
Pooch: A friend to fetch your data files
Leonardo Uieda1, Santiago Rubén Soler2,3, Rémi Rampin4, Hugo van
Kemenade5, Matthew Turk6, Daniel Shapero7, Anderson Banihirwe8,
and John Leeman9

1 Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences,
University of Liverpool, UK 2 Instituto Geofísico Sismológico Volponi, Universidad Nacional de San
Juan, Argentina 3 CONICET, Argentina 4 New York University, USA 5 Independent (Non-affiliated)
6 University of Illinois at Urbana-Champaign, USA 7 Polar Science Center, University of
Washington Applied Physics Lab, USA 8 The US National Center for Atmospheric Research, USA 9
Leeman Geophysical, USA

DOI: 10.21105/joss.01943

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @hmaarrfk
• @martindurant

Submitted: 02 December 2019
Published: 17 January 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Scientific software is usually created to acquire, analyze, model, and visualize data. As such,
many software libraries include sample datasets in their distributions for use in documentation,
tests, benchmarks, and workshops. A common approach is to include smaller datasets in the
GitHub repository directly and package them with the source and binary distributions (e.g.,
scikit-learn (Pedregosa et al., 2011) and scikit-image (Van der Walt et al., 2014) do this). As
data files increase in size, it becomes unfeasible to store them in GitHub repositories. Thus,
larger datasets require writing code to download the files from a remote server to the user’s
computer. The same problem is faced by scientists using version control to manage their
research projects. While downloading a data file over HTTPS can be done easily with modern
Python libraries, it is not trivial to manage a set of files, keep them updated, and check for
corruption. For example, scikit-learn (Pedregosa et al., 2011), Cartopy (Met Office, n.d.),
and PyVista (Sullivan & Kaszynski, 2019) all include code dedicated to this particular task.
Instead of scientists and library authors recreating the same code, it would be best to have a
minimalistic and easy to set up tool for fetching and maintaining data files.
Pooch is a Python library that fills this gap. It manages a data registry (containing file names,
SHA-256 cryptographic hashes, and download URLs) by downloading files from one or more
remote servers and storing them in a local data cache. Pooch is written in pure Python and
has minimal dependencies. It can be easily installed from the Python Package Index (PyPI)
and conda-forge on a wide range of Python versions: 2.7 (up to Pooch 0.6.0) and from 3.5
to 3.8. The integrity of downloads is verified by comparing the file’s SHA-256 hash with the
one stored in the data registry. This is also the mechanism used to detect if a file needs to be
re-downloaded due to an update in the registry. Pooch is meant to be a drop-in replacement
for the custom download code that users have already written (or are planning to write). In
the ideal scenario, the end-user of a software package should not need to know that Pooch is
being used. Setup is as easy as calling a single function (pooch.create), including setting
up an environment variable for overwriting the data cache path and versioning the downloads
so that multiple versions of the same package can coexist in the same machine. For example,
this is the code required to set up a module datasets.py that uses Pooch to manage data
downloads:

import pooch

Get the version string from the project

Uieda et al., (2020). Pooch: A friend to fetch your data files. Journal of Open Source Software, 5(45), 1943. https://doi.org/10.21105/joss.
01943

1

https://doi.org/10.21105/joss.01943
https://github.com/openjournals/joss-reviews/issues/1943
https://github.com/fatiando/pooch
https://doi.org/10.5281/zenodo.3611376
http://danielskatz.org/
https://github.com/hmaarrfk
https://github.com/martindurant
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01943
https://doi.org/10.21105/joss.01943

from . import version

Create a new instance of pooch.Pooch
GOODBOY = pooch.create(

Cache path using the default for the operating system
path=pooch.os_cache("myproject"),
Base URL of the remote data server (for example, on GitHub)
base_url="https://github.com/me/myproject/raw/{version}/data/",
PEP 440 compliant version number (added to path and base_url)
version=version,
An environment variable that overwrites the path
env="MYPROJECT_DATA_DIR",

)
Load the registry from a simple text file.
Each line has: file_name sha256 [url]
GOODBOY.load_registry("registry.txt")

def fetch_some_data():
Get the path to the data file in the local cache
If it's not there or needs updating, download it
fname = GOODBOY.fetch("some-data.csv")
Load it with NumPy/pandas/xarray/etc.
data = pandas.read_csv(fname)
return data

Pooch is designed to be extended: users can plug in custom download functions and post-
download processing functions. For example, a custom download function could fetch files
from a password-protected FTP server (the default is HTTP/HTTPS or anonymous FTP) and
a processing function could decrypt a file using a user-defined password once the download
is completed. We include ready-made download functions for HTTP and FTP (including
basic authentication) as well as processing functions for unpacking archives (zip or tar) and
decompressing files (gzip, lzma, and bzip2).
To the best of the authors’ awareness, the only other Python software with some overlapping
functionality are Intake and fsspec (which is used by Intake). The fsspec library provides
a unified interface for defining file systems and opening files, regardless of where the files
are located (local system, HTTPS/FTP servers, Amazon S3, Google Cloud Storage, etc).
fsspec implements similar download and caching functionality to the one in Pooch, but has a
wider range of download methods available. In the future, fsspec could be used as a backend
to expand Pooch’s download capabilities beyond HTTPS and FTP. Intake manages data
catalogues (with download locations and extensive metadata), data download and caching,
data loading, visualization, and browsing. It has built-in capabilities for loading data into
standard containers, including NumPy, pandas, and xarray. While Intake and fsspec are
powerful and highly configurable tools, we argue that Pooch’s strong points are its simplicity,
straight-forward documentation, and focus on solving a single problem.
The Pooch API is stable and has been field-tested by other projects: MetPy (May et al., n.d.),
Verde (Uieda, 2018), RockHound (Uieda & Soler, 2019), predictatops (Gosses, 2019), and
icepack (Shapero, Lilien, Ham, & Hoffman, 2019). Pooch is also being implemented as the
download manager for scikit-image (GitHub pull request number 3945), which will allow the
project to use larger sample data while simultaneously reducing the download size of source
and binary distributions.

Uieda et al., (2020). Pooch: A friend to fetch your data files. Journal of Open Source Software, 5(45), 1943. https://doi.org/10.21105/joss.
01943

2

https://github.com/intake/intake
https://github.com/intake/filesystem_spec
https://github.com/scikit-image/scikit-image/pull/3945
https://doi.org/10.21105/joss.01943
https://doi.org/10.21105/joss.01943

Acknowledgements

We would like to thank all of the volunteers who have dedicated their time and energy to
build the open-source ecosystem on which our work relies. The order of authors is based on
number of commits to the GitHub repository. A full list of all contributors to the project can
be found on the GitHub repository.

References

Gosses, J. (2019). JustinGOSSES/predictatops: V0.0.4. Zenodo. doi:10.5281/ZENODO.
1450596

May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R., Goebbert, K., Thielen, J.
E., et al. (n.d.). MetPy: A Python package for meteorological data. Boulder, Colorado:
Unidata. doi:10.5065/D6WW7G29

Met Office. (n.d.). Cartopy: A cartographic Python library with a Matplotlib interface.
Exeter, Devon. Retrieved from https://scitools.org.uk/cartopy

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Shapero, D., Lilien, D., Ham, D. A., & Hoffman, A. (2019). Icepack/icepack: Icepack: Glacier
flow modeling with the finite element method in Python. Zenodo. doi:10.5281/ZENODO.
3542092

Sullivan, C. B., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a
streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Soft-
ware, 4(37), 1450. doi:10.21105/joss.01450

Uieda, L. (2018). Verde: Processing and gridding spatial data using Green’s functions. Journal
of Open Source Software, 3(30), 957. doi:10.21105/joss.00957

Uieda, L., & Soler, S. R. (2019). Rockhound: Download geophysical models/datasets and
load them in Python. Zenodo. doi:10.5281/ZENODO.3086002

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager,
N., Gouillart, E., et al. (2014). scikit-image: image processing in Python. PeerJ, 2, e453.
doi:10.7717/peerj.453

Uieda et al., (2020). Pooch: A friend to fetch your data files. Journal of Open Source Software, 5(45), 1943. https://doi.org/10.21105/joss.
01943

3

https://github.com/fatiando/pooch/graphs/contributors
https://doi.org/10.5281/ZENODO.1450596
https://doi.org/10.5281/ZENODO.1450596
https://doi.org/10.5065/D6WW7G29
https://scitools.org.uk/cartopy
https://doi.org/10.5281/ZENODO.3542092
https://doi.org/10.5281/ZENODO.3542092
https://doi.org/10.21105/joss.01450
https://doi.org/10.21105/joss.00957
https://doi.org/10.5281/ZENODO.3086002
https://doi.org/10.7717/peerj.453
https://doi.org/10.21105/joss.01943
https://doi.org/10.21105/joss.01943

	Summary
	Acknowledgements
	References

