,1 − − 0.2588
L2,2 − − 1.5285
L2,3 − − 3.0497
L2,4 − − 1.9246
L2,5 − − 2.7533

Figure 1. Tracking of optimal profiles for 1000 simulations under parametric uncertainty (±20%) . (a) Nonintegral action (m = 0), (b) one integral
action (m = 1), and (c) two integral actions. Green lines show the reference values.
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500 system variables. Therefore, a random perturbation in the
501 control actions taking into account parametric uncertainties is
502 simulated for the controller evaluation. The two control
503 actions are perturbed by 30% of calculated values:

= + +u u (1 random(unif, 0, 0.3) 1)1,perturbed 1,unperturbed

= + +u u (1 random(unif, 0, 0.3) 1)2,perturbed 2,unperturbed

504 f4Figure 4 shows the controller adjustment to hold the
505tracking error in a minimal value spite of perturbations in the
506control actions and parametric uncertainties.
507 t3Table 3 shows the TTE for the controllers. Note how, again,
508by adding only one integral action the tracking error is reduced
509by 68%. The response improves by 75% with two integrators.

510 f5Figure 5 shows a bar diagram of the cumulative error (TTE)
511for the real system under parametric uncertainties and

Figure 2. Total tracking error for 1000 simulations under parametric uncertainty (±20%) . (a) Nonintegral action, proposed by Pantano et al.1 (m
= 0), (b) one integral action (m = 1), and (c) two integral actions (m = 2) . Central dashed lines show the mean values.

Table 2. Reduction of TTE by Adding Integrators under
Parametric Uncertainty

m = 0 m = 1 m = 2

TTE 0.0472 0.0245 0.0186
% 100 52 39

Figure 3. TTE mean value for the three cases. Process simulation
under parametric uncertainty (20%).

Figure 4. Perturbed control actions considering parametric uncertainty.

Table 3. TTE for Perturbed System with Parametric
Uncertainty

m = 0 m = 1 m = 2

TTE 0.1036 0.0335 0.0253
% 100 32 24

Figure 5. TTE for the three cases. Process simulation under
parametric uncertainty and perturbations in the control actions.
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512 perturbation in the control actions. This is presented for the
513 original controller proposed in Pantano et al.1 (m = 0), and for
514 the two controllers proposed in this paper: one integrator (m =
515 1) and two integrators (m = 2). In addition, as a comparison,
516 TTE is shown for a classic PI controller, which was
517 automatically tuned by a Matlab autotuning function.
518 As can be seen in this section, the simulation work
519 demonstrates the effectiveness of the controller proposed in
520 this work, by adding integral actions to the design, in order to
521 solve the problems of control under parametric uncertainty
522 and process disturbances.

5. CONCLUSION
523 This paper proposes an improved control system for fed-batch
524 production of recombinant protein, a multivariable and
525 nonlinear bioprocess which is highly susceptible to model
526 and process disturbances due to its biological nature. The
527 original controller proposed in ref 1 achieved the tracking of
528 optimal profiles of volume, cell density, and protein
529 concentration (main product) with a minimum error through
530 the development of an effective control law based on linear
531 algebra. The technique proposed in this work extends the
532 original controller design to take into account parametric
533 uncertainty and process disturbances. Several simulations were
534 carried out to test the controller performance. The system was
535 evaluated under parametric uncertainties (±20%) and random
536 perturbations in the control actions (±30%), improving the
537 system response up to 70% by adding some integral actions of
538 the tracking error in the control actions computation. The
539 optimal controller parameters (with and without integrators)
540 were successfully found through a Monte Carlo experiment.
541 Although this method has low complexity, the results are
542 reliable and the method solves a real problem for bioprocess
543 control.
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(24) 629Meńdez-Acosta, H. O.; Palacios-Ruiz, B.; Alcaraz-Gonzaĺez, V.;
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