Localization of tetravalent modal algebras

Aldo V. Figallo
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400 San Juan, Argentina
avfigallonavaro@gmail.com
Gustavo Pelaitay*
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400 San Juan, Argentina
Departamento de Matemática
Universidad Nacional de San Juan
5400 San Juan, Argentina
gpelaitay@gmail.com
Communicated by I. Chajda
Received January 31, 2017
Revised June 3, 2017
Published July 5, 2017

Abstract

The main aim of this paper is to define the localization of a tetravalent modal algebra A with respect to a topology \mathcal{F} on A. In Sec. 5 we prove that the tetravalent modal algebra of fractions relative to a \wedge-closed system (defined in Definition 3.1) is a tetravalent modal algebra of localization.

Keywords: Tetravalent modal algebra; tetravalent modal algebra of fractions; ^-closed system.

AMS Subject Classification: 06D30, 03G25

1. Introduction

A remarkable construction in ring theory is the localization ring $A_{\mathcal{F}}$ associated with a Gabriel topology \mathcal{F} on a ring A (see [18, (19). In Lambek's book [11, it introduces the notion of complete ring of quotients of a commutative ring, as a particular case of localization ring (relative to the topology of dense ideals).

[^0]Starting from the example of the rings, Schmid introduced in [20, 21] the notion of maximal lattice of quotients for a distributive lattice. The central role in this construction is played by the concept of multipliers defined by Cornish in 5.

Using the model of localization ring, in [10, Georgescu defined the localization lattice $A_{\mathcal{F}}$ for a bounded distributive lattice A with respect to a topology \mathcal{F} on A and prove that the maximal lattice of quotients for a distributive lattice is a lattice of localization (relative to the topology of regular ideals). Analogous results we have for lattices of fractions of bounded distributive lattices relative to \wedge-closed systems.

In 1978, Monteiro introduced tetravalent modal algebras as a very interesting generalization of three-valued Lukasiewicz-Moisil algebras. These algebras do really offer a genuine interest, both from the point of view of algebra and from that of logic, and specially from the one of Algebraic Logic (see [8]). An algebraic study of tetravalent modal algebras can be found in [12, 15] and [4, 6, 7].

The main aim of this paper is to develop a theory of localization for tetravalent modal algebras. Since three-valued Łukasiewicz-Moisil algebras is a particular case of tetravalent modal algebra (see [1]), the results of this paper generalize a part of the results from [2] 3] (for $L M_{3}$-algebras).

2. Preliminaries

In 1978, Monteiro introduced the tetravalent modal algebras (or TM-algebras) as algebras $\langle A, \vee, \wedge, \sim, \nabla, 1\rangle$ of type $(2,2,1,1,0)$ which verify:
(M1) $x \wedge(x \vee y)=x$,
(M2) $x \wedge(y \vee z)=(z \wedge x) \vee(z \wedge y)$,
(M3) $\sim \sim x=x$,
(M4) $\sim(x \vee y)=\sim x \wedge \sim y$,
(M5) $\nabla x \vee \sim x=1$,
(M6) $\nabla x \wedge \sim x=\sim x \wedge x$.
We denote by TM the category of TM-algebras.
It is easy to see that every TM-algebra satisfies:
$(\mathrm{M} 7) 1 \vee x=1$.
From M1, M2, M7, M3, M4 it follows that $\langle A, \wedge, \vee, \sim, 1,0\rangle$ is a De Morgan algebra with greatest element 1 and least element $0=\sim 1$. Taking into account [16, 17, we have that three-valued Łukasiewicz-Moisil algebras (or LM_{3}-algebras) are TM-algebras which, moreover, satisfy:
$\left(\mathrm{M} 6^{\prime}\right) \nabla(x \wedge y)=\nabla x \wedge \nabla y$.
The results announced here for TM-algebras will be used throughout the paper
(M8) $x \leq \nabla x$,
(M9) $\nabla 0=0$,
(M10) $\nabla 1=1$,
(M11) $\nabla \nabla x=\nabla x$
(M12) $\nabla(x \vee y)=\nabla x \vee \nabla y$,
(M13) $\nabla(x \wedge \nabla y)=\nabla x \wedge \nabla y$,
(M14) $x \in \nabla(A)$ if and only if $\nabla x=x$,
(M15) ∇x and $\sim \nabla x$ are Boolean complements,
(M16) $\nabla \sim \nabla x=\sim \nabla x$.
From (M8), (M9), (M13) and (M16), we have that ∇ is an existential quantifier in the sense of Halmos.

3. TM-Algebra of Fractions Relative to an \wedge-Closed System

Definition 3.1. A nonempty subset S of a TM-algebra A is called \wedge-closed system in A if:
(S1) $1 \in S$,
(S2) $x, y \in S$ implies $x \wedge y \in S$.
We denote by $S(A)$ the set of all \wedge-closed systems of A.
Lemma 3.1. Let S be $a \wedge$-closed system of a TM-algebra A. Then, the relation θ_{S} defined by $(x, y) \in \theta_{S}$ if and only if there is $s \in S \cap \nabla(A)$ such that $x \wedge s=y \wedge s$ is a congruence on A.

Proof. We need only to prove that θ_{S} is compatible with \sim and ∇. Let $(x, y) \in \theta_{S}$. Then there is $s \in S \cap \nabla(A)$ such that (1) $x \wedge s=y \wedge s$. Thus, (2) $\nabla s=s$ by (M14) and $\sim x \vee \sim s=\sim y \vee \sim s$. From this assertion and (M15), we get that $\sim x \wedge \nabla s=\sim y \wedge \nabla s$. Hence, by (2), we obtain that $(\sim x, \sim y) \in \theta_{S}$. On the other hand, from (1), (2) and (M13), we have that (3) $\nabla x \wedge \nabla s=\nabla y \wedge \nabla s$. Besides, from (2), we deduce that $\nabla s \in S \cap \nabla(A)$. Therefore, from (3), we conclude that (∇x, $\nabla y) \in \theta_{S}$.

Let $A \in \mathbf{T M}$. For $x \in A$, we denote by $[x]_{S}$ the equivalence class of x relative to θ_{S} and by $A[S]=A / \theta_{S}$.

By $p_{S}: A \rightarrow A[S]$, we denote the canonical map defined by $p_{S}(x)=[x]_{S}$, for every $x \in A$.

Remark 3.1. Since for every $s \in S \cap \nabla(A), s \wedge s=s \wedge 1$, we deduce that $[s]_{S}=[1]_{S}$, hence $p_{S}(S \cap \nabla(A))=\left\{[1]_{S}\right\}$.

Proposition 3.1. If $a \in A$, then $[a]_{S} \in \nabla(A[S])$ if and only if there exists $s \in$ $S \cap \nabla(A)$ such that $a \wedge s \in \nabla(A)$. So, if $a \in \nabla(A)$, then $[a]_{S} \in \nabla(A[S])$.

Proof. For $a \in A$, we have $[a]_{S} \in \nabla(A[S])$ if and only if $\nabla[a]_{S}=[a]_{S}$, that is, $[\nabla a]_{S}=[a]_{S}$. So, $(\nabla a, a) \in \theta_{S}$, which it means that there exists $s \in S \cap \nabla(A)$ such
that $\nabla a \wedge s=a \wedge s$, that is, $\nabla(a \wedge s)=\nabla(\nabla a \wedge s)=\nabla a \wedge \nabla s=\nabla a \wedge s=a \wedge s$, hence $a \wedge s \in \nabla(A)$. If $a \in \nabla(A)$, since $1 \in S \cap \nabla(A)$ and $a \wedge 1=a \in \nabla(A)$, we deduce that $[a]_{S} \in \nabla(A[S])$.

Theorem 3.1. If A is a TM-algebra and $f: A \rightarrow A^{\prime}$ is a morphism of TM-algebras such that $f(S \cap \nabla(A))=\{1\}$, then there is an unique morphism of TM-algebras $f^{\prime}: A[S] \rightarrow A^{\prime}$ such that the diagram

commutes (i.e. $f^{\prime} \circ p_{S}=f$).
Remark 3.2. The previous theorem allows us to call $A[S]$ the TM-algebra of fractions relative to the \wedge-closed system S.

Example 3.1.

(1) If $S=\{1\}$ or is such that $1 \in S$ and $S \cap(\nabla(A) \backslash\{1\})=\emptyset$, then for $x, y \in A$, $(x, y) \in \theta_{S} \Leftrightarrow 1 \wedge x=1 \wedge y \Leftrightarrow x=y$, hence in this case $A[S]=A$.
(2) If S is an \wedge-closed system such that $0 \in S$ (for example $S=A$ or $S=\nabla(A)$), then for every $x, y \in A,(x, y) \in S$ (since $x \wedge 0=y \wedge 0$ and $0 \in S \cap \nabla(A)$), hence in this case $A[S]=\left\{[0]_{S}\right\}$.

4. Topologies on TM-Algebras

Definition 4.1. An ideal of a TM-algebra A is a subset I of A satisfying the following conditions:
(I1) $0 \in I$,
(I2) If $x \in I, y \in A$ and $y \leq x$, then $y \in I$.
(I3) If $x, y \in I$, then $x \vee y \in I$.
We shall denote by $\mathcal{I}(A)$ the lattice of all ideals of A.
Definition 4.2. A nonempty set \mathcal{F} of ideals of A will be called a topology on A if the following properties hold:
(T1) If $I_{1} \in \mathcal{F}, I_{2} \in \mathcal{I}(A)$ and $I_{1} \subseteq I_{2}$, then $I_{2} \in \mathcal{F}$ (hence $A \in \mathcal{F}$),
(T2) If $I_{1}, I_{2} \in \mathcal{F}$, then $I_{1} \cap I_{2} \in \mathcal{F}$.

Clearly, if \mathcal{F} is a topology on A, then $(A, \mathcal{F} \cup\{\emptyset\})$ is a topological space. Any intersection of topologies on A is a topology, hence the set $T(A)$ of all topologies of A is a complete lattice with respect to inclusion. \mathcal{F} is a topology on A if and only if \mathcal{F} is a filter of the lattice of power set of A, for this reason, a topology on A is usually called a Gabriel filter on $\mathcal{I}(A)$.

Example 4.1. $\mathcal{F}_{S}=\{I \in \mathcal{I}(A): I \cap S \cap \nabla(A) \neq \emptyset\}$ is a topology on A, for every $S \in S(A)$.

Definition 4.3. The topology \mathcal{F}_{S} is called the topology associated with the $\wedge-$ closed system S.

5. \mathcal{F}-Multipliers and Localization of TM-Algebra

Let \mathcal{F} be a topology on A. We consider the relation $\theta_{\mathcal{F}}$ of A
$(x, y) \in \theta_{\mathcal{F}}$ if and only if there exists $I \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for every $e \in I \cap \nabla(A)$.

Lemma 5.1. $\theta_{\mathcal{F}}$ is a congruence on A.
Proof. We need only to prove that $\theta_{\mathcal{F}}$ is compatible with \sim and ∇. Let $(x, y) \in$ $\theta_{\mathcal{F}}$. Then there is $I \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for every $e \in I \cap \nabla(A)$. Let $e \in I \cap \nabla(A)$, then $e \wedge x=e \wedge y$. From this last assertion and (M15), we deduce that $\sim x \wedge e=(\sim x \wedge \nabla e) \vee(\sim \nabla e \wedge \nabla e)=(\sim x \vee \sim \nabla e) \wedge \nabla e=(\sim y \vee \sim$ $\nabla e) \wedge \nabla e=(\sim y \wedge \nabla e) \vee(\sim \nabla e \wedge \nabla e)=\sim y \wedge \nabla e$. Therefore, $(\sim x, \sim y) \in \theta_{\mathcal{F}}$. On the other hand, from (M13), we have that $\nabla x \wedge e=\nabla x \wedge \nabla e=\nabla(x \wedge \nabla e)=$ $\nabla(x \wedge e)=\nabla(y \wedge e)=\nabla(y \wedge \nabla e)=\nabla y \wedge \nabla e$. Therefore, $(\nabla x, \nabla y) \in \theta_{\mathcal{F}}$.

We shall denote by $[x]_{\theta_{\mathcal{F}}}$ the congruence class of an element $x \in A$, by $A / \theta_{\mathcal{F}}$ the quotient TM-algebra and by $p_{\mathcal{F}}: A \longrightarrow A / \theta_{\mathcal{F}}$ the canonical morphism of TM-algebras.

Lemma 5.2. For $a \in A,[a]_{\theta_{\mathcal{F}}} \in \nabla\left(A / \theta_{\mathcal{F}}\right)$ if and only if there exists $I \in \mathcal{F}$ such that $e \wedge \nabla a=e \wedge a$ for every $e \in I \cap \nabla(A)$. So, if $a \in \nabla(A)$, then $[a]_{\theta_{\mathcal{F}}} \in \nabla\left(A / \theta_{\mathcal{F}}\right)$.

Proof. For $a \in A,[a]_{\theta_{\mathcal{F}}} \in \nabla\left(A / \theta_{\mathcal{F}}\right)$ if and only if $\nabla[a]_{\theta_{\mathcal{F}}}=[a]_{\theta_{\mathcal{F}}}$ if and only if $[\nabla a]_{\theta_{\mathcal{F}}}=[a]_{\theta_{\mathcal{F}}}$. So, $(\nabla a, a) \in \theta_{\mathcal{F}}$, that is, there exists $I \in \mathcal{F}$ such that $e \wedge \nabla a=e \wedge a$ for every $e \in I \cap \nabla(A)$. So, if $a \in \nabla(A)$, then for every $I \in \mathcal{F}$ and $e \in I \cap \nabla(A)$, $e \wedge \nabla a=e \wedge a$, hence $[a]_{\theta_{\mathcal{F}}} \in \nabla\left(A / \theta_{\mathcal{F}}\right)$.

Definition 5.1. Let \mathcal{F} be a topology on A. By an \mathcal{F}-multiplier on A, we means a map $f: I \rightarrow A / \theta_{\mathcal{F}}$, which verifies the following condition:

$$
f(e \wedge x)=[e]_{\theta_{\mathcal{F}}} \wedge f(x), \quad \text { for all } e \in \nabla(A) \quad \text { and } \quad x \in I
$$

Example 5.1. The maps $\mathbf{0}, \mathbf{1}: A \longrightarrow A / \theta_{\mathcal{F}}$ defined by $\mathbf{0}(x)=[0]_{\theta_{\mathcal{F}}}$ and $\mathbf{1}(x)=$ $[x]_{\theta_{\mathcal{F}}}$ for every $x \in A$ are \mathcal{F}-multipliers. Also, for $a \in \nabla(A)$ and $I \in \mathcal{F}, f_{a}: I \longrightarrow$ $A / \theta_{\mathcal{F}}$ defined by $f_{a}(x)=[a]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}}$ is an \mathcal{F}-multiplier.

Lemma 5.3. For each \mathcal{F}-multiplier $f: I \rightarrow A / \theta_{\mathcal{F}}$, the following properties hold:
(1) $f(x) \leq[x]_{\theta_{\mathcal{F}}}$ for all $x \in I$,
(2) $f(x \wedge y)=f(x) \wedge f(y)$,
(3) $[x]_{\theta_{F}} \wedge f(y)=[y]_{\theta_{\mathcal{F}}} \wedge f(x)$.

Proof. It is routine.
We shall denote by $M\left(I, A / \theta_{\mathcal{F}}\right)$ the set of all the \mathcal{F}-multipliers having the domain $I \in \mathcal{F}$ and

$$
M\left(A / \theta_{\mathcal{F}}\right)=\bigcup_{I \in \mathcal{F}} M\left(I, A / \theta_{\mathcal{F}}\right)
$$

If $I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}$, we have a canonical mapping $\varphi_{I_{1}, I_{2}}: M\left(I_{2}, A / \theta_{\mathcal{F}}\right) \rightarrow$ $M\left(I_{1}, A / \theta_{\mathcal{F}}\right)$ defined by $\varphi_{I_{1}, I_{2}}(f)=f_{\mid I_{1}}$ for $f \in M\left(I_{2}, A / \theta_{\mathcal{F}}\right)$.

Let us consider the directed system of sets

$$
\left\langle\left\{M\left(I, A / \theta_{\mathcal{F}}\right)\right\}_{I \in \mathcal{F}},\left\{\varphi_{I_{1}, I_{2}}\right\}_{I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}}\right\rangle
$$

and denote by $A_{\mathcal{F}}$ the direct limit (in the category of sets):

$$
A_{\mathcal{F}}=\lim _{I \overrightarrow{\in \mathcal{F}}} M\left(I, A / \theta_{\mathcal{F}}\right)
$$

For any \mathcal{F}-multiplier $f: I \rightarrow A / \theta_{\mathcal{F}}$, we shall denote by $\widehat{(I, f)}$ the equivalence class of f in $A_{\mathcal{F}}$.

Remark 5.1. We recall that if $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}, i=1,2$, are \mathcal{F}-multipliers, then $\left.\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right.}\right)$ (in $\left.A_{\mathcal{F}}\right)$ if and only if there exists $I \in \mathcal{F}, I \subseteq I_{1} \cap I_{2}$ such that $f_{1 \mid I}=f_{2 \mid I}$.

Definition 5.2. If $I_{1}, I_{2} \in \mathcal{I}(A)$ and $f_{i} \in M\left(I_{i}, A / \theta_{\mathcal{F}}\right), i=1$, 2 , we define

$$
f_{1} \wedge f_{2}, f_{1} \vee f_{2}: I_{1} \cap I_{2} \rightarrow A / \theta_{\mathcal{F}}
$$

by

$$
\begin{aligned}
& \left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x), \\
& \left(f_{1} \vee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x),
\end{aligned}
$$

for every $x \in I_{1} \cap I_{2}$.
Let $\left(\widehat{I_{1}, f_{1}}\right) \wedge\left(\widehat{I_{2}, f_{2}}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right)$ and $\widehat{\left(I_{1}, f_{1}\right)} \vee\left(\widehat{I_{2}, f_{2}}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \vee f_{2}\right)$.
Definition 5.3. Let $I \in \mathcal{I}(A)$ and $f \in M\left(I, A / \theta_{\mathcal{F}}\right)$, we define $f^{*}: I \rightarrow A / \theta_{\mathcal{F}}$ by

$$
f^{*}(x)=[x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x)
$$

for any $x \in I$.

Let $\widehat{(I, f)}^{*}=\widehat{\left(I, f^{*}\right)}$.
Lemma 5.4. If $I_{1}, I_{2} \in \mathcal{I}(A)$ and $f_{i} \in M\left(I_{i}, A / \theta_{\mathcal{F}}\right), i=1,2$, then $f_{1} \wedge f_{2}, f_{1} \vee f_{2} \in$ $M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.

Proof. It is routine.
Remark 5.2. For $x \in A$, we have $\mathbf{0}^{*}(x)=[x]_{\theta_{\mathcal{F}}} \wedge \sim[0]_{\theta_{\mathcal{F}}}=[x]_{\theta_{\mathcal{F}}} \wedge[1]_{\theta_{\mathcal{F}}}=[x]_{\theta_{\mathcal{F}}}$, that is, $\mathbf{0}^{*}=\mathbf{1}$, and similarly $\mathbf{1}^{*}=\mathbf{0}$.

Lemma 5.5. If $I \in \mathcal{I}(A)$ and $f \in M\left(I, A / \theta_{\mathcal{F}}\right)$, then $f^{*} \in M\left(I, A / \theta_{\mathcal{F}}\right)$.
Proof. If $x \in I$ and $e \in \nabla(A)$, then

$$
\begin{aligned}
f^{*}(e \wedge x) & =[e \wedge x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla(e \wedge x)) \\
& =[e \wedge x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla e \wedge \nabla x) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \sim\left(\nabla[e]_{\theta_{\mathcal{F}}} \wedge f(\nabla x)\right) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge\left(\sim \nabla[e]_{\theta_{\mathcal{F}}} \vee \sim f(\nabla x)\right) \\
& =\left([e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \sim \nabla[e]_{\theta_{\mathcal{F}}}\right) \vee\left([e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x)\right) \\
& =[0]_{\theta_{\mathcal{F}}} \vee\left([e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x)\right) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge f^{*}(x) .
\end{aligned}
$$

Definition 5.4. For $I \in \mathcal{I}(A)$, we define $\widetilde{\nabla}: M\left(I, A / \theta_{\mathcal{F}}\right) \rightarrow M\left(I, A / \theta_{\mathcal{F}}\right)$, by

$$
\widetilde{\nabla}(f)(x)=[x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x)
$$

for every $f \in M\left(I, A / \theta_{\mathcal{F}}\right)$ and $x \in I$.
Lemma 5.6. If $I \in \mathcal{I}(A), f \in M\left(I, A / \theta_{\mathcal{F}}\right)$, then $\widetilde{\nabla}(f) \in M\left(I, A / \theta_{\mathcal{F}}\right)$.
Proof. If $x \in I$ and $e \in \nabla(A)$, then we have

$$
\begin{aligned}
\widetilde{\nabla}(f)(e \wedge x) & =[e \wedge x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla(e \wedge x)) \\
& \left.=[e \wedge x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla e \wedge \nabla x)\right) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \nabla\left(\nabla[e]_{\theta_{\mathcal{F}}} \wedge f(\nabla x)\right) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \nabla[e]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge[x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x) \\
& =[e]_{\theta_{\mathcal{F}}} \wedge \widetilde{\nabla}(f)(x) .
\end{aligned}
$$

Let $\nabla^{\mathcal{F}}: A_{\mathcal{F}} \rightarrow A_{\mathcal{F}}$ defined by $\nabla^{\mathcal{F}}(\widehat{(I, f)})=(\widehat{I, \widetilde{\nabla}(f)})$.
Proposition 5.1. $\left\langle A_{\mathcal{F}}, \wedge, \vee, *, \nabla^{\mathcal{F}}, \mathbf{0}, \mathbf{1}\right\rangle$ is a TM-algebra.

Proof. We verify the axioms of TM-algebras. In the following, we work with $f \in$ $M\left(I, A / \theta_{\mathcal{F}}\right)$, where $I \in \mathcal{I}(A)$. It is easy to verify that $\left\langle A_{\mathcal{F}}, \wedge, \vee, \mathbf{0}, \mathbf{1}\right\rangle$ is a bounded distributive lattice.

$$
\begin{aligned}
(\mathrm{M} 3) \quad\left(f^{*}\right)^{*}(x) & =[x]_{\theta_{\mathcal{F}}} \wedge \sim f^{*}(\nabla x), \\
& =[x]_{\theta_{\mathcal{F}}} \wedge \sim\left([\nabla x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla \nabla x)\right) \\
& =[x]_{\theta_{\mathcal{F}}} \wedge\left(\sim[\nabla x]_{\theta_{\mathcal{F}}} \vee f(\nabla x)\right) \\
& =\left([x]_{\theta_{\mathcal{F}}} \wedge \sim \nabla[x]_{\theta_{\mathcal{F}}}\right) \vee\left([x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x)\right) \\
& =[0]_{\theta_{\mathcal{F}}} \vee\left([x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x)\right) \\
& =[x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x) \\
& =f(x \wedge \nabla x) \\
& =f(x) . \\
(\mathrm{M} 4) \quad\left(f_{1} \vee f_{2}\right)^{*}(x) & =[x]_{\theta_{\mathcal{F}}} \wedge \sim\left(f_{1} \vee f_{2}\right)(\nabla x) \\
& =[x]_{\theta_{\mathcal{F}}} \wedge \sim\left(f_{1}(\nabla x) \vee f_{2}(\nabla x)\right) \\
& =[x]_{\theta_{\mathcal{F}}} \wedge \sim f_{1}(\nabla x) \wedge \sim f_{2}(\nabla x) \\
& =f_{1}^{*}(x) \wedge f_{2}^{*}(x) \\
& =\left(f_{1}^{*} \wedge f_{2}^{*}\right)(x) .
\end{aligned}
$$

For $x \in I$, we have

$$
\text { (M5) } \begin{aligned}
\widetilde{\nabla}(f)(x) \vee f(x) & =\left([x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x)\right) \vee\left([x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x)\right) \\
& =[x]_{\theta_{\mathcal{F}}} \wedge(\nabla f(\nabla x) \vee \sim f(\nabla x)) \\
& =[x]_{\theta_{\mathcal{F}}} \wedge[1]_{\theta_{\mathcal{F}}} \\
& =[x]_{\theta_{\mathcal{F}}},
\end{aligned}
$$

hence $\widetilde{\nabla}(f) \vee f=\mathbf{1}$, that is, $\nabla^{\mathcal{F}}(\widehat{I, f)} \vee \widehat{(I, f)}=\widehat{(A, \mathbf{1})}$.
For $x \in I$, then

$$
\text { (M6) } \begin{aligned}
\widetilde{\nabla}(f)(x) \wedge f^{*}(x) & =[x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x) \wedge[x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x) \\
& =[x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x) \wedge[x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x) \\
& =f(x \wedge \nabla x) \wedge f^{*}(x) \\
& =f^{*}(x) \wedge f(x),
\end{aligned}
$$

hence $\nabla^{\mathcal{F}}(f) \wedge f^{*}=f^{*} \wedge f$, that is, $\nabla^{\mathcal{F}} \widehat{(I, f)} \widehat{(I, f)}^{*}=\widehat{(I, f)}^{*} \wedge \widehat{(I, f)}$.
Definition 5.5. The TM-algebra $A_{\mathcal{F}}$ will be called the localization TM-algebra of A with respect to the topology \mathcal{F}.

Lemma 5.7. If \mathcal{F}_{S} is the topology associated with the \wedge-closed system $S \subseteq A$, then $\theta_{\mathcal{F}_{S}}=\theta_{S}$.

Proof. Let $x, y \in A$. If $(x, y) \in \theta_{\mathcal{F}_{S}}$, then there exists $I \in \mathcal{F}_{S}$ such that $x \wedge e=y \wedge e$ for any $e \in I \cap \nabla(A)$. Since $I \cap S \cap \nabla(A) \neq \emptyset$ there exists $e_{o} \in I \cap S \cap \nabla(A)$ such that $x \wedge e_{o}=y \wedge e_{o}$, that is, $(x, y) \in \theta_{S}$. So, $\theta_{\mathcal{F}_{S}} \subseteq \theta_{S}$. If $(x, y) \in \theta_{S}$, there exists $e_{o} \in S \cap \nabla(A)$ such that $x \wedge e_{o}=y \wedge e_{o}$. If we set $I_{o}=\left\{x \in A: x \leq e_{o}\right\}$, then $I_{o} \in \mathcal{I}(A)$. Since $e_{o} \in I_{o}$, we have that $e_{o} \in I_{o} \cap S \cap \nabla(A)$, hence $I_{o} \cap S \cap \nabla(A) \neq \emptyset$, that is, $I_{o} \in \mathcal{F}_{S}$. For every $e \in I_{o}, e \leq e_{o}$, then $e=e \wedge e_{o}$, so $x \wedge e=x \wedge\left(e \wedge e_{o}\right)=$ $\left(x \wedge e_{o}\right) \wedge e=\left(y \wedge e_{o}\right) \wedge e=y \wedge\left(e \wedge e_{o}\right)=y \wedge e$, hence $(x, y) \in \theta_{\mathcal{F}_{S}}$, that is, $\theta_{S} \subseteq \theta_{\mathcal{F}_{S}}$. Therefore, $\theta_{S}=\theta_{\mathcal{F}_{S}}$.

Thus, $A / \theta_{\mathcal{F}_{S}}=A[S]$, hence an \mathcal{F}_{S}-multiplier can be considered in this case as a mapping $f: I \longrightarrow A[S]\left(I \in \mathcal{F}_{S}\right)$ having the property

$$
f(e \wedge x)=[e]_{S} \wedge f(x)
$$

for every $x \in I$ and $e \in \nabla(A)$.
Theorem 5.1. If \mathcal{F}_{S} is the topology associated with the \wedge-closed system $S \subseteq A$, then the TM-algebra $A_{\mathcal{F}_{S}}$ is isomorphic in $\mathbf{T M}$ with $A[S]$.

Proof. If $\left(\widehat{I_{1}, f_{1}}\right),\left(\widehat{I_{2}, f_{2}}\right) \in A_{\mathcal{F}_{S}}=\lim _{I \vec{\epsilon} \mathcal{F}} M(I, A[S])$ and $\left(\widehat{\left(I_{1}, f_{1}\right)}=\left(\widehat{I_{2}, f_{2}}\right)\right.$ then there exists $I \in \mathcal{F}_{S}$ such that $I \subseteq I_{1} \cap I_{2}$ and $f_{1 \mid I}=f_{2 \mid I}$. Since $I, I_{1}, I_{2} \in \mathcal{F}_{S}$, there exists $e \in I \cap S \cap \nabla(A), e_{1} \in I_{1} \cap S \cap \nabla(A)$ and $e_{2} \in I_{2} \cap S \cap \nabla(A)$. We shall prove that $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. If we denote $e^{\prime}=e \wedge e_{1} \wedge e_{2}$, then $e^{\prime} \in I \cap S \cap \nabla(A)$ and $e^{\prime} \leq e_{1}, e_{2}$. Since $e_{1} \wedge e^{\prime}=e_{2} \wedge e^{\prime} \in I$ then $f_{1}\left(e_{1} \wedge e^{\prime}\right)=f_{2}\left(e_{2} \wedge e^{\prime}\right)$, hence $f_{1}\left(e_{1}\right) \wedge\left[e^{\prime}\right]_{S}=f_{2}\left(e_{2}\right) \wedge\left[e^{\prime}\right]_{S}$, so $f_{1}\left(e_{1}\right) \wedge[1]_{S}=f_{2}\left(e_{2}\right) \wedge[1]_{S}$, that is, $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. In a similar way, we can show that $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$ for any $e_{1}, e_{2} \in I \cap S \cap \nabla(A)$. In accordance with these considerations, we can define the mapping:

$$
\alpha: A_{\mathcal{F}_{S}} \rightarrow A[S]
$$

by putting

$$
\alpha(\widehat{(I, f)})=f(s)
$$

where $s \in I \cap S \cap \nabla(A)$.
We have $\alpha(\mathbf{1})=\alpha(\widehat{(A, \mathbf{1})})=\mathbf{1}(s)=[s]_{S}=\mathbf{1}$ for every $s \in S \cap \nabla(A)$.
Also, for every $\widehat{\left(I_{i}, f_{i}\right)} \in A_{\mathcal{F}_{S}}, i=1,2$, we have

$$
\begin{aligned}
\left.\alpha\left(\widehat{\left(I_{1}, f_{1}\right.}\right) \wedge \widehat{\left(I_{2}, f_{2}\right.}\right) & =\alpha\left(\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right)\right) \\
& =\left(f_{1} \wedge f_{2}\right)(s)=f_{1}(s) \wedge s_{2}(s) \\
& \left.=\alpha\left(\left(\widehat{\left(I_{1}, f_{1}\right.}\right)\right) \wedge \alpha\left(\widehat{\left(I_{2}, f_{2}\right.}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha\left(\left(\widehat{I_{1}, f_{1}}\right) \vee\left(\widehat{I_{2}, f_{2}}\right)\right. & =\alpha\left(\left(I_{1} \cap \widehat{I_{2}, f_{1}} \vee f_{2}\right)\right) \\
& =\left(f_{1} \vee f_{2}\right)(s)=f_{1}(s) \vee s_{2}(s) \\
& =\alpha\left(\left(\widehat{I_{1}, f_{1}}\right)\right) \vee \alpha\left(\left(\widehat{I_{2}, f_{2}}\right)\right),
\end{aligned}
$$

with $s \in I_{1} \cap I_{2} \cap \nabla(A)$.

If $\widehat{(I, f)} \in A_{\mathcal{F}_{S}}$, we have

$$
\begin{aligned}
\alpha\left(\widehat{(I, f)}^{*}\right) & =\alpha\left(\widehat{\left(I, f^{*}\right)}\right), \\
& =f^{*}(s) \\
& =[s]_{S} \wedge \sim f(s), \\
& =[1]_{S} \wedge \sim f(s), \\
& =\sim f(s) \\
& =\sim \alpha(\widehat{(I, f)}),
\end{aligned}
$$

where $s \in I \cap S \cap \nabla(A)$.
If $\widehat{(I, f)} \in A_{\mathcal{F}_{S}}$ and $s \in I \cap S \cap \nabla(A)$, we have

$$
\begin{aligned}
\alpha\left(\nabla^{\mathcal{F}}(\widehat{(I, f)})\right) & =\alpha(\widehat{(I, \widetilde{\nabla} f)}) \\
& =\widetilde{\nabla}(f)(s) \\
& =[s]_{S} \wedge \nabla f(s) \\
& =[1]_{S} \wedge \nabla f(s) \\
& =\nabla f(s) \\
& =\nabla \alpha(\widehat{(I, f)}) .
\end{aligned}
$$

Therefore, this mapping is a morphism of TM-algebras.
We shall prove that α is injective and surjective. To prove injectivity of α, let $\left(\widehat{I_{1}, f_{1}}\right),\left(\widehat{I_{2}, f_{2}}\right) \in A_{\mathcal{F}}$ such that $\alpha\left(\widehat{\left(I_{1}, f_{1}\right)}\right)=\alpha\left(\widehat{\left(I_{2}, f_{2}\right)}\right)$. Then for any $s_{1} \in$ $I_{1} \cap S \cap \nabla(A), e_{2} \in I_{2} \cap S \cap \nabla(A)$ we have $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. If $f_{1}\left(e_{1}\right)=[x]_{S}$ and $f_{2}\left(e_{2}\right)=[y]_{S}$ with $x, y \in A$, since $[x]_{S}=[y]_{S}$, there exists $e \in S \cap \nabla(A)$ such that $x \wedge e=y \wedge e$. If we consider $e^{\prime}=e \wedge e_{1} \wedge e_{2} \in I_{1} \cap I_{2} \cap S \cap \nabla(A)$, we have $x \wedge e^{\prime}=y \wedge e^{\prime}$ and $e^{\prime} \leq e_{1}, e_{2}$. If follows that $f_{1}\left(e^{\prime}\right)=f_{1}\left(e^{\prime} \wedge e_{1}\right)=f_{1}\left(e_{1}\right) \wedge\left[e^{\prime}\right]_{S}=$ $[x]_{S} \wedge[1]_{S}=[x]_{S}=[y]_{S}=[y]_{S} \wedge[1]_{S}=f_{2}\left(e_{2}\right) \wedge\left[e^{\prime}\right]_{S}=f_{2}\left(e_{2} \wedge e^{\prime}\right)=f_{2}\left(e^{\prime}\right)$. If we denote $I=\left\{x \in A: x \leq e^{\prime}\right\}$ (since $e^{\prime} \in \nabla(A)$), then we obtain that $I \in \mathcal{F}_{S}$, $I \subseteq I_{1} \cap I_{2}$ and $f_{1 \mid I}=f_{2 \mid I}$, hence $\left(\widehat{I_{1}, f_{1}}\right)=\left(\widehat{I_{2}, f_{2}}\right)$, that is, α is injective. To prove the surjectivity of α, let $[a]_{S} \in A[S]$ (hence there exists $e_{o} \in S \cap \nabla(A)$ such that $a \wedge e_{o} \in \nabla(A)$). We consider $I_{o}=\left(e_{o}\right]=\left\{x \in A: x \leq e_{o}\right\}$ (since $e_{o} \in I_{o} \cap S \cap \nabla(A)$, then $\left.I_{o} \in \mathcal{F}_{S}\right)$ and define $f_{a}: I_{o} \rightarrow A[S]$ by putting $f_{a}(x)=[a]_{S} \wedge[x]_{S}=[a \wedge x]_{S}$ for every $x \in I_{o}$. It is easy to see that f_{a} is an \mathcal{F}_{S}-multiplier and $\left.\alpha\left(\widehat{\left(I_{o}, f_{a}\right.}\right)\right)=$ $f_{a}(s)=[a \wedge s]_{S}=[a]_{S} \wedge[s]_{S}=[a]_{S} \wedge[1]_{S}=[a]_{S}$, where $s \in S \cap \nabla(A)$. So α is surjective. Therefore, α is an isomorphism of TM-algebras.

References

1. V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Eukasiewicz-Moisil Algebras, Annals of Discrete Mathematics, Vol. 49 (North-Holland Publishing Co., Amsterdam, 1991).
2. D. Buşneag and F. Chirtes, $L M_{n}$-algebra of fractions and maximal $L M_{n}$-algebra of fractions, Discrete Math. 296(2-3) (2005) 143-165.
3. F. Chirtes, Localization of $L M_{n \text {-algebras, Cent. Eur. J. Math. 3(1) (2005) 105-124. }}$
4. M. E. Coniglio and M. Figallo, On a four-valued modal logic with deductive implication, Bull. Sect. Logic Univ. Lodž 43(1-2) (2014) 1-17.
5. W. H. Cornish, The multiplier extension of a distributive lattice, J. Algebra 32 (1974) 339-355.
6. A. V. Figallo, On the congruences in four-valued modal algebras, Portugaliae Math. 49(2) (1992) 249-261.
7. A. V. Figallo and P. Landini, On generalized I-algebras and 4-valued modal algebras, Rep. Math. Logic 29 (1995) 3-18.
8. J. Font and M. Rius, An abstract algebraic logic approach to tetravalent modal logics, J. Symbolic Logic 65(2) (2000) 481-518.
9. C. Gallardo, C. Sanza and A. Zilianci, \mathcal{F}-multipliers and the localization of $L M_{n \times m^{-}}$ algebras, An. Univ. Ovidius Constanta Ser. Mat. 21(1) (2013) 285-304.
10. G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis 21 (1985) 181-197.
11. J. Lambek, Lectures on Rings and Modules (Blaisdell Publishing Company, 1966).
12. I. Loureiro, Homomorphism kernels of a tetravalent modal algebra, Portugal Math. 39(1-4) (1980) 371-379.
13. I. Loureiro, Prime spectrum of a tetravalent modal algebra, Notre Dame J. Formal Logic 24(3) (1983) 389-394.
14. I. Loureiro, Finite tetravalent modal algebras, Rev. Un. Mat. Argentina 31(4) (1984) 187-191.
15. I. Loureiro, Principal congruences of tetravalent modal algebras, Notre Dame J. Formal Logic 26(1) (1985) 76-80.
16. Gr. C. Moisil, Essais sur les logiques non-chrysippiennes (Academici Bucarest, 1973).
17. A. Monteiro, Sur la définition des algébres de Łukasiewicz trivalentes, Bull. Math. Soc. Sci. Math. Phys. R.P.R. 7(55) (1963) 3-12.
18. N. Popescu, Categorii Abeliene (Academiei, Bucureşti, 1971).
19. N. Popescu, Abelian Categories with Applications to Rings and Modules (Academic Press, New York, 1973).
20. J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston J. Math. 6(3) (1980) 401-425.
21. J. Schmid, Distributive Lattices and Rings of Quotients, Colloquia Mathematica Societatis Janos Bolyai, Vol. 33, Szeged, Hungary (1980), pp. 675-696.

[^0]: * Corresponding author.

