DATA APPROXIMATION WITH TIME-FREQUENCY INVARIANT SYSTEMS

DAVIDE BARBIERI, C. CABRELLI, E. HERNÁNDEZ, AND U. MOLTER

ABSTRACT. In this paper we prove the existence of a time-frequency space that best approximates a given finite set of data. Here best approximation is in the least square sense, among all time-frequency spaces with no more than a prescribed number of generators. We provide a formula to construct the generators from the data and give the exact error of approximation. The setting is in the space of square integrable functions defined on a second countable LCA group and we use the Zak transform as the main tool.

1. INTRODUCTION AND MAIN RESULT

Time-frequency systems, also called Gabor or Weyl-Heisenberg systems in the literature, are used extensively in the theory of communication, to analyze continuous signals, and to process digital data such as sampled audio or images.

Time-frequency spaces try to represent features of both a function and its frequencies by decomposing the signal into time-frequency atoms given by modulations and translations of a finite number of functions [9]. If one looks at a musical score, on the horizontal axis the composer represents the time, and on the vertical axis the "frequency" given by the amplitude of the signal at that instant. Finding *sparse representations* (i.e. spaces generated by a small set of functions) will be useful for example in classification tasks.

In numerical applications to time-dependent phenomena, one often encounters uniformly sampled signals of finite length, i.e. vectors of d elements, such as audio signals with a constant sampling frequency. In this case the most direct approach is to consider Fourier analysis on the cyclic group \mathbb{Z}_d .

To include a large variety of situations, our setting will be that of a locally compact abelian (LCA) group. The general construction developed in this paper will be specialised to the cyclic group \mathbb{Z}_d in Example 2.2.

In this paper G = (G, +) will be a second countable LCA group, that is, an abelian group endowed with a locally compact and second countable Hausdorff topology for which $(x, y) \mapsto x - y$ is continuous from $G \times G$ into G. We denote by \widehat{G} the dual group of G, formed by the characters of G: an element $\alpha \in \widehat{G}$ is a continuous homomorphism from G into $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. The action of α on $x \in G$ will be denoted by $(x, \alpha) := \alpha(x)$, to reflect the fact that the dual of \widehat{G} is isomorphic to G, and therefore x can also act on α . For $\alpha_1, \alpha_2 \in \widehat{G}$ the group law is denoted by $\alpha_1 \cdot \alpha_2$, so that $(x, \alpha_1 \cdot \alpha_2) = (x, \alpha_1)(x, \alpha_2)$.

A uniform lattice, $L \subset G$, is a subgroup of G whose relative topology is the discrete one and for which G/L is compact in the quotient topology. The annihilator

 $Key\ words\ and\ phrases.$ Time-frequency space; Eckart-Young theorem; LCA groups; Zak transform.

of L is $L^{\perp} = \{ \alpha \in \widehat{G} : (\ell, \alpha) = 1 \ \forall \ell \in L \}$. Since $L^{\perp} \approx \widehat{(G/L)}$ ([11], Theorem 2.1.2) and G/L is compact, L^{\perp} is discrete ([11], Theorem 1.2.5). In particular, since G is second countable, \widehat{G} is also second countable, so both discrete groups L and L^{\perp} are countable.

Lel *L* be a uniform lattice in the LCA group *G* and $\mathcal{B} \subset L^{\perp}$ be a uniform lattice in the dual group \widehat{G} . For $f \in L^2(G)$, $\ell \in L$, and $\beta \in \mathcal{B}$ let $T_{\ell}f(x) = f(x-\ell), x \in G$, be the translation operator, and $M_{\beta}f(x) = (x,\beta)f(x), x \in G$, be the modulation operator. The collection

$$\{T_{\ell}M_{\beta}f: \ell \in L, \beta \in \mathcal{B}\},\$$

is the time-frequency system generated by $f \in L^2(G)$.

Since $\mathcal{B} \subset L^{\perp}$, we have $T_{\ell}M_{\beta}f = M_{\beta}T_{\ell}f$ for all $f \in L^{2}(G)$, $\ell \in L$, and $\beta \in \mathcal{B}$. Thus $\Pi(\ell, \beta) := T_{\ell}M_{\beta}$ is a unitary representation of the abelian group $\Gamma := L \times \mathcal{B}$, with operation $(\ell_{1}, \beta_{1}) \cdot (\ell_{2}, \beta_{2}) = (\ell_{1} + \ell_{2}, \beta_{1} \cdot \beta_{2})$, in $L^{2}(G)$.

A closed subspace V of $L^2(G)$ is said to be Γ -invariant (or time-frequency invariant) if for every $f \in V$, $\Pi(\ell, \beta)f \in V$ for every $(\ell, \beta) \in \Gamma$. All Γ -invariant subspaces V of $L^2(G)$ are of the form

$$V = S_{\Gamma}(\mathcal{A}) := \overline{\operatorname{span}\{T_{\ell}M_{\beta}\varphi: \varphi \in \mathcal{A}, (\ell,\beta) \in \Gamma\}}^{L^{2}(G)}$$

for some countable collection \mathcal{A} of elements of $L^2(G)$. If \mathcal{A} is a finite collection we say that $V = S_{\Gamma}(\mathcal{A})$ has finite length, and \mathcal{A} is a set of generators of V. We call the length of V, denoted length(V), the minimum positive integer n such that V has a set of generators with n elements.

We now state our approximation problem. Let $\mathcal{F} = \{f_1, f_2, ..., f_m\} \subset L^2(G)$ be a set of functional data. Given a closed subspace V of $L^2(G)$ define

(1.1)
$$\mathcal{E}(\mathcal{F}; V) := \sum_{j=1}^{m} \|f_j - \mathbb{P}_V f_j\|_{L^2(G)}^2$$

as the error of approximation of \mathcal{F} by V, where \mathbb{P}_V denotes the orthogonal projection of $L^2(G)$ onto V.

Is it possible to find a Γ -invariant space of length at most n < m that best approximates our functions, in the sense that

$$\mathcal{E}(\mathcal{F}; S_{\Gamma}\{\psi_1, ..., \psi_n\}) \le \mathcal{E}(\mathcal{F}; V)$$

for all Γ -invariant subspaces V of $L^2(G)$ with length $(V) \leq n$?

This question is relevant in applications. For example, if $\{f_1, \ldots, f_m\}$ are audio signals, the best Γ -invariant space provides a time-frequency optimal model to represent these signals.

The answer to this question is affirmative, and is given by the main theorem of this work.

Theorem 1.1. Let G be a second countable LCA group, L and \mathcal{B} be uniform lattices in G and \widehat{G} respectively, with $\mathcal{B} \subset L^{\perp}$. For each set of functional data $\mathcal{F} = \{f_1, f_2, ..., f_m\} \subset L^2(G)$ and each $n \in \mathbb{N}$, n < m, there exists $\{\psi_1, ..., \psi_n\} \subset L^2(G)$ such that

$$\mathcal{E}(\mathcal{F}; S_{\Gamma}\{\psi_1, ..., \psi_n\}) \le \mathcal{E}(\mathcal{F}; V)$$

for all Γ -invariant subspaces V of $L^2(G)$ with length(V) $\leq n$.

Remark 1.1. Observe that, in the previous statement, some of the generators $\{\psi_1, ..., \psi_n\}$ may be zero. In this case, the length of $S_{\Gamma}\{\psi_1, ..., \psi_n\}$ would be strictly smaller than n.

The proof of Theorem 1.1 will follow the ideas originally developed in [1] for approximating data in $L^2(\mathbb{R}^d)$ by shift-invariant subspaces of finite length, and which have also been used in [6, 3].

We reduce the problem of finding the collection $\{\psi_1, ..., \psi_n\}$, whose existence is asserted in Theorem 1.1, to solve infinitely many approximation problems for data in a particular Hilbert space of sequences. This is accomplished with the help of an isometric isomorphism H_{Γ} that intertwines the unitary representation Π with the characters of Γ . This isometry H_{Γ} generalizes the fiberization map of [4] used in [1], and has the properties of a Helson map as defined in [2](Definition 7). The definition and properties of H_{Γ} are given in Section 2.

The reduced problems are then solved by using Eckart-Young theorem as stated and proved in [1] (Theorem 4.1). The solutions of all of these reduced problems are patched together to finally obtain the proof of Theorem 1.1 in Section 3.

2. An isometric isomorphism

Let G be a second countable LCA group, L a uniform lattice in G, and $\mathcal{B} \subset L^{\perp}$ a uniform lattice in \widehat{G} (see definitions in Section 1). With $\Gamma = L \times \mathcal{B}$, each Γ -invariant subspace V of $L^2(G)$ is of the form

$$V = S_{\Gamma}(\mathcal{A}) := \overline{\operatorname{span}\{T_{\ell}M_{\beta}\varphi: \varphi \in \mathcal{A}, (\ell,\beta) \in \Gamma\}}^{L^{2}(G)}$$

for some countable set $\mathcal{A} \subset L^2(G)$. Therefore

$$V = S_L(\{M_\beta \varphi : \varphi \in \mathcal{A}, \beta \in \mathcal{B}\})$$

is also an *L*-invariant subspace, that is $T_{\ell}f \in V$ for all $\ell \in L$ whenever $f \in V$. The theory of shift-invariant spaces on LCA groups, as developed in [7], can be applied to this situation.

Let $T_{L^{\perp}} \subset \widehat{G}$ be a measurable cross-section of \widehat{G}/L^{\perp} . The set $T_{L^{\perp}}$ is in one to one correspondence with the elements of \widehat{G}/L^{\perp} , and $\{T_{L^{\perp}} + \lambda : \lambda \in L^{\perp}\}$ is a tiling of \widehat{G} .

Let $f(\omega) := \int_G f(x)\overline{(x,w)}dx$ denote the unitary Fourier transform of $f \in L^2(G) \cap L^1(G)$ and extended to $L^2(G)$ by density. By Proposition 3.3 in [7] the mapping $\mathscr{T}: L^2(G) \to L^2(T_{L^{\perp}}, \ell^2(L^{\perp}))$ given by

(2.1)
$$\mathscr{T}f(\omega) = \{\widehat{f}(\omega+\lambda)\}_{\lambda \in L^{\perp}}, \ f \in L^2(G),$$

is an isometric isomorphism. Moreover, since $V \subset L^2(G)$ is an *L*-invariant space, it has an associated measurable range function

$$J: T_{L^{\perp}} \longrightarrow \{ \text{closed subspaces of } \ell^2(L^{\perp}) \}$$

such that (See Theorem 3.10 in [7])

(2.2) $J(\omega) = \overline{\operatorname{span}\left\{\mathscr{T}(M_{\beta}\varphi)(\omega) : \beta \in \mathcal{B}, \varphi \in \mathcal{A}\right\}}^{\ell^{2}(L^{\perp})}, \text{ a.e } \omega \in T_{L^{\perp}}.$

Using the definition of \mathscr{T} given in (2.1), for each $\beta \in \mathcal{B}$ and each $\varphi \in L^2(G)$ we have

(2.3)
$$\mathscr{T}(M_{\beta}\varphi)(\omega) = \{\widehat{M_{\beta}\varphi}(\omega+\lambda)\}_{\lambda\in L^{\perp}} = \{\widehat{\varphi}(\omega+\lambda-\beta)\}_{\lambda\in L^{\perp}} = t_{\beta}(\mathscr{T}\varphi(\omega))$$

where $t_{\beta} : \ell^2(L^{\perp}) \longrightarrow \ell^2(L^{\perp})$ is the translation of sequences in $\ell^2(L^{\perp})$ by elements of $\beta \in \mathcal{B}$, that is $t_{\beta}(\{a(\lambda)\}_{\lambda \in L^{\perp}}) = \{a(\lambda - \beta)\}_{\lambda \in L^{\perp}}$. Therefore, \mathscr{T} intertwines the modulations $\{M_{\beta}\}_{\beta \in \mathcal{B}}$ with the translations by \mathcal{B} on $\ell^2(L^{\perp})$.

By equations (2.2) and (2.3), for a. e. $\omega \in T_{L^{\perp}}$,

$$J(\omega) = \overline{\operatorname{span} \left\{ t_{\beta}(\mathscr{T}\varphi(\omega)) : \beta \in \mathcal{B}, \, \varphi \in \mathcal{A} \right\}}^{\ell^{2}(L^{\perp})}.$$

Therefore, $J(\omega)$ is a \mathcal{B} -invariant subspace of $L^2(L^{\perp})$. We can apply the theory of shift-invariant spaces as developed in [7] to the discrete LCA group L^{\perp} and its uniform lattice \mathcal{B} .

Let \mathcal{B}^{\perp} be the annihilator of \mathcal{B} in the compact group $\widehat{L^{\perp}} \subset G$, that is

(2.4)
$$\mathcal{B}^{\perp} = \{ b \in \widehat{L^{\perp}} : (b, \beta) = 1 \ \forall \beta \in \mathcal{B} \}.$$

Observe that \mathcal{B}^{\perp} is finite, because it is a discrete subgroup of a compact group.

Let $T_{\mathcal{B}^{\perp}} \subset \widehat{L^{\perp}}$ be a measurable cross-section of $\widehat{L^{\perp}}/\mathcal{B}^{\perp}$. The set $T_{\mathcal{B}^{\perp}}$ is in one to one correspondence with the elements of $\widehat{L^{\perp}}/\mathcal{B}^{\perp}$ and $\{T_{\mathcal{B}^{\perp}} + b : b \in \mathcal{B}^{\perp}\}$ is a tiling of $\widehat{L^{\perp}}$.

Example 2.1. Let $G = \mathbb{R}, L = \mathbb{Z}$ and $\mathcal{B} = n\mathbb{Z} \subset L^{\perp} = \mathbb{Z} \subset \widehat{\mathbb{R}}$. Since $\widehat{L^{\perp}} = \widehat{\mathbb{Z}} \approx [0,1), \ \ell \in \mathcal{B}^{\perp}$ if and only if $\ell \in [0,1)$ and $e^{2\pi i \ell \cdot nk} = 1$ for all $k \in \mathbb{Z}$. Hence

$$\mathcal{B}^{\perp} = \{0, \frac{1}{n}, \dots, \frac{n-1}{n}\}.$$

We can take $T_{\mathcal{B}^{\perp}} = [0, \frac{1}{n})$. Notice that as a subgroup of $\widehat{\mathbb{R}}$ the annihilator of \mathcal{B} is $\frac{1}{n}\mathbb{Z}$.

Example 2.2. Let $p, q \in \mathbb{N}$, d = pq, and $G = \mathbb{Z}_d = \{0, 1, \dots, d-1\}$. Let $L = \{0, p, 2p, \dots p(q-1)\} = \{np : n = 0, \dots, q-1\} \approx \mathbb{Z}_q$. Its annihilator lattice is

$$L^{\perp} = \left\{ \lambda \in \{0, 1, \dots, d-1\} : e^{2\pi i \frac{\lambda n p}{d}} = 1 \ \forall \ n = 0, \dots, q-1 \right\}$$
$$= \{0, q, 2q, \dots, q(p-1)\} = \{kq : k = 0, \dots, p-1\} \approx \mathbb{Z}_p.$$

A fundamental set $T_{L^{\perp}}$ for L^{\perp} in $\widehat{G} \approx \mathbb{Z}_d$ is $T_{L^{\perp}} = \{0, \ldots, q-1\} \approx \mathbb{Z}_q$. The characters $\omega \in \widehat{L^{\perp}} = \{\text{homomorphisms} : L^{\perp} \to \mathbb{T}\}$ of this group are of the form (see e.g. [8] Lemma 5.1.3) $\omega_{\nu}(\lambda) = e^{2\pi i \frac{\lambda \nu}{p}}, \ \lambda \in L^{\perp}$ for $\nu \in \{\frac{\ell}{q} : \ell = 0, \ldots, p-1\} \approx \mathbb{Z}_p$. Suppose now that p = rs for some $r, s \in \mathbb{N}$, and let $\mathcal{B} \subset L^{\perp}$ be

$$\mathcal{B} = \{0, rq, 2rq, \dots, (s-1)rq\} = \{jrq : j = 0, \dots, s-1\} \approx \mathbb{Z}_s.$$

The annihilator of \mathcal{B} in $\widehat{L^{\perp}}$ thus reads

$$\mathcal{B}^{\perp} = \left\{ b \in \left\{ \frac{\ell}{q} : \ell = 0, \dots, p-1 \right\} : e^{2\pi i \frac{bjrq}{p}} = 1 \ \forall j = 0, \dots, s-1 \right\}$$
$$= \left\{ 0, \frac{s}{q}, \frac{2s}{q}, \dots, \frac{s(r-1)}{q} \right\} = \left\{ h \frac{s}{q} : h = 0, \dots, r-1 \right\} \approx \mathbb{Z}_r.$$

A fundamental set in $\widehat{L^{\perp}} = \{\frac{\ell}{q} : \ell = 0, \dots, p-1\}$ for \mathcal{B}^{\perp} is $T_{\mathcal{B}^{\perp}} = \{0, \frac{1}{q}, \dots, \frac{s-1}{q}\} \approx \mathbb{Z}_s.$ By Proposition 3.3 in [7], the mapping $\mathscr{K}: \ell^2(L^{\perp}) \to L^2(T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp}))$ given by

(2.5)
$$\mathscr{K}(\{a(\lambda)\}_{\lambda\in L^{\perp}})(t) = \{(\{a(\lambda)\}_{\lambda\in L^{\perp}})^{\wedge} (t+b)\}_{b\in\mathcal{B}^{\perp}} = \left\{\sum_{\lambda\in L^{\perp}} a(\lambda)\overline{(t+b,\lambda)}\right\}_{b\in\mathcal{B}^{\perp}},$$

is an isometric isomorphism. Moreover, each \mathcal{B} -invariant subspace $J(\omega), \ \omega \in T_{L^{\perp}}$, has an associated measurable range function

 $J(\omega, \cdot): T_{\mathcal{B}^{\perp}} \longrightarrow \{ \text{closed subspaces of } \ell^2(\mathcal{B}^{\perp}) \},\$

such that for almost every $t \in T_{\mathcal{B}^{\perp}}$, $J(\omega, t) = \overline{\operatorname{span} \{ \mathscr{K}(\mathscr{T}\varphi)(\omega))(t) : \varphi \in \mathcal{A} \}}^{\ell^{2}(\mathcal{B}^{\perp})}$. From the definition of \mathscr{T} given in (2.1) and the definition of \mathscr{K} given in (2.5) we obtain

(2.6)
$$\mathscr{K}(\mathscr{T}\varphi)(\omega))(t) = \left\{\sum_{\lambda \in L^{\perp}} \widehat{f}(\omega + \lambda)\overline{(t + b, \lambda)}\right\}_{b \in \mathcal{B}^{\perp}}$$

when $f \in L^2(G)$, $\omega \in T_{L^{\perp}}$, and $t \in T_{\mathcal{B}^{\perp}}$. For $f \in L^2(G)$, $\omega \in \widehat{G}$, and $t \in G$ define

(2.7)
$$\mathcal{Z}f(\omega,t) := \sum_{\lambda \in L^{\perp}} \widehat{f}(\omega + \lambda) \overline{(t,\lambda)},$$

the Zak transform of \hat{f} with respect to the lattice L^{\perp} . Observe that in terms of this map, $\mathscr{K}(\mathscr{T}\varphi)(\omega))(t) = \{\mathscr{Z}f(\omega, t+b)\}_{b\in\mathcal{B}^{\perp}}.$

To simplify the statement of the next theorem we write X_{β} for the character on G associated to $\beta \in \mathcal{B}$, that is $X_{\beta} : G \longrightarrow \mathbb{T}$ with $X_{\beta}(x) = (x, \beta)$ for all $x \in G$. Similarly X_{ℓ} will denote the character on \widehat{G} associated to $\ell \in L$, that is $X_{\ell} : \widehat{G} \longrightarrow \mathbb{T}$ with $X_{\ell}(\omega) = (\ell, \omega)$ for all $\omega \in \widehat{G}$.

Theorem 2.1. Let G be a second countable LCA group, L and \mathcal{B} be uniform lattices in G and \widehat{G} repectively, with $\mathcal{B} \subset L^{\perp}$. Let $\Gamma = L \times \mathcal{B}$ and for $f \in L^2(G)$, $\omega \in T_{L^{\perp}}$, and $t \in T_{\mathcal{B}^{\perp}}$ define

(2.8)
$$H_{\Gamma}f(\omega,t) = \{\mathcal{Z}f(\omega,t+b)\}_{b\in\mathcal{B}^{\perp}}.$$

Then

1) The map H_{Γ} intertwines Π with the characters of Γ , that is $H_{\Gamma}\Pi(\ell,\beta)f = X_{-\ell}X_{-\beta}H_{\Gamma}f$ for all $f \in L^2(G), \ell \in L, \beta \in \mathcal{B}$.

2) The map H_{Γ} defined in (2.8) is an isometric isomorphism from $L^2(G)$ onto $L^2(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp})).$

Proof. For each $b \in \mathcal{B}^{\perp}$, the definition of \mathcal{Z} given in (2.7) and the properties of the Fourier transform give

$$\mathcal{Z}\Pi(\ell,\beta)f(\omega,t+b) = \sum_{\lambda \in \Lambda^{\perp}} \widehat{T_{\ell}M_{\beta}f}(\omega+\lambda)\overline{(t+b,\lambda)}$$
$$= \sum_{\lambda \in \Lambda^{\perp}} \overline{(\ell,\omega+\lambda)}\widehat{f}(\omega+\lambda-\beta)\overline{(t+b,\lambda)}$$

Using that $(\ell, \lambda) = 1$ and the change of variables $\lambda - \beta = \lambda' \in L^{\perp}$ yields

$$\mathcal{Z}\Pi(\ell,\beta)f(\omega,t+b) = \overline{(\ell,\omega)} \sum_{\lambda' \in \Lambda^{\perp}} \widehat{f}(\omega+\lambda')\overline{(t+b,\lambda'+\beta)} \,.$$

Using that $(t + b, \beta) = (t, \beta) \cdot (b, \beta) = (t, \beta)$ we obtain

$$\begin{split} \mathcal{Z}\Pi(\ell,\beta)f(\omega,t+b) &= \overline{(\ell,\omega)} \ \overline{(t,\beta)} \sum_{\lambda' \in \Lambda^{\perp}} \widehat{f}(\omega+\lambda')\overline{(t+b,\lambda')} \\ &= X_{-\ell}(\omega)X_{-\beta}(t)\mathcal{Z}f(\omega,t+b) \,. \end{split}$$

This proves 1). To prove 2) observe that by the definition of H_{Γ} given in (2.8) together with (2.6) and (2.7) we have

$$H_{\Gamma}f(\omega, t) = \mathscr{K}(\mathscr{T}f(\omega))(t) \,.$$

That H_{Γ} is an isometry now follows from the fact that \mathscr{T} and \mathscr{K} are isometries in their respective spaces.

We need to prove that H_{Γ} is onto. Since $\mathscr{K}: \ell^2(L^{\perp}) \to L^2(T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp}))$ is an isometric isomorphism between Hilbert spaces, by Lemma 4.1 in the Appendix, the map

$$Q_{\mathscr{K}}: L^2(T_{L^{\perp}}, \ell^2(L^{\perp})) \longrightarrow L^2(T_{L^{\perp}}, L^2(T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp})))$$

given by

$$(Q_{\mathscr{K}}f)(\omega) = \mathscr{K}(f(\omega)), \ f \in L^2(T_{L^{\perp}}, \ell^2(L^{\perp}))$$

is an isometric isomorphism. Moreover, by Fubini's theorem, the Hilbert spaces $L^2(T_{L^{\perp}}, L^2(T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp})))$ and $L^2(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}, L^2(\ell^2(\mathcal{B}^{\perp})))$ are also isomorphic and the isomorphism is given by $\Phi(f)(\omega,t) = f(\omega)(t)$, for $f \in L^2(T_{L^{\perp}}, L^2(T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp})))$. Let now $F \in L^2(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}, L^2(\ell^2(\mathcal{B}^{\perp})))$. Choose $g \in L^2(T_{L^{\perp}}, \ell^2(L^{\perp}))$ such that

 $\Phi \circ Q_{\mathscr{K}}(g) = F$. Hence

$$F(\omega,t) = \Phi \circ Q_{\mathscr{K}}(g)(\omega,t) = Q_{\mathscr{K}}(g)(\omega)(t) = \mathscr{K}(g(\omega))(t).$$

Choose now $f \in L^2(G)$ such that $\mathscr{T}(f) = g$. Then

$$H_{\Gamma}f(\omega, t) = \mathscr{K}(\mathscr{T}f(\omega))(t) = F(\omega, t).$$

This finishes the proof of the theorem.

Example 2.3. For the cyclic group of Example 2.2, recall that, for $f \in \mathbb{C}^d$

$$\widehat{f}(\omega) = \frac{1}{\sqrt{d}} \sum_{g=0}^{d-1} f(g) e^{-2\pi i \frac{g\omega}{d}}, \ \omega \in \{0, \dots, d-1\}.$$

For $t \in T_{\mathcal{B}^{\perp}} = \left\{0, \frac{1}{q}, \dots, \frac{s-1}{q}\right\}$, the Zak transform (2.7) thus reads

$$\begin{aligned} \mathcal{Z}f(\omega,t) &= \sum_{k=0}^{p-1} \widehat{f}(\omega+kq) e^{-2\pi i \frac{kqt}{p}} = \sum_{k=0}^{p-1} \frac{1}{\sqrt{d}} \sum_{g=0}^{d-1} f(g) e^{-2\pi i \frac{g(\omega+kq)}{d}} e^{-2\pi i \frac{kqt}{p}} \\ &= \frac{1}{\sqrt{d}} \sum_{g=0}^{d-1} f(g) e^{-2\pi i \frac{g\omega}{d}} K(g+qt) = \frac{e^{2\pi i \frac{qt\omega}{d}}}{\sqrt{d}} \sum_{g=0}^{d-1} f(g-qt) e^{-2\pi i \frac{g\omega}{d}} K(g) \end{aligned}$$

where
$$K(g) = \sum_{k=0}^{p-1} \left(e^{-2\pi i \frac{q}{p}}\right)^k = \begin{cases} p & \text{if} \quad g \in L\\ 0 & \text{if} \quad g \notin L \end{cases}$$
. This gives
$$\mathcal{Z}f(\omega, t) = \sqrt{p}e^{2\pi i \frac{qt\omega}{d}} \frac{1}{\sqrt{q}} \sum_{n=0}^{q-1} f(pn-qt)e^{-2\pi i \frac{pn\omega}{q}}.$$

Before embarking in the proof of Theorem 1.1, which will be accomplished in Section 3, we need an additional result.

Let $V = S_{\Gamma}(\mathcal{A})$ be a Γ -invariant subspace of $L^2(G)$, where $\mathcal{A} \subset L^2(G)$. For each $(\omega, t) \in T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}$, consider the range function

$$J_V: \mathscr{T}_{L^{\perp}} \times T_{\mathcal{B}^{\perp}} \longrightarrow \{ \text{closed subspaces of } \ell^2(\mathcal{B}^{\perp}) \}$$

given by

(2.9)
$$J_V(\omega,t) := \overline{\operatorname{span}\left\{H_{\Gamma}\varphi(\omega,t) : \varphi \in \mathcal{A}\right\}}^{\ell^2(\mathcal{B}^{\perp})}$$

Proposition 2.1. With $V = S_{\Gamma}(\mathcal{A})$ as above, let $\mathcal{P}_{J_{V}(\omega,t)}$ be the orthogonal projection of $\ell^{2}(\mathcal{B}^{\perp})$ onto $J_{V}(\omega,t)$. Then, for all $f \in L^{2}(G)$ and $(\omega,t) \in T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}$,

$$\mathbf{H}_{\Gamma} \mathbb{P}_{S_{\Gamma}(\mathcal{A})} f(\omega, t) = \mathcal{P}_{J_{V}(\omega, t)}(H_{\Gamma} f(\omega, t)) \,.$$

Proof. Observe first that, since H_{Γ} is an isometric isomorphism between Hilbert spaces, then

(2.10)
$$H_{\Gamma}\mathbb{P}_{S_{\Gamma}(\mathcal{A})} = \mathbb{P}_{H_{\Gamma}(S_{\Gamma}(\mathcal{A}))}H_{\Gamma}.$$

The set $\mathcal{D} := \{X_{\ell}X_{\beta} : (\ell, \beta) \in \Gamma\}$ of characters of Γ is a determining set for $L^1(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}})$ in the sense of Definition 2.2 in [5], because

$$\int_{T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}} f(\omega, t) X_{\ell}(\omega) X_{\beta}(t) d\omega dt = 0 \Rightarrow f = 0 \quad \forall \ f \in L^{1}(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}).$$

Indeed, this is Fourier uniqueness theorem since $T_{L^{\perp}}$ and $T_{\mathcal{B}^{\perp}}$ are relatively compact.

By 1) of Theorem 2.1, for all $f \in L^2(G)$, $H_{\Gamma}(T_{\ell}M_{\beta}f) = X_{-\ell}X_{-\beta}(H_{\Gamma}f)$. Thus, $H_{\Gamma}(S_{\Gamma}(\mathcal{A}))$ is \mathcal{D} -multiplicative invariant in the sense of Definition 2.3 in [5]. Indeed, if $X_{\ell}X_{\beta} \in \mathcal{D}, F \in H_{\Gamma}(S_{\Gamma}(\mathcal{A}))$ writing $H_{\Gamma}f = F$ we have

$$X_{\ell}X_{\beta}F = X_{\ell}X_{\beta}(H_{\Gamma}f) = H_{\Gamma}(T_{-\ell}M_{-\beta}f) \in H_{\Gamma}(S_{\Gamma}(\mathcal{A}))$$

By Theorem 2.4 in [5], J_V is a measurable range function. By Proposition 2.2 in [5],

$$\mathbb{P}_{H_{\Gamma}(S_{\Gamma}(\mathcal{A}))}(H_{\Gamma}f)(w,t) = \mathcal{P}_{J_{V}(\omega,t)}(H_{\Gamma}f(\omega,t)).$$

The result now follows from (2.10).

3. Solution to the approximation problem

This section is dedicated to the proof of Theorem 1.1. Let $\mathcal{F} = \{f_1, \ldots, f_m\} \subset L^2(G)$ be a collection of functional data. With the notation of Theorem 1.1, for each n < m we need to find $\{\psi_1, \ldots, \psi_n\} \subset L^2(G)$ such that $\mathcal{E}(\mathcal{F}; S_{\Gamma}\{\psi_1, \ldots, \psi_n\}) \leq \mathcal{E}(\mathcal{F}; V)$ for any Γ -invariant subspace V of $L^2(G)$ of length less than or equal n. The definition of $\mathcal{E}(\mathcal{F}; V)$ is given in (1.1) and for convenience of the reader we recall it here.

$$\mathcal{E}(\mathcal{F}; V) := \sum_{j=1}^{m} \|f_j - \mathbb{P}_V f_j\|_{L^2(G)}^2 .$$

For a.e. $(\omega, t) \in T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}$ consider

$$H_{\Gamma}(\mathcal{F})(w,t) := \{H_{\Gamma}f_1(\omega,t), \dots, H_{\Gamma}f_m(\omega,t)\}$$

Let $G_{\mathcal{F},\Gamma}(w,t)$ be the $m \times m$ \mathbb{C} -valued matrix whose (i,j) entry is given by

$$[G_{\mathcal{F},\Gamma}(w,t)]_{i,j} = \langle H_{\Gamma}f_i(\omega,t), H_{\Gamma}f_j(\omega,t) \rangle_{\ell^2(\mathcal{B}^{\perp})}.$$

The matrix $G_{\mathcal{F},\Gamma}(w,t)$ is hermitian and its entries are measurable functions defined on $T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}$. Write

$$\lambda_1(\omega, t) \ge \lambda_2(\omega, t) \ge \dots, \ge \lambda_m(\omega, t) \ge 0$$

for the eigenvalues of $G_{\mathcal{F},\Gamma}(w,t)$. By Lemma 2.3.5 in [10] the eigenvalues $\lambda_i(\omega,t)$, $i = 1, \ldots, m$, are measurable and there exist corresponding measurable vectors $y_i(\omega,t) = (y_{i,1}(\omega,t),\ldots,y_{i,m}(\omega,t))$ that are orthonormal left eigenvectors of the matrix $G_{\mathcal{F},\Gamma}(w,t)$. That is,

(3.1)
$$y_i(\omega,t) G_{\mathcal{F},\Gamma}(w,t) = \lambda_i(\omega,t) y_i(\omega,t), \quad i = 1, \dots, m$$

For $n \leq m$, define $q_1(\omega, t), \ldots, q_n(\omega, t) \in \ell^2(\mathcal{B}^{\perp})$ by

(3.2)
$$q_i(\omega, t) = \widetilde{\sigma}_i(\omega, t) \sum_{j=1}^m y_{i,j}(\omega, t) H_{\Gamma} f_j(\omega, t) \quad i = 1, \dots, n,$$

where

$$\widetilde{\sigma}_i(\omega, t) = \begin{cases} \frac{1}{\sqrt{\lambda_i(\omega, t)}} & \text{if } \lambda_i(\omega, t) \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

By the Eckart-Young Theorem (see the version stated and proved in Theorem 4.1 of [1]), $\{q_1(\omega, t), \ldots, q_n(\omega, t)\}$ is a Parseval frame for the space it generates $Q(\omega, t) := \text{span} \{q_1(\omega, t), \ldots, q_n(\omega, t)\}$ and $Q(\omega, t)$ is optimal in the sense that

$$E(H_{\Gamma}(\mathcal{F})(w,t);Q(\omega,t)) := \sum_{i=1}^{m} \|H_{\Gamma}f_{i}(\omega,t) - \mathcal{P}_{Q(\omega,t)}H_{\Gamma}(f_{i})(w,t)\|_{\ell^{2}(\mathcal{B}^{\perp})}^{2}$$

(3.3)
$$\leq \sum_{i=1}^{m} \|H_{\Gamma}f_{i}(\omega,t) - \mathcal{P}_{Q'}H_{\Gamma}(\mathcal{F})(w,t)\|_{\ell^{2}(\mathcal{B}^{\perp})}^{2} := E(H_{\Gamma}(f_{i})(w,t);Q')$$

for any Q' subspace of $\ell^2(\mathcal{B}^{\perp})$ of dimension less than or equal to n. Moreover,

(3.4)
$$E(H_{\Gamma}(\mathcal{F})(w,t);Q(\omega,t)) = \sum_{i=n+1}^{m} \lambda_i(\omega,t)$$

Before continuing with the proof, let us relate the pointwise errors that appear in (3.3) to the error defined in (1.1) for Γ -invariant subspaces.

Proposition 3.1. For $V = S_{\Gamma}(\mathcal{A})$ as in Proposition 2.1,

$$\mathcal{E}(\mathcal{F};V) = \int_{T_{L^{\perp}}} \int_{T_{\mathcal{B}^{\perp}}} E(H_{\Gamma}(\mathcal{F})(w,t); J_{V}(\omega,t)) \, dt d\omega \,,$$

where $J_V(\omega, t)$ is defined in (2.9).

Proof. By 2) of Theorem 2.1, H_{Γ} is an isometry from $L^2(G)$ onto the space $L^2(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp}))$. Therefore,

$$\begin{aligned} \mathcal{E}(\mathcal{F};V) &= \sum_{j=1}^{m} \|f_j - \mathbb{P}_V f_j\|_{L^2(G)}^2 \\ &= \sum_{j=1}^{m} \|H_{\Gamma} f_j - H_{\Gamma} \mathbb{P}_V f_j\|_{L^2(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp}))}^2 \\ &= \sum_{j=1}^{m} \int_{T_{L^{\perp}}} \int_{\mathcal{B}_{L^{\perp}}} \|H_{\Gamma} f_j(\omega, t) - H_{\Gamma} \mathbb{P}_V f_j(\omega, t)\|_{\ell^2(\mathcal{B}^{\perp})}^2 dt d\omega \end{aligned}$$

By Proposition 2.1,

$$\begin{aligned} \mathcal{E}(\mathcal{F};V) &= \int_{T_{L^{\perp}}} \int_{\mathcal{B}_{L^{\perp}}} \sum_{j=1}^{m} \|H_{\Gamma}f_{j}(\omega,t) - \mathcal{P}_{J_{V}(\omega,t)}(H_{\Gamma}f_{j}(\omega,t))\|_{\ell^{2}(\mathcal{B}^{\perp})}^{2} dt d\omega \\ &= \int_{T_{L^{\perp}}} \int_{\mathcal{B}_{L^{\perp}}} E(H_{\Gamma}(\mathcal{F})(w,t); J_{V}(\omega,t)) dt d\omega \,. \end{aligned}$$

Let us now continue with the proof of Theorem 1.1. By definition (3.2), each $q_i(\omega, t)$ is measurable and defined on $T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}$ with values in $\ell^2(\mathcal{B}^{\perp})$. Moreover,

$$\begin{split} \|q_{i}(\omega,t)\|_{\ell^{2}(\mathcal{B}^{\perp})}^{2} &= \langle q_{i}(\omega,t), q_{i}(\omega,t) \rangle_{\ell^{2}(\mathcal{B}^{\perp})} \\ &= \widetilde{\sigma}_{i}(\omega,t)^{2} \sum_{b \in \mathcal{B}^{\perp}} \sum_{j=1}^{m} \sum_{s=1}^{m} y_{i,j}(\omega,t) \,\mathcal{Z}f_{j}(\omega,t+b) \,\mathcal{Z}f_{s}(\omega,t+b) \,\overline{y_{i,s}(\omega,t)} \\ &= \widetilde{\sigma}_{i}(\omega,t)^{2} \sum_{j=1}^{m} y_{i,j}(\omega,t) \sum_{s=1}^{m} \langle Zf_{j}(\omega,t), Zf_{s}(\omega,t) \rangle_{\ell^{2}(\mathcal{B}^{\perp})} \overline{y_{i,s}(\omega,t)} \,. \end{split}$$

In matrix form,

$$\|q_i(\omega,t)\|_{\ell^2(\mathcal{B}^{\perp})}^2 = \widetilde{\sigma}_i(\omega,t)^2 y_i(\omega,t) \, G_{\mathcal{F},\Gamma}(w,t) \, \overline{y_i(\omega,t)}^t$$

By (3.1), the orthonormality of the vectors $y_i(\omega, t)$, and the definition of $\tilde{\sigma}_i(\omega, t)$, we have

$$\|q_i(\omega,t)\|_{\ell^2(\mathcal{B}^\perp)}^2 = \widetilde{\sigma}_i(\omega,t)^2 \lambda_i(\omega,t) \|y_i(\omega,t)\|^2 \le 1.$$

Since $T_{L^{\perp}}$ and $T_{\mathcal{B}^{\perp}}$ have finite measure, we conclude that for $i = 1, \ldots, n, q_i \in L^2(T_{L^{\perp}} \times T_{\mathcal{B}^{\perp}}, \ell^2(\mathcal{B}^{\perp}))$. The mapping H_{Γ} is onto by part 2) of Theorem 2.1. Therefore there exist $\psi_i \in L^2(G)$ such that

$$H_{\Gamma}(\psi_i) = q_i, \quad i = 1, \dots, n_i$$

It remains to show that the space $W := S_{\Gamma}(\psi_1, \ldots, \psi_n)$ is the optimal one as required in the statement of Theorem 1.1.

By Proposition 3.1

$$\mathcal{E}(\mathcal{F};W) = \int_{T_{L^{\perp}}} \int_{T_{\mathcal{B}^{\perp}}} E(H_{\Gamma}(\mathcal{F})(w,t); J_{W}(\omega,t)) \, dt d\omega \, .$$

By (3.3) and the definitions of ψ_i , $J_W(\omega, t) = Q(\omega, t)$. Therefore, we can write,

(3.5)
$$\mathcal{E}(\mathcal{F};W) = \int_{T_{L^{\perp}}} \int_{T_{\mathcal{B}^{\perp}}} E(H_{\Gamma}(\mathcal{F})(w,t);Q(\omega,t)) dt d\omega$$

Let now $V = S_{\Gamma}(\varphi_1, \ldots, \varphi_r), r \leq n$, be any Γ -invariant subspace of length less than or equal n. Since $J_V(\omega, t)$ has dimension less than or equal n, (3.3) gives

$$\mathcal{E}(\mathcal{F};W) \leq \int_{T_{L^{\perp}}} \int_{T_{\mathcal{B}^{\perp}}} E(H_{\Gamma}(\mathcal{F})(w,t); J_{V}(\omega,t)) \, dt d\omega = \mathcal{E}(\mathcal{F};V) \,,$$

where the last equality is due to Proposition 3.1. Moreover, by (3.5) and (3.4)

$$\mathcal{E}(\mathcal{F};W) = \sum_{i=n+1}^{m} \int_{T_{L^{\perp}}} \int_{T_{\mathcal{B}^{\perp}}} \lambda_i(\omega,t) d\omega dt.$$

This finishes the proof of Theorem 1.1.

4. Appendix

We give the proof of the following Lemma that has been used in Section 2 to prove part 2) of Theorem 2.1.

Lemma 4.1. Let $\sigma : \mathbb{H}_1 \longrightarrow \mathbb{H}_2$ be an isometric isomorphism between the Hilbert spaces \mathbb{H}_1 and \mathbb{H}_2 . For a measure spaces $(X, d\mu)$ the map $Q_{\sigma} : L^2(X, \mathbb{H}_1) \longrightarrow$ $L^2(X, \mathbb{H}_2)$ given by $(Q_{\sigma}f)(x) = \sigma(f(x))$ is also an isometric isomorphism.

Proof. Let f be a measurable vector function in $L^2(X, \mathbb{H}_1)$, that is, for every $y \in \mathbb{H}_1$ the scalar function $x \longrightarrow \langle f(x), y \rangle_{\mathbb{H}_1}$ is measurable. We must prove that Qf is also a measurable vector function in $L^2(X, \mathbb{H}_2)$. For $z \in \mathbb{H}_2$ we have

$$< Qf(x), z >_{\mathbb{H}_2} = < \sigma(f(x)), z >_{\mathbb{H}_2} = < f(x), \sigma^*(z) >_{\mathbb{H}_1}$$
.

Since $\sigma^*(z) = \sigma^{-1}(z)$ is a general element of \mathbb{H}_1 , this shows that Qf is measurable. Moreover, for $f, g \in L^2(X, \mathbb{H}_1)$,

$$< Qf, Qg >_{L^{2}(X,\mathbb{H}_{2})} = \int_{X} < \sigma(f(x)), \sigma(g(x)) >_{\mathbb{H}_{2}} d\mu(x)$$

=
$$\int_{X} < f(x), (g(x) >_{\mathbb{H}_{1}} d\mu(x) = < f, g >_{L^{2}(X,\mathbb{H}_{1})} .$$

This shows that if $f \in L^2(X, \mathbb{H}_1), Q_{\sigma}f \in L^2(X, \mathbb{H}_2)$ and that Q_{σ} is and isometry.

Finally, it is easy to see that $R: L^2(X, \mathbb{H}_2) \to L^2(X, \mathbb{H}_1)$ defined by $Rg(x) = \sigma^{-1}(g(x))$ is the inverse and the adjoint of Q. Therefore, Q_{σ} is onto. \Box

5. Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777822.

In addition, D. Barbieri and E. Hernández were supported by Grant MTM2016-76566-P (Ministerio de Ciencia, Innovación y Universidades, Spain). C. Cabrelli and U. Molter were supported by Grants UBACyT 20020170100430BA (University of Buenos Aires), PIP11220150100355 (CONICET) and PICT 2014-1480 (Ministerio de Ciencia, Tecnología e Innovación, Argentina).

References

- A. Aldroubi, C. Cabrelli, D. Hardin, and U. Molter, Optimal shift invariant spaces and their Parseval frame generators. *Appl. Comput. Harmon. Anal.* 23 (2007), pp. 273-283.
- [2] D. Barbieri, E. Hernández, V. Paternostro, Spaces invariant under unitary representations of discrete groups. *Preprint*, https://arxiv.org/abs/1811.02993
- [3] D. Barbieri, C. Cabrelli, E. Hernández, U. Molter, Approximation by group invariant subspaces. Preprint, https://arxiv.org/abs/1907.08300
- [4] C. de Boor, R. A. DeVore, and A. Ron, Approximation from shift-invariant subspaces of L²(R^d). Trans. Amer. Math. Soc. 341 (1994), pp. 787-806.
- [5] M. Bownik, K. Ross, The structure of translation-invariant spaces on locally compact abelian groups. J. Fourier Anal. Appl. 21 (2015), pp. 849-884.
- [6] C. Cabrelli, C. Mosquera, V. Paternostro, An approximation problem in multiplicatively invariant spaces. In "Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth", M. Cwikel and M. Milman (eds.). Contemp. Math. 693 (2017), pp. 143-166.
- [7] C. Cabrelli, V. Paternostro, Shift-invariant spaces on LCA groups. J. Funct. Anal. 258 (2010), pp. 2034-2059.
- [8] A. Deitmar, A first course in harmonic analysis. Springer, 2nd ed. 2005.
- [9] K.-H. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, (2001).
- [10] A. Ron, Z. Shen, Frames and stable bases for shift-invariant subspaces of $L^2(\mathbb{R}^d)$, Canad. J. Math., 47, (1995), no. 5, 1051-1094.
- [11] W. Rudin, Fourier Analysis on Groups, John Wiley, (1992).

Davide Barbieri and Eugenio Hernández at Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, España

E-mail address: davide.barbieri@uam.es, eugenio.hernandez@uam.es

CARLOS CABRELLI AND URSULA MOLTER AT DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDAD DE BUENOS AIRES, AND INSTITUTO DE MATEMÁTICA "LUIS SANTALÓ" (IMAS-CONICET-UBA), 1428 BUENOS AIRES, ARGENTINA

E-mail address: carlos.cabrelli@gmail.com, umolter@gmail.com