Chromosome studies in southern species of Mimosa (Fabaceae, Mimosoideae) and their taxonomic and evolutionary inferences

Matías Morales • Arturo F. Wulff • Renée H. Fortunato • Lidia Poggio

Received: 19 September 2012/Accepted: 23 September 2013
© Springer-Verlag Wien 2013

Abstract

In this work, chromosome numbers and karyotype parameters of 36 taxa of the genus Mimosa were studied, especially from the southern South America center of diversification. Results support that $x=13$ is the basic chromosome number in the genus. Polyploidy is very frequent, ca. 56% of the total of the studied species here are polyploid, confirming that polyploids are more frequent at higher latitudes. The most common ploidy levels found are $2 x$ and $4 x$, but some species studied exhibit $6 x$ and $8 x$. In different groups, several ploidy levels were found. Parameters of chromosome size show statistically significant differences between close species, and asymmetry index A_{2} exhibited low variation between them. It is possible to infer variations of chromosome size between diploids and tetraploids and between basal and derived taxa. The present studies confirm or reveal polyploidy in several groups of South America which are highly diversified in the southernmost area of distribution of the genus, such as

[^0]A. F. Wulff • L. Poggio

Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes y Costanera Norte (CI42EHA),
Buenos Aires, Argentina
sect. Batocaulon ser. Stipellares and sect. Calothamnos. Our data are discussed in a taxonomic context, making inferences about the origin of some polyploid taxa. Polyploidy could be an important phenomenon that increases the morphologic diversity and specific richness in southern South America. On basis of our data, it is possible to hypothesize hybridization between same-ploidy level or different ploidy level taxa. As already shown in the literature, our results confirm the importance of the polyploidy in the speciation of the genus.

Keywords Chromosome • Cytogenetics •
Hybridization • Mimosa • Mimosoideae • Polyploidy

Introduction

Mimosa L. (Fabaceae, Mimosoideae) is the third most diverse genus among Mimosoids, with ca. 540 species (Simon et al. 2011; Bessega and Fortunato 2011). This genus has two diversification centers: (a) Madagascar, Mesoamerica, southern Mexico, the Antilles, Hispaniola and the Orinoco Basin; and (b) southern South America, which comprises the Amazon Basin, the Brazilian Planoaltine and adjacent areas from Argentina, Uruguay and Paraguay (Barneby 1991).

Bentham (1876) carried out the first monograph of this genus and proposed two sections, Habbasia and Mimosa; both were distinguished by number of stamens. Barneby (1991) proposed five sections, based on the indumentum, petiolar nectaries and number of stamens: (1) Mimadenia Barneby (=vines and shrubs with petiolar nectaries from the tropical Andes and the Amazonian region); (2) Sect. Batocaulon DC. (=diplostemonous fertile flowers and indumentum with no calcarate hairs); (3) Habbasia DC.,
(=diplostemonous fertile flowers and indumentum of calcarate setae); (4) Calothamnos Barneby (=haplostemonous fertile flowers and indumentum of branched hairs: plumose setae and stellate, even in the corolla lobes); (5) Mimosa (=indumentum variable, at least in the corolla, without plumose setae or stellate hairs; haplostemonous fertile flowers).

However, new phylogenetic analyses using cpDNA and morphological characters suggest that the sections that Barneby (1991) proposed are not monophyletic (Bessega et al. 2008; Bessega and Fortunato 2011; Simon et al. 2011). In these studies, some representatives of Sect. Batocaulon appear clustered with representatives of Sect. Habbasia; on the other hand, the representatives of Sect. Calothamnos appear clustered with others from Sect. Mimosa. The group Batocaulon-Habbasia appears to be more basal and the group Calothamnos-Mimosa appears to be more derived, coinciding partially with Barneby (1991), but completely with the proposal of Bentham (1876).

Despite the advances in the phylogeny of the genus, the proposal of infrageneric division of Barneby (1991) is currently valid, since the phylogeny does not resolve certain clades and it is still analyzing. Thus, the proposal of Barneby (1991) is used to discuss new information about taxonomy, evolution and cytogenetics of Mimosa (Dahmer et al. 2011; Simon et al. 2011; Morales et al. 2011, 2012, 2013).

According to previous studies, the basic chromosome number of this genus is $x=13$ (Isely 1971; Goldblatt 1981); infrequently, other chromosome numbers were observed in the literature (Coleman and DeMenezes 1980; Santos et al. 2012). Fabaceae has the basic chromosome number $x=7$, and phenomena of polyploidy and dysploidy could have an important role in the evolution of the family (Goldblatt 1981; Poggio et al. 2008). In Mimosa, the most frequent cited ploidy levels are $2 x$ and $4 x$, but $3 x$, $6 x$ and $8 x$ have also been mentioned in the literature (Isely 1971; Goldblatt 1981; Seijo 1993, 1999, 2000 Seijo and Fernández 2001; Goldblatt and Johnson 2002; Morales et al. 2010, 2011, 2012; Olkolski and Schifino Wittmann 2011; Dahmer et al. 2011).

The karyotype of Mimosa has been poorly studied: Morales et al. (2011) found that the karyotype is relatively symmetric in seven diploid species from Southern South America; the chromosomes are metacentric and submetacentric. Endemic species from Sect. Batocaulon Ser. Farinosae Barneby had larger chromosomes than other species, and these differences could be associated with variations in the environment and geographic distribution of the studied taxa. Marçal de Sousa et al. (2013) arrived to similar conclusions regarding for the karyotype parameters by studying M. caesalpiniifoli Benth., which exhibits B chromosomes.

In this work, we present cytogenetic studies for 36 taxa of the genus Mimosa, especially the southernmost groups of South America diversification center. Chromosome number, ploidy level, and chromosome size were evaluated. These data are discussed in relation to the taxonomy, morphologic variability and geographic distribution of the studied entities.

Materials and methods

Plant material

The voucher specimens and samples used to perform the cytogenetic studies (seeds and fixed buds) were collected during field trips in northeastern Argentina, southern Brazil and Paraguay. They were deposited at the herbaria of Instituto de Recursos Biológicos, CIRN, INTA (BAB), Instituto de Botánica del Nordeste, CONICET-UNNE (CTES), Instituto de Botánica Darwinion, CONICETAcademia Nacional de Ciencias Exactas y Naturales (SI), Argentina; Departamento de Botánica, FCQ, UNA (FCQ), Paraguay; and Museu Botânico Municipal (MBM) in Brazil (Tables 1, 2, 3, 4).

To discuss the taxonomy of the studied entities, additional specimens from following herbaria were studied: BAB, CTES, G, LPB, MBM, MO, SI, SP, SPF, USZ. All specimens were identified according to Barneby (1991), but also with consideration of the list of taxa and identification keys in Izaguirre and Beyhaut (2003).

Chromosome numbers

For the mitosis studies, root meristems obtained from seeds germinated on Petri dishes were used. The $1-2 \mathrm{~cm}$ root tips were pretreated with $0.002-\mathrm{M} 8$-hydroxyquinoline at room temperature for $4-7 \mathrm{~h}$ and then fixed in absolute ethanolglacial acetic acid (3:1) or absolute ethanol-lactic acid (5:1). For the meiosis studies, floral buds in different stages were collected in the field, and fixed in ethanol:glacial acetic acid: chloroform (6:3:1) or ethanol-glacial acetic $\operatorname{acid}(3: 1)$.

The material fixed and conserved in 70% ethanol was washed in buffer solution of $0.01-\mathrm{M}$ citric acid-sodium citrate at pH 4.6 and then transferred to an enzymatic solution containing 2 mL cellulase 2% (Ozonuka R-10, Merck KGaA, Damstadt, Germany) and 20 \% liquid pectinase for $7,200-9,000 \mathrm{~s}$ at $37{ }^{\circ} \mathrm{C}$. The material was washed again with buffer solution.

Slides were stained with haematoxylin and DAPI. In the first case, root tips were macerated in a drop of dye (acetic haematoxylin), and the 'squash' technique was applied. In each sample, 10-20 metaphases were counted. In the
Table 1 Chromosome numbers in Mimosa from Southern South America

Section	Series	Taxon	Chromosome number		Voucher specimens	Locality	Coordinates
Batocaulon DC.	Stipellares Benth.	M. bifurca Benth. var. bifurca	$2 x=26^{*}$		MM 626	Argentina. Corrientes: La Cruz	$\begin{aligned} & 29^{\circ} 10 \mathrm{~S} \\ & 56^{\circ} 37^{\prime} \mathrm{W} \end{aligned}$
		M. urugüensis Hook. \& Arn.	$2 x=26$ (Seijo 1993; Dahmer et al. 2011; Morales et al. 2011)		Pn.n.	Argentina. Entre Ríos: San José	$\begin{gathered} 30^{\circ} 23^{\prime} \mathrm{S} \\ 58^{\circ} 45^{\prime} \mathrm{W} \end{gathered}$
		M. uliginosa Chodat \& Hassl.	$2 x=26$ (Seijo 1993; Morales et al. 2011)		RHF9010	Argentina. Misiones: Bonpland	
		M. burkartii Marchiori \& Sobral	$4 x=52 *$		Pn.n.	Uruguay: Piriápolis Cerro San Antonio	$\begin{aligned} & 34^{\circ} 54^{\prime} \mathrm{S} \\ & 55^{\circ} 17^{\prime} \mathrm{W} \end{aligned}$
		M. amphigena Benth. var. trachycarpoides Burkart	$4 x=52 *$		GG704	Uruguay: Lavalleja	$\begin{gathered} 34^{\circ} 22^{\prime} \mathrm{S} \\ 55^{\circ} 13^{\prime} \mathrm{W} \end{gathered}$
		M. cruenta Benth. var. cruenta	$4 x=52 *$		GG695	Uruguay: Rivera	$\begin{gathered} 30^{\circ} 54^{\prime} \mathrm{S} \\ 55^{\circ} 31^{\prime} \mathrm{W} \end{gathered}$
	Bimucronatae Benth. Leiocarpae Benth.	M. bimucronata (DC.) Kuntze var. bimucronata	$2 x=26, x=13$ II (Seijo 1999; Dahmer et al. 2011)		RHF9028	Argentina. Misiones: San Javier	$\begin{aligned} & 27^{\circ} 53^{\prime} \mathrm{S} \\ & 55^{\circ} 07^{\prime} \mathrm{W} \end{aligned}$
		M. fiebrigii Hassl.	$2 x=26^{*}$		MM857	Brasil. Mato Grosso do Sul: Porto Murtinho	$\begin{aligned} & 21^{\circ} 42^{\prime} \mathrm{S} \\ & 57^{\circ} 53^{\prime} \mathrm{W} \end{aligned}$
		M. insignis (Hassl.) Barneby	$x=13 \mathrm{II}^{*}$		RHF9336	Paraguay: Sierra del Amambay	$\begin{gathered} 22^{\circ} 40^{\prime} \mathrm{S} \\ 56^{\circ} 09^{\prime} \mathrm{W} \end{gathered}$
		M. glutinosa Malme	$2 x=26 *$		MM855	Brasil. Mato Grosso do Sul: Porto Murtinho	$\begin{aligned} & 21^{\circ} 42^{\prime} \mathrm{S} \\ & 57^{\circ} 53^{\prime} \mathrm{W} \end{aligned}$
Batocaulon	Caesalpiniifoliae Barneby	M. caesalpiniifolia Benth.	$2 x=26$ (Alves and de Carvalho Custódio 1983; Dahmer et al. 2011; Marçal de Sousa et al. 2013)		ANM6024	Brazil. Paraná: Caiobá	$\begin{aligned} & 25^{\circ} 51^{\prime} \mathrm{S} \\ & 48^{\circ} 33^{\prime} \mathrm{W} \end{aligned}$
	Paucifoliatae Benth.	M. gracilis Benth. subsp. filiformis (Benth.) Barneby var. leiocarpa (Benth.) Barneby	$x=13 \mathrm{II}^{*}$		RHF9092	Argentina. Corrientes: San Miguel	$\begin{aligned} & 28^{\circ} 0^{\prime} \mathrm{S} \\ & 57^{\circ} 36^{\prime} \mathrm{W} \end{aligned}$
Section	Series	Subseries Taxon	Chromosome numbers	Voucher specimens	Locality		Coordinates
Habbasia DC.	Habbasia	M. pigra L. var. dehiscens Barneby ex Glazier \& Mackinder	$\begin{array}{r} 2 x=26(\text { Seijo } 1999 \\ \text { Dahmer et al. 2011) } \end{array}$	RHF8881	Argentina. Corrientes: Paso de la Patria		$27^{\circ} 19^{\prime} \mathrm{S} 58^{\circ} 35^{\prime} \mathrm{W}$
				RHF8554	Paraguay. Oviedo	Caaguazú: Coronel	$25^{\circ} 25^{\prime} \mathrm{S} 56^{\circ} 27^{\prime} \mathrm{W}$
				MM572	Argentina.	Corrientes: Riachuelo	$27^{\circ} 35^{\prime} \mathrm{S} 58^{\circ} 45^{\prime} \mathrm{W}$
		M. pigra var. pigra	$\begin{gathered} 4 x=52(\text { Seijo } 1999 ; \\ \text { Dahmer et al. 2011) } \end{gathered}$	MM285	Argentina:	sla Martín García	$34^{\circ} 11^{\prime} \mathrm{S} 58^{\circ} 15^{\prime} \mathrm{W}$
				RHF8910	Argentina.	Misiones: Candelaria	$27^{\circ} 28^{\prime} \mathrm{S} 55^{\circ} 44^{\prime} \mathrm{W}$

Table 1 continued

Section	Series	Subseries	Taxon	Chromosome numbers	Voucher specimens	Locality	Coordinates
Mimosa	Somniantes		M. somnians Humb. \& Bonpl. ex Willd. subsp. somnians var. somnians	$x=13 \mathrm{II}$ (Seijo 1993)	MM639	Argentina. Corrientes: Ituzaingó	$27^{\circ} 36^{\prime} \mathrm{S} 56^{\circ} 41^{\prime} \mathrm{W}$
		-		$4 x=52($ Seijo 2000)	RHF8529	Paraguay. Paraguarí: desvío a Lago Ypoá	$25^{\circ} 55^{\prime} \mathrm{S} 57^{\circ} 26^{\prime} \mathrm{W}$
					RHF8835	Paraguay. San Pedro: San Estanislao	$24^{\circ} 39^{\prime} \mathrm{S} 56^{\circ} 26^{\prime} \mathrm{W}$
	Myriophyllae Barneby	-	M. myriophylla Bong. ex Benth.	$4 x=52 *$	RHF9094	Argentina. Corrientes: Santo Tomé	$\begin{aligned} & 28^{\circ} 33^{\prime} \mathrm{S} \\ & 56^{\circ} 03^{\prime} \mathrm{WG} \end{aligned}$
	Mimosa	Polycarpae	M. polycarpa Kunth var. spegazinii (Pirotta ex Hook.) Burkart	$2 x=26($ Seijo 1993)	IF20060920	Argentina. Misiones: Santa Ana	$27^{\circ} 22^{\prime} \mathrm{S} 55^{\circ} 34^{\prime} \mathrm{W}$
			M. balansae M. Micheli	$4 x=52$ (Seijo and Fernández 2001)	MM606	Argentina. Corrientes: Itá Corá	$29^{\circ} 12^{\prime} \mathrm{S} 58^{\circ} 04^{\prime} \mathrm{W}$
		Pedunculosae	M. pauperoides (Burkart) Fortunato	$6 x=78^{*}$	MM612, 613	Argentina. Corrientes: Mercedes	$29^{\circ} 12^{\prime} \mathrm{S} 58^{\circ} 05^{\prime} \mathrm{W}$
			M. brevipetiolata Burkart var. hirtula (Burkart) Barneby	$4 x=52($ Seijo 1999)	RHF8912	Argentina. Misiones: Loreto	$27^{\circ} 19^{\prime} \mathrm{S} 55^{\circ} 32^{\prime} \mathrm{W}$
		Obstrigosae	M. adpressa Hook. \& Arn.	$\begin{gathered} 4 x=52(\text { Seijo and } \\ \text { Fernández 2001) } \end{gathered}$	RHF 9068	Argentina. Corrientes: La Cruz	$29^{\circ} 10^{\prime} \mathrm{S} 56^{\circ} 38^{\prime} \mathrm{W}$
		Mimosa	M. velloziana Mart. var. velloziana	$4 x=52$ (Dahmer et al. 2011)	RG2026	Argentina. Salta: Orán	$23^{\circ} 08^{\prime} \mathrm{S} 64^{\circ} 20^{\prime} \mathrm{W}$
					MM125	Argentina. Salta: Orán, Finca San Ignacio	$23^{\circ} 08^{\prime} \mathrm{S} 64^{\circ} 20^{\prime} \mathrm{W}$
Mimosa	Mimosa	Mimosa	M. sensibilis Griseb. var. sensibilis	$2 x=26 *$	MM947	Brazil. Mato Grosso do Sul: Corumbá	$19^{\circ} 01^{\prime} \mathrm{S} 57^{\circ} 39^{\prime} \mathrm{W}$
		Pudicae	M. xanthocentra Mart. var. mansii (Benth.) Barneby	$2 x=26$ (Morales et al.2011)	RHF8814	Paraguay. Cordillera: Arroyos y Estos	$25^{\circ} 04^{\prime} \mathrm{S} 57^{\circ} 06^{\prime} \mathrm{W}$
					RHF9180	Paraguay. Central: Emboscada	$25^{\circ} 09^{\prime} \mathrm{S} 57^{\circ} 21^{\prime} \mathrm{W}$
					RHF9199	Paraguay. San Pedro: San Estanislao	$24^{\circ} 39^{\prime} \mathrm{S} 56^{\circ} 26^{\prime} \mathrm{W}$
					RHF9238	Paraguay. Amambay: Camino a Pedro J. Caballero	$22^{\circ} 39^{\prime} \mathrm{S} 55^{\circ} 59^{\prime} \mathrm{W}$
			M. xanthocentra var. subsericea (Benth.) Barneby	$2 x=26($ Seijo 2000)	MM 267	Argentina. Corrientes: Ituzaingó	$27^{\circ} 36^{\prime} \mathrm{S} 56^{\circ} 41^{\prime} \mathrm{W}$
					RHF9295	Paraguay. Amambay: Parque Nacional Cerro Corá	$22^{\circ} 37^{\prime} \mathrm{S} 55^{\circ} 59^{\prime} \mathrm{W}$

Table 1 continued

Section	Series	Subseries	Taxon	Chromosome numbers	Voucher specimens	Locality	Coordinates
Calothamnos		Hirsutae	M. xanthocentra aff. var. mansii	$2 x=26 *$	RHF9168	Paraguay. Paraguarí: Tobatí	$25^{\circ} 16^{\prime} \mathrm{S} 57^{\circ} 05^{\prime} \mathrm{W}$
			M. monadelpha Chodat \& Hassl. var. glabrata (Hassl.) Barneby	$2 x=26 *$	RHF9207	San Pedro: San Estanislao	$24^{\circ} 39^{\prime} \mathrm{S} 56^{\circ} 26^{\prime} \mathrm{W}$
			M. bonplandii (Gillies ex Hook. \& Arn.) Benth.	$4 x=52 *$	JHnn	Argentina: Ciudad de Buenos Aires	$34^{\circ} 36^{\prime} \mathrm{S} 58^{\circ} 23^{\prime} \mathrm{W}$
			M. pilulifera Benth. var. pilulifera	$4 x=26 \mathrm{II}$ *	MM284	Argentina: Isla Martín García	$34^{\circ} 11^{\prime} \mathrm{S} 58^{\circ} 15^{\prime} \mathrm{W}$
			M. pilulifera var. pseudoincana (Burkart) Barneby	$4 x=52 *$	RHF9549	Brazil. Paraná. Rio das Pedras	$\begin{gathered} 25^{\circ} 21^{\prime} \mathrm{S} \\ 51^{\circ} 21^{\prime} \mathrm{W} \end{gathered}$
			M. lepidorepens Burkart	$8 x=104 *$	RHF9463	Brazil. Santa Catarina: Serra do Quirirí	$26^{\circ} 08^{\prime} \mathrm{S} 49^{\circ} 01^{\prime} \mathrm{W}$
			M. berroi Burkart	$8 x=104 *$	MM690	Uruguay. Lavalleja	$34^{\circ} 22^{\prime} \mathrm{S} 55^{\circ} 14^{\prime} \mathrm{W}$
			M. rocae Lorentz et Niederl.	$8 x=104$ (Seijo and Fernández 2001)	MM314	Argentina. Buenos Aires: Tandil	$37^{\circ} 19^{\prime} \mathrm{S} 59^{\circ} 09^{\prime} \mathrm{W}$
			M. scabrella Benth.	$4 x=52$ (Dahmer et al. 2011, 2013; Olkolski and Schifino Wittmann 2011)	RHF9560	Brazil. Santa Catarina: Serra do Quirirí	$26^{\circ} 08^{\prime} \mathrm{S} 49^{\circ} 01^{\prime} \mathrm{W}$
			M. daleoides Benth.	$\begin{aligned} & 8 x=104 \text { (Coleman and } \\ & \text { DeMenezes 1980; Seijo } \\ & \text { 1999) } \end{aligned}$	RHF8536	Paraguay. Caaguazú: Caaguazú	$\begin{aligned} & 25^{\circ} 27^{\circ} \mathrm{S} \\ & 56^{\circ} 01 \mathrm{~W} \end{aligned}$
			M. urticaria Barneby	$4 x=52 *$	RHF9536	Brazil. Paraná: Ortigueira	$24^{\circ} 12^{\prime} \mathrm{S} 50^{\circ} 55^{\prime} \mathrm{W}$

References of voucher specimens: ANM Ana M. Molina, $G G$ Gustavo Giberti, $M M$ Matías Morales, $R H F$ Renée H. Fortunato, P Patricia Prüner, $R G$ Rosa Guaglianone. n.n. not number of collection registered

* New chromosome number. Literature references indicate previous reports (references are fully described in the text)

Table 2 Chromosome size and ploidy levels in species of Mimosa

Taxon	Ploidy level	TCL ($\mu \mathrm{m}$)	CLHG ($\mu \mathrm{m}$)	TCA ($\mu \mathrm{m}^{2}$)	CAHG ($\mu \mathrm{m}$)	$A_{2}{ }^{*}$
Sect. Batocaulon						
Ser. Leiocarpae						
M. glutinosa	$2 x$	41.60 ± 8.13	20.80 ± 4.06	26.07 ± 6.12	13.04 ± 3.06	$0.27 \pm 0.03^{\text {a }}$
M. fiebrigii	$2 x$	29.57 ± 3.33	14.78 ± 1.66	15.47 ± 1.73	7.73 ± 0.87	$0.26 \pm 0.09^{\text {a }}$
Ser. Bimucronatae						
M. bimucronata var. bimucronata	$2 x$	42.14 ± 10.17	20.97 ± 5.08	25.31 ± 6.13	10.49 ± 5.24	$0.23 \pm 0.01^{\text {a }}$
Ser. Caesalpiniifoliae						
M. caesalpiniiifolia	$2 x$	36.12 ± 4.62	18.06 ± 2.31	20.76 ± 1.66	10.97 ± 0.83	$0.17 \pm 0.03^{\text {a }}$
Ser. Stipellares						
M. burkartii	$4 x$	62.83 ± 1.14	15.71 ± 0.57	54.41 ± 8.57	13.60 ± 4.28	$0.17 \pm 0.01^{\text {a }}$
M. urugüensis	$2 x$	40.56 ± 1.00	20.28 ± 0.05	37.20 ± 0.50	18.60 ± 0.25	$0.17 \pm 0.03^{\text {a }}$
M. bifurca var. bifurca	$2 x$	31.82 ± 2.12	15.91 ± 1.06	20.94 ± 1.21	10.47 ± 0.60	$0.21 \pm 0.02^{\text {a }}$
M. uliginosa	$2 x$	40.00 ± 2.03	20.00 ± 1.01	35.01 ± 2.37	17.50 ± 1.18	$0.14 \pm 0.03^{\text {a }}$
M. amphighen var. trachycarpoides	$4 x$	59.52 ± 15.53	14.88 ± 7.76	37.87 ± 14.51	9.47 ± 3.63	$0.26 \pm 0.03^{\text {a }}$
M. cruent var. cruenta	$4 x$	58.00 ± 6.61	14.50 ± 3.30	39.63 ± 6.61	9.91 ± 1.65	$0.20 \pm 0.08^{\text {a }}$
Sect. Habbasia						
M. pigra var. pigra	$4 x$	56.49 ± 13.87	$14,12 \pm 6,93$	37.38 ± 16.99	9.35 ± 8.49	$0.25 \pm 0.02^{\text {a }}$
M. pigra var. dehiscens	$2 x$	29.11 ± 4.64	14.56 ± 2.32	20.24 ± 7.19	10.12 ± 3.59	$0.19 \pm 0.03^{\text {a }}$
M. somnians var. somnians	$4 x$	50.58 ± 0.81	16.36 ± 0.40	21.14 ± 7.30	11.67 ± 5.83	$0.21 \pm 0.03^{\text {a }}$

Sect. Mimosa
Ser. Mimosa

Subser. Polycarpae						
M. polycarpa var. spegazinii	$2 x$	24.06 ± 4.11	12.03 ± 2.06	12.84 ± 3.08	6.41 ± 1.54	$0.22 \pm 0.04^{\mathrm{a}}$
M. balansae	$2 x$	39.04 ± 0.69	19.52 ± 0.34	34.12 ± 5.75	$17,06 \pm 2.87$	$0.19 \pm 0.05^{\mathrm{a}}$
Subser. Pedunculosae						
M. pauperoides	$6 x$	130.81 ± 23.15	21.80 ± 11.57	107.53 ± 21.67	17.92 ± 10.83	$0.22 \pm 0.01^{\mathrm{a}}$
M. brevipetiolata var. hirtula	$4 x$	46.56 ± 5.22	11.64 ± 1.31	28.48 ± 7.01	7.12 ± 1.75	$0.19 \pm 0.05^{\mathrm{a}}$
Subser. Pudicae						
M. xanthocentra var. subsericea	$2 x$	21.85 ± 3.85	10.93 ± 1.92	12.62 ± 4.8	6.31 ± 2.4	$0.17 \pm 0.05^{\mathrm{a}}$
M. xanthocentra var. mansii	$2 x$	33.06 ± 4.75	18.07 ± 2.37	21.85 ± 3.63	10.94 ± 1.81	$0.18 \pm 0.02^{\mathrm{a}}$
M. xanthocentra aff. var. mansii	$2 x$	21.80 ± 1.07	10.90 ± 0.53	16.35 ± 2.24	8.17 ± 1.12	$0.18 \pm 0.08^{\mathrm{a}}$
M. velloziana var. velloziana	$4 x$	58.14 ± 4.99	15.24 ± 2.94	33.54 ± 3.06	8.38 ± 1.53	$0.17 \pm 0.01^{\mathrm{a}}$
M. sensibilis var. sensibilis	$2 x$	30.98 ± 0.32	15.49 ± 0.16	18.16 ± 1.35	9.08 ± 0.67	$0.17 \pm 0.06^{\mathrm{a}}$
Sect. Calothamnos						
M. urticaria	$4 x$	53.82 ± 0.10	13.45 ± 0.02	28.88 ± 5.72	7.22 ± 1.43	$0.23 \pm 0.04^{\mathrm{a}}$
M. scabrella	$4 x$	59.36 ± 5.42	14.84 ± 1.35	29.51 ± 7.95	7.93 ± 1.20	$0.29 \pm 0.05^{\mathrm{a}}$
M. pilulifera var. pseudincana	$4 x$	43.27 ± 5.83	10.82 ± 1.46	21.28 ± 2.65	5.32 ± 0.66	$0.22 \pm 0.02^{\mathrm{a}}$
M. bonplandii	$4 x$	51.91 ± 6.78	12.98 ± 1.69	29.41 ± 5.86	7.35 ± 1.46	$0.23 \pm 0.03^{\mathrm{a}}$
M. berroi	$8 x$	112.29 ± 7.72	14.36 ± 0.97	59.12 ± 9.29	7.39 ± 1.16	$0.24 \pm 0.01^{\mathrm{a}}$

* Different letters indicate statistically significant differences. Tukey's test ($\alpha=0.05$)
second case, root tips were macerated in a drop of acetic acid solution (45%). After, the slides were counterstained with $4^{\prime}, 6$-diamidino-2-phenylindole (DAPI) ($1 \mu \mathrm{~g}$ McIlvaine's citrate buffer $/ \mathrm{mL}, \mathrm{pH} 7$) for 10 min at room temperature, and subsequently mounted in antifade solution. The slides were photographed with Leyca DMLB Photomicroscope and DFC350 FX digital camera.

Chromosome size and chromosome morphology
To analyze the chromosome morphology, at least five individuals in each taxon and more than ten mitotic cells by individual were studied. The selected cells were analyzed by means of the Micromeasure Program (Reeves 2001). Chromosome size was determined by measuring the total

Table 3 Chromosome size parameters in diploids and tetraploids; statistical differences by means of Kruskal-Wallis-multiple comparison hoc tests

Ploidy level	CLHG $(\mu \mathrm{m})$	CAHG $\left(\mu \mathrm{m}^{2}\right)$
$2 x$	$18.78 \pm 6.39^{\mathrm{a}}$	$11.96 \pm 5.25^{\mathrm{a}}$
$4 x$	$13.74 \pm 2.16^{\mathrm{b}}$	$8.80 \pm 3.34^{\mathrm{b}}$

Table 4 Chromosome size parameters in different taxonomic groups of Mimosa; statistical differences by means of Kruskal-Wallis-multiple comparison hoc tests

Taxon	Ploidy level	CLHG ($\mu \mathrm{m}$)	CAHG ($\mu \mathrm{m}^{2}$)
Sect. Batocaulon Ser. Stipellares		$\begin{aligned} & H=6.61 \\ & p=0.2498 \end{aligned}$	$\begin{aligned} & H=9.21 \\ & p=0.0999 \end{aligned}$
M. bifurca var. bifurca	$2 x$	$15.91{ }^{\text {a }}$	$10.46{ }^{\text {a }}$
M. uliginosa	$2 x$	$20.00^{\text {a }}$	$17.50{ }^{\text {b }}$
M. urugüensis	$2 x$	$20.28^{\text {a }}$	$18.60{ }^{\text {b }}$
M. amphigena var. trachycarpoides	$4 x$	$14.88^{\text {a }}$	$9.47^{\text {a }}$
M. cruenta Benth. var. cruenta	$4 x$	$14.50{ }^{\text {a }}$	$9.91{ }^{\text {a }}$
M. burkartii Marchesi	$4 x$	$15.71{ }^{\text {a }}$	$13.60{ }^{\text {a,b }}$
Sect. Habbasia Ser. Habbasia		$\begin{array}{r} H=0.05 \\ p>0.99 \end{array}$	
M. pigra var. dehiscens	$2 x$	$14.56{ }^{\text {a }}$	
M. pigra var. pigra	$4 x$	$14.12^{\text {a }}$	
Sect. Mimosa Ser. Mimosa Subser. Pudicae and Pedunculosae		$\begin{aligned} & H=6.41 \\ & p=0.0365 \end{aligned}$	$\begin{aligned} & H=6.20 \\ & p=0.0413 \end{aligned}$
M. brevipetiolata var. hirtula	$4 x$	$11.80 \pm 1.80^{\text {a }}$	$6.98 \pm 2.46{ }^{\text {b }}$
M. pauperoides	$6 x$	$21.80 \pm 3.86^{\text {a }}$	$17.92 \pm 3.61^{\text {a }}$
M. pauperoides	$4 x$	$12.68 \pm 0.01^{\text {a }}$	$10.71 \pm 0.01^{\text {b }}$
M. balansae	$2 x$	$19.28 \pm 0.36^{\text {a }}$	$16.51 \pm 2.76^{\text {b }}$

chromosome length (TCL), chromosome length per haploid genome (CLHG), total chromosome area (TCA) and chromosome area per haploid genome (CAHG). The Interchromosomal Asymmetry Index $\left(A_{2}\right)$ was calculated based on Romero-Zarco (1986), by means of the following formula:
$A_{\mathbf{2}}=\mathrm{SX}^{-1}$,
where S represents standard deviation and X the mean of chromosome length.

Statistical analyses

To know the variation of chromosome size between the ploidy levels and taxa, mean values of CLHG and CAHG
were compared. The variables were evaluated by means of Shapiro-Wilks with modifications (Mahibbur and Govindarajulu 1997), in order to analyze if the variables were normally or no normally distributed. The variation between ploidy levels was studied including all taxa involved, while the variation between taxa was studied in some infraspecific or interespecific groups.

Since the variables of chromosome size were not normally distributed, the non-parametric Kruskal-Wallis test (Kruskal and Wallis 1952) was used to detect differences between groups. To know which groups differed significantly, the means were compared by means of the multiple comparison post-hoc test (Zar 2010).

In the case of A_{2}, the mean values were evaluated by means of the analysis of variance, in order to detect statistically significant differences between taxa. A Tukey's test was applied to analyze between which taxa the differences were significant. All the analyses of this work were performed by means of the Infostat program (Di Rienzo et al. 2009).

Results

Chromosome numbers

Chromosome numbers of 36 taxa were studied. The following 19 chromosome numbers are new reports (Tables 1, 2, 3, 4; Figs. 1, 2, 3): $2 x=26$ for M. gracilis subsp. filiformis var. leiocarpa, M. bifurca Benth. var. bifurca, M. insignis (Hassl.) Barneby, M. glutinosa Malme, M. fiebrigii Hassl., M. monadelpha Chodat \& Hassl. var. glabrata (Hassl.) Barneby, M. sensibilis Griseb. var. sensibilis, M. xanthocentra Mart. aff. var. mansii (Benth.) Barneby; $4 x=52$ for M. urticaria Barneby, M. bonplandii Benth., M. pilulifera Benth. var. pilulifera, M. pilulifera var. pseudoincana (Burkart) Barneby, M. cruenta Benth. var. cruenta, M. amphigena Burkart var. trachycarpoides Burkart, M. burkartii Marchesi, M. myriophylla Bong. ex Benth.; M. pauperoides (Burkart) Fortunato; $6 x=78$, for M. pauperoides; and $8 x=104$, for M. berroi Burkart and M. lepidorepens Barneby.

Meiotic studies were performed on M. somnians var. somnians, M. bimucronata var. bimucronata, M. insignis and M. gracilis var. leiocarpa. In all cases, the meiosis was regular, with formation of bivalents (Fig. $1 \mathrm{f}-\mathrm{g}$; Table 1), and we did not observe bitetrads in this material. Polysomaty was observed in almost all studied species, with exception of M. urugüensis. This is a very common phenomenon in the majority of the species of this genus (Seijo 1993; Olkolski and Schifino Wittmann 2011).

The following chromosome numbers confirm previous reports (Table 1; Figs. 1, 2, 3): $2 x=26$ for M. urugïensis

Fig. 1 Chromosome numbers of Mimosa: a M. glutinosa, $2 x=26$; b M. fiebrigii, $2 x=26$; \mathbf{c} M. burkartii, $4 x=52$; d M. bimucronata var. bimucronata, $2 x=26$; e M. uliginosa, $2 x=26$. f M. caesalpiniaefolia, $2 x=26 ; \mathbf{g}, \mathbf{h}$. gracilis subsp. filiformis var.

Hook. \& Arn., M. uliginosa Chodat \& Hassl., M. caesalpiniifolia Benth., M. somnians Humb. \& Bonpl. ex Willd. var. somnians, M. pigra L. var. dehiscens, M. bimucronata (DC.) Kuntze var. bimucronata, M. polycarpa Kunth var. spegazzinii (Pirotta ex Hook.) Burkart, M. xanthocentra var. mansii, M. xanthocentra var. subsericea (Benth.) Barneby, M. balansae M. Micheli; $4 x=52$ for M. scabrella Benth., M. furfuracea Benth., M. somnians var.
leiocarpa, $x=13 \mathrm{II} ; \mathbf{g}$ Diplotene; h Diacinesis; i M. cruenta var. cruenta, $4 x=52 ; \mathbf{j}$ M. pigra var. dehiscens, $2 x=26 ; \mathbf{k}$ M. somnians var. somnians, $4 x=52$; l M. amphigena var. trachycarpoides, $4 x=52$. Scale bar $10 \mu \mathrm{~m}$
somnians, M. adpressa, and M. brevipetiolata Burkart var. hirtula (Burkart) Barneby; $8 x=104$, for M. daleoides Benth. and M. rocae Lorentz \& Nied.

In the section Batocaulon, members of the series Bimucronatae Barneby, Paucifoliatae Benth., Caesalpiniifoliae Benth. and Stipellares Benth, were studied. These taxa are generally diploid; only some species of Ser. Stipellares, such as M. cruenta, M. amphigena and M. burkartii, were

Fig. 2 Chromosome numbers of Mimosa. a M. pigra var. pigra, $4 x=52$; b M. myriophylla, $4 x=52$; \mathbf{c} M. velloziana var. velloziana, $4 x=52$; d M. pauperoides, $4 x=52$; e M. sensibilis var. sensibilis, $2 x=26$; \mathbf{f} M. berroi, $8 x=104$; \mathbf{g} M. bonplandii, $4 x=52$. Scale bar $10 \mu \mathrm{~m}$
tetraploids (Fig. 1a-i, l). In Sect. Habbasia, two taxa were studied, M. pigra var. pigra (from Ser. Habbasia) and M. somnians var. somnians (from Ser. Bipinnatae DC.). Both exhibited two ploidy levels, $2 x$ and $4 x$. (Figs. $1 \mathrm{j}-\mathrm{k}$, 2a).

In the section Mimosa, different ploidy levels were found: taxa with $2 x=26,4 x=52$ and $6 x=78$. In the present work, several taxa were studied from Ser. Myriophyllae: M. myriophylla, $4 x=52$, and Ser. Mimosa Subseries Polycarpae Barneby, Pudicae (Benth.) Barneby, Pedunculosae (Benth.) Barneby, Hirsutae (Benth.) Barneby, and Mimosa. The members studied of subseries Polycarpae, Pudicae and Hirsutae were diploids, while members of Pedunculosae exhibited two ploidy levels,
$4 x$ and $6 x$. In Subser. Mimosa, two ploidy levels were found, $2 x$ and $4 x$. Finally, in Sect. Calothamnos, all the species were polyploids, tetraploid and octaploid (Figs. 2, 3; Table 1).

Chromosome size

The TCL showed values between $21.80 \mu \mathrm{~m}$ in individuals from M. xanthocentra complex, to $130.81 \mu \mathrm{~m}$, in M. pauperoides, while CLHG varied from $10.90 \mu \mathrm{~m}$ in individuals from the " M. xanthocentra" complex to $20.97 \mu \mathrm{~m}$ in M. bimucronata var. bimucronata and 21.80 in M. pauperoides. The TCA ranged from 12.62μ in M.

Fig. 3 Chromosome numbers of Mimosa. a M. pauperoides, $6 x=78$; b M. brevipetiolata var. hirtula, $4 x=52$; \mathbf{c} M. monadelpha, $2 x=26$; d M. balansae, $2 x=26$; e M. pauperoides, $6 x=78$. Scale bar $10 \mu \mathrm{~m}$
xanthocentra var. subsericea to $107.53 \mu \mathrm{~m}$ in M. pauperoides. In the case of CAHG, the values ranged from $5.32 \mu \mathrm{~m}$ in M. pilulifera var. pseudoincana to $18.60 \mu \mathrm{~m}$ in M. urugüensis (Table 2; Fig. 4).

Chromosome parameters

The Shapiro-Wilks test showed that the variables of chromosome size, CLHG and CAHG did not show a normal distribution ($W=0.94$; $p=0.0130$), although Levene's test showed that variances were relatively homogeneous. For this reason, these variables were
analyzed by means of the Kruskal-Wallis non-parametric test (Tables 3, 4).

The study of variation of chromosome size according to the ploidy levels included all species which was possible to obtain an adequate number of good metaphases. The results of univariate analyses showed that tetraploids have significant differences with the diploids; the octaploids and hexaploids have been not included because they comprised very few samples (Table 3).

Statistical analyses to evaluate the mean values of CLHG and CAHG between taxa were performed in three groups: M. pigra, Sect. Batocaulon Ser. Stipellares, and

Fig. 4 Karyograms of Mimosa species. a M. glutinosa,
$2 x=26$; b M. amphigena var. trachycarpoides, $4 x=52$; c M. xanthocentra var. mansii,
$2 x=26 ; \mathbf{d}$ M. pigra var. dehiscens, $2 x=26 ; \mathbf{e}$ M. pigra var. pigra, $4 x=52$; $\mathbf{f} M$. balansae, $2 x=26 ; \mathrm{g} M$. berroi, $8 x=104$. Haploid complement of diploids and entire set of polyploids. Scale bar $1 \mu \mathrm{~m}$

Sect. Mimosa Ser. Mimosa Subser. Pudicae-Pedunculosae complex. The Kruskal-Wallis test and multiple comparison post-hoc test showed not significant differences between taxa in M. pigra. However, Ser. Stipellares and the Subseries Pudicae-Pedunculosae complex showed significant differences between taxa (Table 4).

The index A_{2} exhibited a normal distribution (Shapiro Wilks test: $W=0.97 ; p=0.4475$) and for this reason ANOVA, and Tukey's test, were applied. The results did not show significant differences between taxa, and values ranged from 0.14 in M. uliginosa to 0.29 in M. scabrella (Table 2). In consequence, the karyotype of the species studied is relatively symmetric, as well it is possible to observe in representative karyograms of diploid, tetraploid and octaploid taxa (Fig. 4).

Discussion

The results support $x=13$ as the basic chromosome number of the genus Mimosa, as was postulated by Isely (1971) and confirmed by several authors (Elias 1974; Coleman and DeMenezes 1980; Goldblatt 1981; Alves and de Carvalho Custódio 1983; Seijo 1993, 1999, 2000; Seijo and Fernández 2001; Morales 2011; Morales et al. 2010, 2011, 2012; Dahmer et al. 2011; Olkolski and Schifino Wittmann 2011). In this paper, it was found a high percentage of polyploid taxa (ca. 56% of the studied species). This amount differs notably from previous works: for example, Dahmer et al. (2011) reported 26% of polyploid taxa in its studies, and it was estimated that ca. 22% of all studied species of the genus exhibit polyploidy (Elias 1974; Coleman and DeMenezes 1980; Goldblatt 1981; Seijo 1993, 1999, 2000; Seijo and Fernández 2001; Morales 2011; Morales et al. 2010, 2011, 2012; Dahmer et al. 2011; Dahmer et al. 2013).
M. pudica L. (Nazeer and Madhusoodanan 1982), M. campicola Harms (Santos et al. 2012), and M. pauperoides have $6 x$ (Table 1), and this ploidy level was not found in
other mimosas. It is interesting that M. pauperoides and M. campicola exhibit also the tetraploid cytotype. Hexaploid mimosas are not frequent, and we think that it is because effective reproductive isolation between diploid and related tetraploid diploid taxa exists.

With regard to chromosome size, the species studied have generally chromosomes smaller than $2 \mu \mathrm{~m}$ in length, similarly to other groups of Mimosoids, such as Pithecellobium Mart., Acacia Mill. and Prosopis L. (GómezAcevedo and Tapia-Pastrana 2003; Tapia-Pastrana and Gómez-Acevedo 2005). In general terms, the species studied of section Batocaulon appear to have the largest chromosomes, while those of Sect. Mimosa and Calothamnos have the smallest chromosomes.

The asymmetry index A_{2} and karyograms show an apparent uniformity in the chromosome size into the same set of chromosomes (Fig. 4). There are not statistically significant differences between taxa, and the results coincide with other studies from our group (Morales 2011; Morales et al. 2011). It is very common in Mimosa that, when the karyotype is visualized, there is a tenuously gradual decrease in the chromosome length, from the largest to the smallest chromosome pair (Morales 2011; Morales et al. 2011). The presence of few differences in the length of chromosomes within the haploid complement could be characteristic of the genus.

It is interesting that Sect. Batocaulon Ser. Stipellares was the one that showed taxa with two ploidy levels. Diploid M. urugüensis comprises large shrubs or treelets restricted to the Uruguay River Basin, while the tetraploid M. cruenta var. cruenta, M. burkartii and M. amphigena var. trachycarpoides are generally small subshrubs from temperate, rocky savannas of Argentina and Uruguay (Fig. 5a). M. urugüensis is morphologically close to the tetraploid entities (Barneby 1991) and it could be involved in the origin of these taxa. The differences in chromosome size between diploid and tetraploid taxa show significant differences, and it could be interesting to the cytotaxonomy and evolution of the group.

Fig. 5 a Voucher's localities of species of the Sect. Batocaulon Ser. Stipellares. Open circle: M. glutinosa. Open triangle: M. insignis. Open diamond: M. bifurca var. bifurca. Open square: M. uliginosa. Filled triangle: M. cruenta var. cruenta. Filled square: M. amphigena var. trachycarpoides. Filled circle: M. burkartii. Filled heartin: M.

In Sect. Habbasia Ser. Bipinnatae, the accessions studied of M. somnians var. somnians confirm that the Argentinean populations of this taxon are diploid and the Paraguayan populations are tetraploid. Study of several specimens did not find obvious morphological differences between the diploid and tetraploid individuals, and it would support the hypothesis of the presence of cryptic species in this complex, as previously observed in M. debilis Humb. \& Bonpl. ex Willd. (Morales et al. 2010).

In M. pigra (Sect. Habbasia ser. Habbasia), our reports here as well as previous works (Seijo 1999; Dahmer et al. 2011), suggest that the var. dehiscens is diploid while the var. pigra is tetraploid. It is interesting that polyploid M. pigra var. pigra has adaptations for floating and hydrochore dispersal, and is found along river banks of the Pa-raná-Río de la Plata Basin, while M. pigra var. dehiscens does not have this adaptation and occurs generally in inner lowlands (Barneby 1991; Ulibarri et al. 2002; Morales 2011). Although previous authors did not find a clear distribution pattern of the cytotypes studying tropical accessions of this species (Dahmer et al. 2011), we can visualize a distinct ecological and geographical pattern between diploid and polyploid accessions in southernmost area of distribution of M. pigra. On the other hand, according to our field observations, no intermediate individuals between the varieties were found in the areas where both grow in sympatry; in addition, no triploid individuals were found. These data are evidences of a possible reproductive isolation between both taxa, but more intensive studies in the areas of sympatry will be needed to confirm these observations.

In Sect. Mimosa Ser. Mimosa Subser. Pudicae, M. balansae is morphologically close to members of Subser.

urugüensis; b Voucher's localities of species of the Sect. Calothamnos. Open circle: M. lepidorepens and M. scabrella. Open square: M. pilulifera. Open diamond: M. bonplandii. Filled circle: M. berroi. Filled diamond M. rocae. Filled heartin: M. daleoides

Pedunculosae, especially M. brevipetiolata var. hirtula and M. pauperoides. There was controversy in the past about the identity of these (Fortunato 1989; Barneby 1991). M. pauperoides exhibits intermediate characters between M. brevipetiolata var. hirtula and M. balansae; in our study, we observed that the three taxa grow in sympatry in northeastern Argentina. According to our field and herbarium observations, the morphology supports the hypothesis that tetraploid and hexaploid individuals of M. pauperoides are allopolyploids, originating by hybridization between diploid M. balansae and tetraploid M. brevipetiolata and later polyploidization.
M. xanthocentra is a species with high morphological variation and extensively disseminated in Southern South America (especially in Southern Brazil, Paraguay, Bolivia and Northeastern Argentina) which forms a taxonomic complex. Barneby (1991) proposed several infraspecific taxa: three subspecies subsericea, mansii, and xanthocentra, and several varieties. Here, we described the chromosome number and size of individuals of subspecies mansii and subsericea, as well as one accession with intermediate morphology between them. All the studied individuals were diploid, and it is in concordance with previous reports in the subsp. subsericea (Seijo 2000). The presence of intermediate forms between the subspecies could suggest the presence of hybridization between diploid taxa.

All species of Sect. Calothamnos studied here are polyploids-tetraploids and octaploids-and these results are in concordance with previous studies (Seijo 1999; Seijo and Fernández 2001; Dahmer et al. 2011). It is interesting that the taxa of this section are generally well circumscribed in their morphology and geographic distribution.

The majority of these are endemic or highly restricted, especially in warm temperate or subtropical areas of southern South America (Fig. 5b), and their origin remains unclear: the main distinctive characters of some species of this section, such as yellow corollas and staminodia, are not frequently found in Mimosa (Burkart 1948; Barneby 1991). All these taxa coincided that they have not obvious ancestors, when molecular or morphology is analyzed. This fact and the high morphological and ecological specialization of the group (all are adapted to subtropical, warm temperate or tropical highland grasslands) could suggest that they are a group of paleopolyploid taxa, whose diploid ancestors are extinct.

Bessega and Fortunato (2011) and Simon et al. (2011) found that Sect. Batocaulon Ser. Farinosae and Bimucronatae constitute the most basal clade in southern South America. Their members are diploid, according to Seijo (1999), Dahmer et al. (2011), Morales et al. (2011), and the present study (Table 1). In taxa from other more derived clades, such as Sect. Batocaulon Ser. Stipellares (Table 1) and M. pigra (Seijo 1999; Dahmer et al. 2011) (Sect. Habbasia Ser. Habbasia), it is possible to observe different ploidy levels and polyploid taxa. Finally, the members of some most derived clades, which group together members of sections Mimosa and Calothamnos, are polyploids or have different ploidy levels. The presence of several ploidy levels in different clades suggests that several independent events of polyploidization are involved, as well was postulated previously (Morales 2011; Dahmer et al. 2011).

It is mentioned that the frequency of polyploids and the ploidy levels increase with the latitude (Stebbins 1971). Seijo and Fernández (2001) hypothesized that it could be the case of Mimosa. In their study that comprised species from Argentina and Uruguay, they found that the species or individuals located in the southernmost area of distribution were polyploids, while the proportion of diploids was increased at lower latitudes. In the present work, we observed that the groups growing in the southernmost area of distribution of the genus are mainly polyploids. For example: M. pigra, M. bonplandii, M. pilulifera (tetraploid species, in the Río de la Plata Basin, $34^{\circ} \mathrm{S}$); M. burkartii (octaploid, Uruguay grasslands, $34^{\circ} \mathrm{S}$) and M. rocae (octaploid, Buenos Aires rocky grasslands, $38^{\circ} \mathrm{S}$) (Fig. 5). It explains the comparatively high percentage of polyploids that we found, which differs from 22% of polyploids in all species studied previously (Dahmer et al. 2011). In spite of the clear distribution pattern in many groups of Mimosa, where polyploids generally occur at high latitudes (Seijo and Fernández 2001; Morales et al. 2010; Dahmer et al. 2011), a detailed geographic and cytologic study is still needed to give more solid evidence to this hypothesis.

Another interesting topic is the variation in chromosome size, which appears to be generally correlated with the
genome size (Ouzu et al. 1997). In Mimosa, chromosome size is variable between related taxa, and, in some groups, there are significant differences between polyploids and their related diploids, such as in Sect. Batocaulon Ser. Stipellares. The general trend in the studied species of the genus appears to be that tetraploids have uniformly small chromosomes, although the decrease in the chromosome size with the ploidy level is not consistent in all the infraspecific groups: in M. pigra there were no differences found between cytotypes, and polyploid M. pauperoides, with $2 n=6 x=78$ (Fig. 5a, e) and tetraploid M. quadrivalvis var. leptocarpa, with $2 n=4 x=52$ (Santos et al. 2012) appeared with large chromosomes. The variation in chromosome size is more visible in the analysis of mean values, since statistically significant differences appear between the diploids and tetraploids (Table 3). It is not possible to infer a trend in the octaploid and hexaploid taxa, since few of these polyploids were found in Mimosa.

Among the diploid taxa studied here, the variation in chromosome size, especially in CLHG, is higher than in polyploid taxa, and it is more visible when previous results are also compared (Morales et al. 2011). The variation in the diploid entities could be associated with environmental conditions, as was observed previously in other South American mimosas (Morales et al. 2011), and in other Mimosoids, as Acacia and Prosopis (Gómez-Acevedo and Tapia-Pastrana 2003).

On the other hand, it has been frequently documented that the major trend in the vascular plants is a decrease in the genome size (per haploid genome), when a polyploidization event occurs (Leitch et al. 2008), and it appears to be the case in the genus Mimosa. Except for the hexaploid M. pauperoides, the remainder of the polyploid taxa studied in this work shows a relatively small chromosome size.

It is possible to find many cases in the literature, where polyploidy is associated with a decreasing genome size, in terms of DNA content per haploid genome (Soltis et al. 2003; Kellogg and Bennetzen 2004). Several authors postulated that these changes could be involved in the genetic and cytogenetic diploidization of polyploids. It is interesting to observe that, in other taxonomical groups, the polyploidy appears to generate non-random deleting of coding and non-coding sequences, activation of genes and retroelements, and chromosome reorganization, gain or loss of chromosomes or entire genomes (Ma and Gustafson 2006; Feldman and Levy 2005).

Notably, Mimosa is a Neotropical genus with high diversification, and polyploidy is an important evolutionary mechanism; it was confirmed by us and all previous studies in cytogenetics of Mimosa (Seijo 1993, 1999; Seijo and Fernández 2001; Dahmer et al. 2011). In general terms, it is possible to visualize a reduction of the chromosome size, and possibly of the genome size, when polyploidy occurs,
but it is not observed in all groups studied. On the other hand, hybridization between diploid and polyploid individuals may occur in some groups. In this work, we found some evidences of allopolyploidy; polyploids of different origin are highly possible in Mimosa, since our recent reports suggest autopolyploidy in M. debilis (Morales et al. 2010) or M. diversipila M. Micheli (Morales et al. 2013). The elucidation of the origin of polyploids seems to be very important to resolve the taxonomy (Soltis et al. 2007). All these evolutionary mechanisms could be associated with different environmental adaptations and could contribute to produce the high morphological variability that can be observed in the majority of Neotropical mimosas.

Acknowledgments We are grateful for the curators of the cited herbaria, for access to the material studied. We thank especially Fernando Chiang by his critical revision and Gustavo Giberti (Facultad de Farmacia y Bioquímica, Universidad Nacional de Buenos Aires, Argentina) and Patricia Prüner for their collections. We appreciate the collaboration of Fátima Mereles, Lidia Pérez de Molas, Rosa Degen and Cristian Vogt in Paraguay; Guillermo Seijo, Roberto Neumann ${ }^{+}$, Esteban Meza Torres and Juan Manuel Rodríguez in Argentina; and the staff from Museo Botânico Municipal, Curitiba, Brazil. We want also to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for the postgraduate fellowship to Matías Morales. This research was supported by grants PIP 5560 (CONICET) to Renée H. Fortunato, PIP 5927 (CONICET) to Lidia Poggio, PID 2006-2008 B06-001-06 (Universidad de Morón) to Matías Morales, X178 (Universidad de Buenos Aires) to Lidia Poggio, and the Myndel Botanica Foundation Collection trip Grants 2004, 2005, 2007, 2008, to Renée H. Fortunato and collaborators, and 2009, to Matías Morales.

References

Alves MAO, de Carvalho Custódio AV (1983) Citogenética de leguminosas coletadas no estado de Ceará. Revista Brasileira de Genética 12:81-92
Barneby R (1991) Sensitivae Censitae: Mimosa. Mem New York Bot Gard 65:1-835
Bentham G (1876) Mimosa. In: von Martius CFP, Eichler AW, Urban I (eds) Flora Brasiliensis 15(2): 294-390. München
Bessega C, Fortunato RH (2011) Section Mimadenia: its phylogenetic relationships within the genus Mimosa (Leguminosae, Mimosoideae) using plastid $t r n \mathrm{~L}-\mathrm{F}$ sequence data. Australian Systematic of Botany. 24(2):104-110
Bessega C, Hopp HE, Fortunato RH (2008) Toward a phylogeny of Mimosa (Leguminosae, Mimosoideae): a preliminary analysis of southern South American species based on chloroplast DNA sequence. Ann Missouri Bot Gard 95(4):567-569
Burkart A (1948) Las especies de Mimosa de la Flora Argentina. Darwiniana 8(1):9-231
Coleman JR, DeMenezes E (1980) Chromosome numbers in Leguminosae from the State of São Paulo, Brazil. Rhodora 82:475-481
Dahmer N, Simon MF, Schifino-Wittmann MT, Hughes CE, Miotto STS, Giuliani JC (2011) Chromosome numbers in the genus Mimosa L.: cytotaxonomic and evolutionary implications. Plant Syst Evol 291:211-220
Dahmer N, Schifino-Wittmann MT, Guerra D, Weiler RL (2013) "Bracatinga" (Mimosa scabrella Bentham), a multipurpose tree
growing in Southern Brazil: chromosome number and genetic variation. Genetics Resources and Crop Evolution 60(1):377-383
Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2009) InfoStat versión 2009. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina
Elias TS (1974) The genera of Mimosoideae (Leguminosae) in the southern United States. J Arn Arb 55:67-113
Feldman M, Levy AA (2005) Allopolyploidy-a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250-258
Fortunato RH (1989) Contribución al género Mimosa (Mimosaceae). Ann Mo Bot Gard 76:381-386
Goldblatt P (1981) Cytology and the phylogeny of Leguminosae. In: Polhill RM, Raven PH (eds) Advances of legume systematics, vol 2. Royal Botanic Gardens, Kew, pp 427-464
Goldblatt P, Johnson DE (2002) Index to plant chromosome numbers. http://mobot.mobot.org/W3T/Search/ipen.html. Accessed 10 Dec 2010
Gómez-Acevedo SL, Tapia-Pastrana F (2003) Estudio genecológico en Prosopis laevigata, Acacia farnesiana y Acacia schaffneri (Leguminosae). Darwiniana 41:47-54
Isely D (1971) Legumes of the United States. IV. Mimosa. Amer Midl Naturalist 85(2):410-424
Izaguirre P, Beyhaut R (2003) Las leguminosas en Uruguay y regiones vecinas, parte 2: Caesalpinioideae, y parte 3: Mimosoideae. Hemisferio Sur, Montevideo
Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91(10):170-1725
Kruskal WH, Wallis WA (1952) Use of ranks on one-criterion variance analysis. Journal of the American Statistical Association 47:583-621
Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Annals of Botany 101(6):805-814
Ma XF, Gustafson JP (2006) Timing and rate of genome variation in Triticale following allopolyploidization. Genome 49:950-958
Mahibbur RM, Govindarajulu Z (1997) A modification of the test of Shapiro and Wilks for normality. Journal of Applied Statistics 24(2):219-235
Marçal de Sousa S, Campos Reis A, Facio Viccini L (2013) Polyploidy, B chromosomes, and heterochromatin characterization of Mimosa caesalpiniifolia Benth. (Fabaceae-Mimosoideae). Tree Genetics and Genome 9:613-619
Morales M (2011) Relaciones entre especies del género Mimosa (Mimosoideae, Leguminosae) mediante estudios taxonómicos y citogenéticos. Unpublished D. Phil. Thesis, Universidad de Buenos Aires
Morales M, Fortunato RH (2010) Novedades taxonómicas y nomenclaturales en Mimosa serie Mimosa subserie Mimosa (Leguminosae, Mimosoideae) para Sudamérica Austral. Candollea 65:169-184
Morales M, Wulff AF, Fortunato RH, Poggio L (2010) Chromosome and morphological studies in the Mimosa debilis complex (Mimosoideae, Fabaceae) from Southern South America. Australian Journal of Botany 58(1):12-22
Morales M, Wulff AF, Fortunato RH, Poggio L (2011) Karyotype studies in Mimosa (Mimosoideae, Leguminosae) from Southern South America and ecological and taxonomic relationships. Caryologia 64(2):203-214
Morales M, Ribas OS, Santos-Silva J (2012) A new polyploid species of Mimosa (Leguminosae, Mimosoideae) from highlands of Southern Brazil. Systematic Botany 37(2):399-403
Morales M, Arenas L, Remis MI, Wulff AF, Poggio L, Fortunato RH (2013) Morphometric and Cytogenetic Studies in Mimosa
diversipila (Mimosoideae, Leguminosae) and Their Taxonomic and Evolutionary Inferences. Systematic Botany (in press)
Nazeer MA, Madhusoodanan KJ (1982) Intraspecific polyploidy in Mimosa pudica Linn. Current Science 52(3):128
Olkolski D, Schifino Wittmann MT (2011) Cytogenetics of Mimosa bimucronata (DC.) O. Kuntze (Mimosoideae, Leguminosae): chromosome number, polysomaty and meiosis. Crop Breeding and Applied Biotechnology 11(1):27-36
Ouzu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, Fukui K (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Molecular Biology 35:791-799
Poggio L, Espert S, Fortunato RH (2008) Citogenética evolutiva en Leguminosas americanas. Rodriguesia 59(3):423-433
Romero-Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526-530
Santos EC, Carvalho R, Almeida EM, Felix LP (2012) Chromosome number variation and evolution in Neotropical Leguminoseae (Mimosoideae) from northeastern Brazil. Genetics and Molecular Research 11(3):2451-2475
Seijo GJ (1993) Citogenética en especies argentinas del género Mimosa (Leguminosae). Bol Soc Argent Bot 29:219-223
Seijo GJ (1999) Chromosome studies in Argentinian species of Mimosa. Cytologia 64:241-246
Seijo GJ (2000) Números cromosómicos en especies de Mimosa de Paraguay. Bonplandia 10:163-167

Seijo GJ, Fernández A (2001) Chromosome numbers of Some Southernmost Species of Mimosa L. (Leguminosae). Cytologia 66:19-34
Simon MF, Grether R, Queiroz LP, Särkinen TE, Dutra VF, Hughes CE (2011) The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. American Journal of Botany 98(7):1201-1221
Soltis ED, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since Plant Speciation. New Phytol 161:173-191
Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56(1):13-30
Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London
Tapia-Pastrana F, Gómez-Acevedo SL (2005) El cariotipo de Pithecellobium dulce (Mimosoideae-Leguminosae). Darwiniana 43:1-4
Ulibarri E, Gómez-Sosa EV, Cialdella AM, Fortunato RH, Bazzano D (2002) Leguminosas Nativas y exóticas. In: Hurrell J, Lahitte HB (eds) Biota Rioplatense VII. Literature of Latin America (LOLA), Buenos Aires, pp 1-320
Zar JH (2010) Biostatistical analysis. Prentice-Hall, New Jersey

[^0]: M. Morales (\square) R. H. Fortunato

 Facultad de Agronomía y Ciencias Agroalimentarias, Universidad de Morón, Cabildo 134, B1708JPD Morón, Argentina
 e-mail: mmorales0007@gmail.com; mmorales@cnia.inta.gov.ar
 M. Morales • R. H. Fortunato

 Instituto de Recursos Biológicos CIRN, INTA, Los Reseros y Las Cabañas s/n (1686), Hurlingham, Argentina
 A. F. Wulff • R. H. Fortunato - L. Poggio

 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

