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The adsorption of dimers on honeycomb, square, and triangular lattices is studied by combining theoretical
modeling and Monte Carlo simulations in canonical and grand canonical ensembles. The adsorption
thermodynamics is analyzed through the adsorption isotherm and the configurational entropy of the
adsorbate. Three theoretical models to study dimers’ adsorption on two-dimensional lattices have been
proposed: (i) the first, which we called occupation balance, is based on the expansion of the reciprocal of
the fugacity; (ii) the second is an extension to 2-D of the exact partition function obtained in 1-D; and (iii)
the third is a virial expansion. Results are compared with corresponding ones from the Flory’s approximation
and from the Monte Carlo simulations. Significant quantitative differences are shown and discussed. In
all cases, the occupation balance appears as the more accurate model.

1. Introduction

Adsorption of gases on solid surfaces is an important
problem in physical chemistry and chemical engineering.1,2

Works belonging to this topic are based on Langmuir’s
model of adsorption. One fundamental feature of the
Langmuir’s model is presented in all these theories. This
is the assumption that an adsorbed molecule occupies one
site in the lattice of adsorption sites (single-particle
statistics).2 In contrast, experiments show that most
adsorbates, except noble gases, are polyatomic. Typical
examples are O2, N2, CO, and CO2 adsorbed in carbon and
zeolite molecular sieves3 and oligomers in activated
carbons.4 In these systems, the size of the molecules can
significantly affect the entropic contribution to the ad-
sorbate’s free energy, and multisite-occupancy theory must
be considered.

The difficulty in the analysis of the multisite statistics
is mainly associated with three factors which differentiate
the k-mers’ (particles occupying several k contiguous
lattice sites) statistics from the usual single-particle
statistics. They are (i) no statistical equivalence exists
between particles and vacancies; (ii) the occupation of a
given lattice site ensures that at least one of its nearest-
neighbor sites is also occupied; and (iii) an isolated vacancy
cannot serve to determine whether that site can ever
become occupied.

For these reasons, it has been difficult to formulate, in
an analytical way, the statistics of occupation for correlated
particles such as dimers. In this sense, exact solutions
have been obtained for the one-dimensional case.5,6 For

higher dimensionality, exact solutions can be found for
special cases, by using Pfaffians7,8 and the matrix trans-
ference method.9,10 In other words, from an analytical point
of view, the problem in which a two-dimensional lattice
contains isolated lattice points (vacancies) as well as
dimers has not been solved in closed form and ap-
proximated methods have been utilized to study this
problem.

Two objectives motivated the development of the main
approximations existing in the literature; they are (i) the
possibility of phase transitions in the adsorbate when
nearest-neighbor interacting k-mers are adsorbed on
homogeneous surfaces and (ii) the inclusion of heteroge-
neous substrates and its influence on the main adsorption
properties. The theories of the first group have been
derived from the well-known Flory’s approximation
(FA)11,12 for binary solutions of polymer molecules diluted
in a monomeric solvent (it is worth mentioning that, in
the framework of the lattice-gas approach, the adsorption
of k-mers on homogeneous surfaces is an isomorphous
problem to the binary solutions of polymer-monomeric
solvent).

In the FA, the canonical partition function for N
interacting k-mers adsorbed on M sites can be written as

where E(N) is the total energy, which is obtained in the
Bragg-Williams approximation,13 kB is the Boltzmann
constant, and Ω(M,N) is the combinatory factor repre-
senting the number of ways to array N k-mers on M sites
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The mean-field term, exp[-E(N)/kT] is responsible for
the phase transitions occurring in the adsorbate. A
comprehensive discussion on this subject is included in
the book of Des Cloiseaux and Janninck14 and in ref 15.

In the second direction, the patchwise heterogeneous
surface can be solved relatively simply. One can apply the
solution to multisite-occupancy adsorption on homoge-
neous surfaces, which are now the patches. In the case of
random heterogeneous surfaces, the problem becomes
much more complicated, and it was only two decades ago
when the first solution of that problem was proposed by
Nitta et al.2,16

However, Nitta’s original approach could be applied only
to surfaces characterized by discrete distributions of
adsorption energy. Later, Rudziński and Everett (ref 2
and references therein) developed further Nitta’s approach
toapplyalso to continuousadsorptionenergydistributions.

As emphasized by Nitta, it is very difficult to find a
rigorous expression for Ω(M,N) (see eq 2), when the M
sites are distributed on a random heterogeneous surface.
To solve this problem, Nitta proposed two contributions
for Ω(M,N), the first being the different ways to array N
k-mers on M homogeneous sites (obtained as in eq 2) and
the second being a term that takes into account the effect
of the heterogeneity.

As can be observed from the previous paragraph, all
the theories treating the multisite-occupancy (including
lateral interactions between k-mers, heterogeneity in the
adsorbent, or both properties) depend on the Flory’s
configurational factor given in eq 2. Recent studies6,17 have
demonstrated the crucial importance of this factor on the
thermodynamic properties of k-mers adsorbed on homo-
geneous and heterogeneous surfaces. In this sense, strong
discrepancies appear when the exact thermodynamic
functions obtained for linear species adsorbed on a one-
dimensional lattice are compared with the Flory’s predic-
tions under similar conditions.6 These differences are
associated with approximations in the calculation of the
Flory configurational factor. On the other hand, it is clearly
shown in ref 17 that the Nitta’s model can be notably
improved by introducing a better way to take into account
Ω(M,N).

In this context, this paper has two main objectives: (1)
To develop alternative approaches to calculate the dif-
ferent ways to array N dimers on M equivalent sites
distributed on a two-dimensional lattice. In this sense,
three methods have been proposed. (i) The first, which we
called occupation balance (OB), is based on the expansion
of the reciprocal of the fugacity; (ii) The second (EA) is an
extension to 2-D of the exact partition function obtained
in 1-D. (iii) The third is a virial expansion (VE). (2) To
compare with the Flory’s approximation, analyzing the
accuracy of the results presented here. For this purpose,
the adsorption isotherm and configurational entropy of
the adsorbate are obtained for the four theoretical models
(OB, EA, VE, and FA) and compared between each other
and with Monte Carlo simulations in canonical and grand
canonical ensembles. The comparisons are realized for
honeycomb, square, and triangular lattices.

The present work is organized as follows. The dimers’
adsorption model and the theoretical approaches are
presented in Section 2. The results and discussion are
given in Section 3. Finally, the conclusions are drawn in
Section 4.

2. Basic Definitions: Model and Theoretical
Approaches

2.1. Lattice-Gas Model. In this section we describe
the lattice-gas model for the adsorption of particles with
multisite-occupancy in the monolayer regime. We consider
the adsorption of homonuclear linear k-mers on two-
dimensional lattices. The adsorbate molecules are as-
sumed to be composed by k identical units in a linear
array with constant bond length equal to the lattice
constant a. The k-mers can only adsorb flat on the surface
occupying k lattice sites (each lattice site can only be single-
occupied). The surface is represented as an array of M )
L × L adsorptive sites in a square, honeycomb, or
triangular lattice arrangement, where L denotes the linear
size of the array. To describe a system of N k-mers adsorbed
on M sites at a given temperature T, let us introduce the
occupation variable ci which can take the values ci ) 0 or
1, if the site i is empty or occupied by a k-mer unit,
respectively. The k-mers retain their structure upon
adsorption, desorption, and diffusion. The Hamiltonian
of the system is given by

where ε0 is the adsorption energy of a k-mer unit (kε0
being the total adsorption energy of a k-mer) and µ is the
chemical potential. Finally, ε0 is set equal to zero, without
any loss of generality.

2.2. Exact Thermodynamic Functions in One
Dimension and Extension to Higher Dimensions
(EA). Let us assume a one-dimensional lattice of M sites
with lattice constant a (M f ∞) where periodic boundary
conditions apply. Under this condition all lattice sites are
equivalent; hence, border effects will not enter our
derivation.

N linear k-mers are adsorbed on the lattice in such a
way that each mer occupies one lattice site and double
site occupancy is not allowed as to represent properties
in the monolayer regime. Since different k-mers do not
interact with each other through their ends, all configu-
rations of N k-mers on M sites are equally probable;
henceforth, the canonical partition function Q(M,N,T)
equals the total number of configurations, Ω(M,N), times
a Boltzmann factor including the total interaction energy
between k-mers and lattice sites, E(N)

Since the lattice is assumed to be homogeneous, E(N)
can be arbitrarily chosen equal to zero for all N without
losing generality (i.e, the interaction energy between every
unit forming a k-mer and the substrate is set to be zero).

Ω(M,N) can be readily calculated as the total number
of permutations of the N indistinguishable k-mers out of
ne entities, being6(14) Des Cloizeaux, J.; Jannink, G. Polymers in Solution. Their
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H ) (ε0 - µ)∑
i

ci (3)

Q(M,N,T) ) Ω(M,N) exp[-
E(N)
kBT ] (4)

ne ) number of k-mers + number of empty sites

) N + M - kN ) M - (k - 1)N (5)

Ω(M,N) ) M!
N!(M - kN)! (c - 1

M )(k-1)N
(2)
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Accordingly,

(a particular solution for dimers was presented in ref 13).
In the canonical ensemble the Helmholtz free energy

F(M,N,T) relates to Ω(M,N) through

where â ) 1/kBT.
The remaining thermodynamic functions can be ob-

tained from the general differential form13

where S, Π, and µ designate the entropy, spreading
pressure, and chemical potential, respectively, which, by
definition, are

Thus, from eqs 6 and 7

which can be accurately written in terms of the Stirling
approximation

Henceforth, from eqs 9 and 11

Then, by defining the lattice coverage θ ) kN/M, molar
free energy f ) F/M, and molar entropy s ) S/M, eqs 11-
14 can be rewritten in terms of the intensive variables θ
and T.

where Ck ) k.
Hereafter, we address the calculation of approximated

thermodynamical functions of linear chains adsorbed on
lattices with connectivity c higher than 2 (i.e., dimensions
higher than 1).

In general, the number of configurations of N k-mers
on M sites, Ω(M,N,c), depends on the lattice connectivity
c. Ω(M,N,c) can be approximated considering that the
molecules are distributed completely at random on the
lattice, and assuming the arguments given by different
authors12-16 to relate the configurational factor Ω(M,N,c)
for any c with respect to the same quantity in one
dimension (c ) 2). Thus,

where Ω(M,N,2) can be readily calculated from eq 6. In
the particular case of rigid straight k-mers, it follows that
K(c,k) ) c/2. In this way, the entropy s and the adsorption
isotherm corresponding to a lattice of connectivity c result,

Equations 19-21 provide the basic thermodynamic
functions for non-interacting linear adsorbates in lattices
with general connectivity c.

2.3. Occupation Balance Approximation (OB).
Here we propose an approximation of s(θ) for non-
interacting dimers on a regular lattice, based on general
arguments, which leads to very accurate results.

The mean number of particles in the adlayer Nh and the
chemical potential µ are related through the following
general relationship in the grand canonical ensemble

where λ ) exp(µ/kBT) and ¥ is the grand partition function.
By solving λ-1 from eq 22

where the quantity Rh (M,λ) can be proven to be the mean
number of states available to a particle on M sites at λ.
If Yt(M,N) and Ri(M,N) denote the total number of
configurations of N distinguishable particles on M sites
and the number of states available to the (N + 1)th particle
in the ith configuration [out of Yt(M,N)], respectively, then

The total number of configurations of (N + 1) indis-
tinguishable particles on M sites, Gt(M,N+1), can be
obtained from eq 24.

Ω(M,N) ) (ne

N ))
[M - (k - 1)N]!

N![M - kN]!
(6)

âF(M,N,T) ) -ln Q(M,N,T) ) -ln Ω(M,N) (7)

dF ) -S dT - Π dM + µ dN (8)

S ) -(∂F
∂T)M,N

; Π ) -( ∂F
∂M)T,N

; µ ) (∂F
∂N)T,M

(9)

âF(M,N,T) )
-{ln[M - (k - 1)N]! - ln N! - ln[M - kN]!} (10)

âF(M,N,T) ) -[M - (k - 1)N] ln[M - (k - 1)N] +
[M - (k - 1)N] + [N ln N - N] +

[(M - kN) ln(M - kN) - (M - kN)]

) -[M - (k - 1)N] ln[M - (k - 1)N] +
N ln N + (M - kN) ln(M - kN) (11)

S(M,N)
kB

) [M - (k - 1)N] ln[M - (k - 1)N] -

N ln N - (M - kN) ln(M - kN) (12)

âΠ ) ln[M - (k - 1)N] - ln[M - kN] (13)

âµ ) ln N
M

+ (k - 1) ln[1 - (k - 1)N
M] - k ln[1 - kN

M ]
(14)

âf(θ,T) ) -{[1 -
(k - 1)

k
θ] ln[1 -

(k - 1)
k

θ] -

θ
k

ln θ
k

- (1 - θ) ln(1 - θ)} (15)

s(θ)
kB

) [1 -
(k - 1)

k
θ] ln[1 -

(k - 1)
k

θ] - θ
k

ln θ
k

-

(1 - θ) ln(1 - θ) (16)

exp(âΠ) )
[1 -

(k - 1)
k

θ]
(1 - θ)

(17)

Ck exp(âµ) )
θ[1 -

(k - 1)
k

θ]k-1

(1 - θ)k
(18)

Ω(M,N,c) ) K(k,c)N Ω(M,N,2) (19)

s(θ)
kB

) [1 -
(k-1)

k
θ]ln[1 -

(k-1)
k

θ] - θ
k

ln θ
k

-

(1 - θ)ln(1 - θ) + θ
k

ln c
2

(20)

kc
2

exp(âµc) )
θ[1 -

(k-1)
k

θ]k-1

(1-θ)k
(21)

Nh ) λ[∂ ln ¥(M,λ)
∂λ ]M

(22)

λ-1 ) 1
Nh [∂ ln ¥(M,λ)

∂λ ]M
)

Rh (M,λ)

Nh
(23)

Yt(M,N+1) ) ∑
i)1

Yt(M,N)

Ri(M,N) (24)
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In the last arguments, we consider that for each config-
uration of N indistinguishable particles there exist N!
configurations of N distinguishable particles.

The average of Ri(M,N) over a grand canonical ensem-
ble is

as already advanced in eq 23 with N′ ) N + 1, Nm being
the maximum number of particles that fit in the lattice,
and Ri(M,Nm) ) 0.

The advantage of using eq 23 to calculate the coverage
dependence of the fugacity λ can be seen by dealing
with adsorption of dimers in the monolayer regime.
Rh [M,λ(Nh )] ) Rh (M,Nh ) for dimers (occupying two nearest-
neighbor lattice sites) is, at first order, Rh (M,Nh ) ≈ cM/2 -
(2c - 1)Nh , where the second terms account for the mean
number of states excluded by the adsorbed dimers on a
lattice with connectivity c. (If it is assumed that each dimer
is independent from the neighboring ones, each dimer
excludes (2c - 1) states out of total cM/2.) Thus,

where limMf∞ 2Nh /M ) θ.
The term (2c - 1) overestimates the number of excluded

states because of simultaneous exclusion of neighboring
particles. Then, the approximation can be further refined
by considering the mean number of states that are
simultaneously excluded by Nh dimers, Lh (M,Nh ). It is
possible to demonstrate that, in general, Rh (M,Nh ) )
cM/2 - (2c - 1)Nh + Lh (M,Nh ) for straight k-mers.

For dimers, Lh (M,Nh ) is the average number of occupied
nearest-neighbors. Due to the fact that it is not possible
to obtain exact solutions for Lh (M,Nh ), we approximate

where Nh (Nh - 1)/2 is the number of possible pairs for Nh
indistinguishable particles.

Consideringasystem of twoadsorbeddimers onasquare
lattice (c ) 4), we can write

where Gt(M,2) ) M(2M - 7). In addition, g1(M,2) ) 14M
and g2(M,2) ) 2M are the number of states with one and
two occupied nearest-neighbors. Finally, we can write

Finally, by considering that the terms neglected in
eq 28 are O(θ2), it becomes

and the constant a ) 3/4 can be determined from the
limiting condition λ f ∞ for θ f 1. Similarly,

From the thermodynamic relationship µ ) (∂F/∂N)M,T
(F denotes the Helmholtz free energy), the entropy per
lattice site s(θ) can be evaluated in the limit T f ∞ as
follows

then

From eqs 31-33 and 35 we obtain

where

for square, honeycomb, and triangular lattices, respec-
tively.

Lh (M,2) )
g1(M,2) + 2g2(M,2)

Gt(M,2)
) 18

(2M - 7)
(29)

lim
Mf∞

λ-1 ) lim
Mf∞

2M - 7Nh + Lh (M,Nh )

Nh

≈ lim
Mf∞

1
Nh [2M - 7Nh +

9Nh (Nh - 1)
(2M + 7) ]

≈ 4
θ

- 7 + 9
4

θ + O(θ2) (30)

λ-1 ) 4
θ

- 7 + 9
4

θ + aθ2 (square lattice) (31)

λ-1 ) 3
θ

- 5 + 4
3

θ + 2
3

θ2 (honeycomb lattice) (32)

λ-1 ) 6
θ

- 11 + 23
6

θ + 7
6

θ2 (triangular lattice) (33)

µ
kBT

) ln λ )

- 1
kB

lim
M,Tf∞ [∂S(M,N,T)

∂N ]M,T
) - 2

kB
[ds(θ)

dθ ] (34)

s(θ)
kB

) - 1
2∫0

θ
ln λ(θ') dθ′ (35)

s(θ)
kB

) θ
2

[ln C - ln θ - 2] -
(1 - θ)

2
ln(1 - θ) -

(A - θ)
2

ln(A - θ) +
(B + θ)

2
ln(B + θ) +

A
2

ln A - B
2

ln B (36)

A ) 2(x7/3 - 1), 3/2(x3 - 1), and 15/7(x53/5 - 1)

C ) 3/4,
2/3, and 7/6

B ) 2(x7/3 + 1), 3/2(x3 + 1), and 15/7(x53/5 + 1)

Gt(M,N+1) )
Yt(M,N+1)

(N + 1)!
)

∑
i)1

Yt(M,N)

Ri(M,N)

(N + 1)!

)
N!

(N + 1)!
∑
i)1

Gt(M,N)

Ri(M,N) )

1

N + 1
∑
i)1

Gt(M,N)

Ri(M,N) (25)

Rh (M,λ) ) 〈Ri(M,N)〉 )
1

¥
∑
N)0

Nm

{λN∑
i)1

Gt

Ri(M,N)}

)
1

¥
∑
N)0

Nm-1

(N + 1)λNGt(M,N+1)

)
λ-1

¥
∑

N′)1

Nm

λN′N′Gt(M,N′) )
Nh

λ
(26)

lim
Mf∞

λ-1 ≈ lim
Mf∞

cM/2 - (2c - 1)Nh

Nh
) c

θ
- (2c - 1)

(27)

Lh (M,Nh ) ≈ Nh (Nh - 1)
2

Lh (M,2) (28)
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2.4. Virial Expansion (VE). In this section we will
obtain the entropy and the adsorption isotherm for a
system of dimers adsorbed on a regular lattice by using
the formalism of virial expansion.19

As usual, the activity z is written in terms of the density,
F ()N/M),

and z is related to the fugacity, λ, by

where Q1 is the partition function of one particle. The
first, second, and third coefficients aj are given by19

The coefficients b1, b2, and b3 can be obtained from the
partition function for one, Q1, two, Q2, and three, Q3,
particles. Defining Z (configurational canonical function)
by

the bj coefficients adopt the following form

The first and second ai coefficients can be calculated as
follows. By using Q1 ) Gt(M,1) ) 2M(Tf∞), the partition
functions for one and two particles can be written as

and

then,

and

To obtain a3, we need to know Q3. In this sense, from
eq 25

Equation 46 relates the partition function of N + 1
particles with the same quantity for N particles (due to
the equivalence between the different ensembles, we
calculate Rh (M,N) in the canonical ensemble). From this
argument,

and

Then, the adsorption isotherm of dimers on a square
lattice is

with θ ) 2F.
For other connectivities,

and

In addition, the entropy can be obtained from eqs 49-51
and 35

where

for square, honeycomb, and triangular lattices, respec-
tively.

3. Results and Discussion
The adsorption process is simulated through a grand

canonical ensemble Monte Carlo (GCEMC) method.20 For
a given value of the temperature T and chemical potential
µ, an initial configuration with N dimers adsorbed at

(18) Maltz, A.; Mola, E. E. J. Math. Phys. 1981, 22, 1746.
(19) McQuarrie, D. A. Statistical Mechanics; Harper Collins Publish-

ers: New York, 1976.

z(F) ) ∑
j)1

∞

ajF
j (37)

z ) λ
Q1

M
(38)

a1 ) 1
b1

, a2 ) -2b2, a3 ) -3b3 + 8b2
2 (39)

ZN ) N!(M
Q1

)N
QN (40)

b1 )
Z1

1!M
, b2 ) 1

2!M
(Z2 - Z1

2),

b3 ) 1
3!M

(Z3 - 3Z2Z1 + 2Z1
3) (41)

Z1 ) M (42)

Z2 ) M
2

(2M - 7) (43)

b1 ) 1 w a1 ) 1 (44)

b2 ) - 7
4

w a2 ) 7
2

(45)

QN+1 ) Gt(M,N+1) )

1

N + 1
Gt(M,N)[ 1

Gt(M,N)
∑
i)1

Gt(M,N)

Ri(M,N)]
) 1

N + 1
Gt(M,N) Rh (M,N) ) 1

N + 1
QNRh (M,N)

(46)

Q3 ) 1
3

Q2Rh (M,2) ) 4
3

M3 - 14M2 + 116
3

M (47)

b3 ) 29
6

w a3 ) 10 (48)

µ
kBT

) ln(14θ + 7
16

θ2 + 5
8

θ3) (square lattice)

(49)

µ
kBT

) ln(13θ + 5
9

θ2 + 7
9

θ3) (honeycomb lattice) (50)

µ
kBT

) ln(16θ + 11
36

θ2 + 49
108

θ3) (triangular lattice)

(51)

s(θ)
kB

) θ
2

{3 - ln(Aθ) -

ln[B2 + (θ + C)2]} - C
2

ln[B2 + (θ + C)2

B2 + C2 ] +

B{arctan(CB) - arctan(θ + C
B )} (52)

A ) 5/8,
7/9, and 49/108

B ) x111/400, x59/196, and x2439/9604

C ) 7/20,
5/14, and 33/98
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random positions (on 2N sites) is generated. Then an
adsorption-desorption process is started, where a pair of
nearest-neighbor sites is chosen at random and an attempt
is made to change its occupancy state with the probability
given by the Metropolis21 rule:

where ∆H ) Hf - Hi is the difference between the
Hamiltonians of the final and initial states. A Monte Carlo
step (MCS) is achieved when M pairs of sites have been
tested to change its occupancy state. The equilibrium state
can be well reproduced after discarding the first m′ ) 105

to 106 MCSs. Then, averages are taken over m ) 105 to
106 successive configurations.

The adsorption isotherm, or mean coverage as a function
of the chemical potential [θ(µ)], is obtained as a simple
average:

where 〈N〉 is the mean number of adsorbed particles and
〈...〉 means the time average over the Monte Carlo
simulation runs.

The configurational entropy S of the adsorbate cannot
be directly computed. To calculate entropy, various
methods have been developed.22 Among them, the ther-
modynamic integration method (TIM) is one of the most
widely used and practically applicable.23-26 To understand
the TIM, we begin from the basic relationship

The TIM method relies upon integration along a
reversible path between an arbitrary reference state and
the desired state of the system,

In the first (second) case [eq 57 (58)], the integration
must be developed in a canonical ensemble (grand
canonical ensemble). In both situations, the TIM requires
the knowledge of a reference state [represented in eqs 57
and 58 with the subindex 0]. To obtain the entropy
independently of the adsorption isotherm (calculated in
the GCE), we used eq 57 in the calculation of S. Finally,
the desired value of the entropy, [S(M,N,∞)], was calcu-
lated from a reference state at T ) 0, which was obtained

for each coverage by using the method of the “artificial
Hamiltonian” recently presented by Romá et al.27,28

The computational simulations have been developed
for square, honeycomb, and triangular L × L lattices, with
L ) 150 and periodic boundary conditions. With this lattice
size we verified that finite size effects are negligible.

An extensive comparison between the simulated ad-
sorption isotherm and the isotherm equations obtained
from the analytical approaches depicted as EA, OB, VE,
and FA is shown in Figures 1a, 2a, and 3a, for honeycomb,
square, and triangular lattices, respectively. The symbols
represent the simulation data points, and the lines
correspond to theoretical isotherms. The behavior of the
different approaches can be explained as follows: (i) VE

(20) Ramirez-Pastor, A. J. Adsorción y difusión con múltiple ocupación
de sitios. Ph.D. Thesis, Universidad Nacional de San Luis, Argentina,
1998.

(21) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.
W.; Teller, E. J. Chem. Phys. 1953, 21, 1087.

(22) Binder, K. Applications of the Monte Carlo method in statistical
physics; Topics in Current Physics, Vol. 36; Springer: Berlin, 1984.

(23) Hansen J. P.; Verlet, L. Phys. Rev. 1969, 184, 151.
(24) Binder, K. J. Stat. Phys. 1981, 24, 69.
(25) Binder, K. Z. Phys. B 1981, 45, 61.
(26) Polgreen, T. L. Phys. Rev. B 1984, 29, 1468.

(27) Romá, F.; Ramirez-Pastor, A. J.; Riccardo, J. L. Langmuir 2000,
16, 9406.

(28) Romá, F.; Ramirez-Pastor, A. J.; Riccardo, J. L. J. Chem. Phys.
2001, 114, 10932.

P ) min{1, exp(-∆H/kBT)} (53)

θ(µ) )
1

M
∑

i

M

〈ci〉 )
2〈N〉

M
(54)

1
T

) (∂S
∂U)M,N

(55)

µ ) (∂F
∂N)M,T

(56)

S(M,N,T) ) S(M,N,T0) + ∫U(T0)

U(T) dU
T

(57)

S(M,N,T) ) S(M,N0,T) +
U(M,N,T) - U(M,N0,T)

T
- 1

T∫N0

N
µ dN (58)

Figure 1. (a) Adsorption isotherms of dimers on a honeycomb
lattice (c ) 3). Symbols represent MC results, and lines
correspond to different approaches (see inset). (b) Percentage
reduced coverage, ∆θ(%), versus surface coverage. The symbols
are as in part a.

Figure 2. As in Figure 1 for a square lattice (c ) 4).
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(dashed line) agrees very well with the simulation result
for small values of the coverage; however, the disagree-
ment turns out to be significantly large for larger θ’s. (ii)
FA (solid line) predicts a smaller θ than the simulation
data over the range.0,1 This separation diminishes when
the connectivity is increased. Finally, (iii) EA (dotted line)
and OB (dashed and dotted line) provide good approxima-
tions with very small differences between simulated and
theoretical results. These differences can be very easily
rationalized with the help of the percentage reduced
coverage, which is defined as

where θsim (θappr) represents the coverage obtained by using
the MC simulation (analytical approach). Each pair of
values (θsim, θappr) is obtained at fixed µ.

The dependence of ∆θ (%) on the coverage is shown in
Figures 1b, 2b, and 3b for the different connectivities. As
it is possible to observe, the discrepancies between EA
and MC simulations vary for different values of θ, with
a maximum appearing around θ ) 0.5. The maximum
values of ∆θ (%) are ≈ 4%, 5.5%, and 8%, for c ) 3, 4, and
6, respectively. This analysis reinforces the discussion of
Figures 1a, 2a, and 3a and implies that EA is a good
approximation for representing the dimer adsorption on
homogeneous surfaces. On the other hand, the agreement
between OB and MC results is excellent. ∆θ (%) is
practically constant for all θ, taking a maximum value of
≈2%, 1%, and 1%, for c ) 3, 4, and 6, respectively.
Definitively, OB performs better than the other ap-
proximations over the whole coverage range.

The differences between the approaches presented in
thisworkarebetterappreciatedbycomparing thecoverage
dependence of the configurational entropy per site, s(θ),
which is presented in Figures 4-6, for honeycomb, square,
and triangular lattices, respectively. The overall behavior
can be summarized as follows: for θ f 0 the entropy tends
to zero. For low coverage, s(θ) is an increasing function
of θ, reaches a maximum at θm, then decreases monotoni-
cally to zero for θ > θm. The position of θm, which is θm ≈
0.6 for a honeycomb lattice (c ) 3), shifts to higher coverage
as the connectivity c gets larger. In addition, the value of
the entropy in θm, s(θm), increases as the connectivity

increases. In the limit θ f 1 the entropy tends to a finite
value, which is associated with the different ways to
arrange the dimers at full coverage. This value depends
on the geometry, being s(θ)1) ≈ 0.19, 0.29, and 0.44 for
c ) 3, 4, and 6, respectively.

As in Figure 1, VE appears as a good approximation in
the low surface coverage region (θ < 0.4). For θ > 0.4, VE
predicts a larger entropy than the simulation data. On
the other hand, the disagreement turns out to be signifi-
cantly large for s(θm) and s(1).

EA and FA shown a qualitative agreement with MC
simulations. In the two cases, the position of the maximum
θm is well reproduced, but both approaches overestimate
the value of the entropy in the whole range of θ, in
particular, at full coverage. This discrepancy is more
remarkable for FA.

Finally, in the case of OB, the agreement is notable for
all θ, reproducing the MC results for s(θm) and s(1).

4. Conclusions

The problem of equilibrium adsorption of dimers has
been dealt with from various perspectives. Here we have
presented new analytical contributions to this problem
and contrasted with former development (FA) on k-mers’
themodynamics. The artificial effects that the FA induces
on the main thermodynamic functions can now be
rationalized and compared with other analytical ap-

Figure 3. As in Figure 1 for a triangular lattice (c ) 6).

∆θ (%) ) 100|θsim - θappr

θsim
|

µ
(59)

Figure 4. Configurational entropy per site (in units of kB)
versus surface coverage for dimers adsorbed on a honeycomb
lattice (c ) 3). The symbols are as in Figure 1.

Figure 5. As in Figure 4 for a square lattice (c ) 4).

Figure 6. As in Figure 4 for a triangular lattice (c ) 6).
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proaches. From the comparison of the adsorption isotherm
and the configurational entropy arising from the discussed
approximations for dimers on honeycomb, square, and
triangular lattices, appreciable differences can be seen
for the different approximations, with OB being the most
accurate for all lattices, predicting the behavior of s(θ) in
the whole range of θ.

The larger the lattice connectivity, the better OB
reproduces the Monte Carlo results with respect to the
other approaches. The finite values of s(θ) at full coverage
are also very well reproduced by OB. s(θ)1) > 0 arises
because local reordering of dimers is possible at full
coverage. The knowledge of thermodynamic properties of
polyatomic gases is limited, owing, basically, to the
difficulties that accurate calculations of entropy and free
energies pose. It is worth noticing that even for the simple
problem of non-interacting dimers on regular lattices,
which we are addressing here, there exists no rigorous
solution for the configurational entropy, and the OB
presented here is, to the best of our knowledge, the most
accurate approximation to this problem.

The OB approach seems to be a promising way toward
a more accurate description of the adsorption thermody-
namics of polyatomic molecules, allowing us to include
heterogeneous surfaces, lateral interactions between the
ad-particles, and multilayer adsorption. Work in this sense
is in progress.
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5. Appendix: Flory’s Approximation

The theory to be presented here, due to Flory,11,12

investigates the thermodynamics of solvent-polymer
solutions. The model is a generalization of the lattice-
gas theory of binary solutions,13 but in this case, whereas
a solvent molecule occupies only one site in the lattice,
the polymer molecule occupies k sites.

By using the same arguments as in section 3.1, we
calculate first the number Ω(N1,N2) of possible configura-
tions of N2 polymers and N1 molecules of a monatomic
solvent on a lattice with M sites and connectivity c.

The number Ω(N1,N2) is just equal to the number of
ways of arranging N2 polymer molecules on M sites, for
after we place the polymer molecules in the originally
empty lattice, there is only one way to place the solvent
molecules (i.e., we simply fill up all the remaining
unoccupied sites). Imagine that we label the polymer
molecules from 1 to N2 and introduce them one at a time,
in order, into the lattice. Let wi be the number of ways of
putting the i-th polymer molecule into the lattice with
i - 1 molecules already there (assumed to be arranged in
an average, random distribution). Then the approximation
to Ω(N1,N2) which we use is

The factor (N2!)-1 is inserted because we have treated the
molecules as distinguishable in the product, whereas they
are actually indistinguishable.

Next, we derive an expression for wi-1. With i polymer
molecules already in the lattice, the fraction of sites filled
is fi ) ki/M. The first unit of the (i + 1)-th molecule can
be placed in any one of the M - ki vacant sites. The first
unit has c nearest-neighbor sites, of which c(1 - fi) are
empty (random distribution assumed). Therefore, the
number of possible locations for the second unit is
c(1 - fi). Similarly, the third unit can go in (c - 1)(1 - fi)
different places. At this point we make the approxima-
tion that units 4, 5, ..., k also each have (c - 1)(1 - fi)
possibilities, though this is not quite correct. Multiplying
all of these factors together, we have for wi+1

where we replaced c by c - 1 as a further approximation.
Now we will need

We approximate the sum by an integral:

We put eqs 61 and 62 in eq 59 and find

All results presented here can be straightforwardly applied
to the corresponding k-mers’ adsorption problem, with
N2 ≡ N (number of k-mers) and N1 ≡ M - kN (number of
empty sites). Then, by rewriting Ω(N1,N2) in terms of
θ ≡ kN/M, and by using eqs 7 and 9, we get the adsorption
isotherm and the molar configurational entropy,

LA0209785

Ω(N1,N2) )
1

N2!
∏
i)1

N2

wi (60)

wi+1 ) (M - ki)c(c - 1)k-2(1 - fi)
k-1

) (M - ki)k(c - 1
M )k-1

(61)

ln ∏
i)1
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wi ) N2(k - 1) ln(c - 1

M ) + k ∑
i)0
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M
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k

(M ln M - M - N1 ln N1 + N1) (63)

ln Ω(N1,N2) ) -N2 ln N2 + N2 - N1 ln N1 + N1 +

M ln M - M + N2(k - 1) ln[(c - 1)
M ] (64)

k(c - 1
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- (1 - θ) ln(1 - θ) +

(k - 1
k )θ ln(c - 1

e ) (66)
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