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DATA APPROXIMATION WITH TIME-FREQUENCY
INVARIANT SYSTEMS

DAVIDE BARBIERI, C. CABRELLI, E. HERNANDEZ, AND U. MOLTER

ABSTRACT. In this paper we prove the existence of a time-frequency space
that best approximates a given finite set of data. Here best approximation is
in the least square sense, among all time-frequency spaces with no more than
a prescribed number of generators. We provide a formula to construct the gen-
erators from the data and give the exact error of approximation. The setting
is in the space of square integrable functions defined on a second countable
LCA group and we use the Zak transform as the main tool.

1. INTRODUCTION AND MAIN RESULT

Time-frequency systems, also called Gabor or Weyl-Heisenberg systems in the
literature, are used extensively in the theory of communication, to analyze contin-
uous signals, and to process digital data such as sampled audio or images.

Time-frequency spaces try to represent features of both a function and its fre-
quencies by decomposing the signal into time-frequency atoms given by modulations
and translations of a finite number of functions [9]. If one looks at a musical score,
on the horizontal axis the composer represents the time, and on the vertical axis the
“frequency” given by the amplitude of the signal at that instant. Finding sparse
representations (i.e. spaces generated by a small set of functions) will be useful for
example in classification tasks.

In numerical applications to time-dependent phenomena, one often encounters
uniformly sampled signals of finite length, i.e. vectors of d elements, such as audio
signals with a constant sampling frequency. In this case the most direct approach
is to consider Fourier analysis on the cyclic group Zg.

To include a large variety of situations, our setting will be that of a locally
compact abelian (LCA) group. The general construction developed in this paper
will be specialised to the cyclic group Z4 in Example

In this paper G = (G,+) will be a second countable LCA group, that is, an
abelian group endowed with a locally compact and second countable Hausdorff
topology for which (x,y) — x — y is continuous from G x G into G. We denote
by G the dual group of GG, formed by the characters of G: an element a € Gis a
continuous homomorphism from G into T = {z € C: |z| = 1}. The action of & on
z € G will be denoted by (z,) := a(z), to reflect the fact that the dual of G is
isomorphic to GG, and therefore  can also act on a. For ag,as € G the group law
is denoted by a1 - ag, so that (z, a7 - a2) = (z, a1)(x, ag).

A uniform lattice, L C G, is a subgroup of G whose relative topology is the
discrete one and for which G/ L is compact in the quotient topology. The annihilator
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of Lis L* ={aeG:({,a)=1 VIl e L}. Since L+ ~ (G//\L) ([LI], Theorem 2.1.2)
and G/L is compact, L is discrete ([I1], Theorem 1.2.5). In particular, since G
is second countable, G is also second countable, so both discrete groups L and L+
are countable.

Lel L be a uniform lattice in the LCA group G and B C L* be a uniform lattice
in the dual group G. For f € L%(G), { € L, and B € Blet Tyf(z) = f(z— ),z € G,
be the translation operator, and Msf(z) = (z,5)f(z),z € G, be the modulation
operator. The collection

{TeMgf:LeL,pe B},

is the time-frequency system generated by f € L?(G).

Since B C L*, we have T,Mgf = MgT,f for all f € L*(G), ¢ € L, and B € B.
Thus II(¢, 8) := T; Mg is a unitary representation of the abelian group I' := L x B,
with operation (fl, 61) . (62, 62) = (fl + Lo, By -ﬁg), in L2(G)

A closed subspace V of L?(G) is said to be I'-invariant (or time-frequency invari-
ant) if for every f € V, II(¢, 8) f € V for every (¢, 3) € I. All T-invariant subspaces
V of L?(G) are of the form

2
V = 8p(A) :=span{T; Mgy : p € A, ({,5) € I‘}L @
for some countable collection A of elements of L?(G). If A is a finite collection we
say that V = Sp(A) has finite length, and A is a set of generators of V. We call
the length of V', denoted length(V), the minimum positive integer n such that V'
has a set of generators with n elements.
We now state our approximation problem. Let F = {f1, fa, ..., fm} C L*(G) be
a set of functional data. Given a closed subspace V of L?(G) define

m
(L.1) EFV) =I5 —Pvfillize
j=1
as the error of approximation of F by V', where Py, denotes the orthogonal projec-
tion of L?(G) onto V.
Is it possible to find a T'-invariant space of length at most n < m that best
approximates our functions, in the sense that

5(]:, SF{’Q/Jl, ,’Q/Jn}) S 5(]:, V)

for all T-invariant subspaces V of L?(G) with length(V) < n?

This question is relevant in applications. For example, if {f1,..., f;n} are au-
dio signals, the best I'-invariant space provides a time-frequency optimal model to
represent these signals.

The answer to this question is affirmative, and is given by the main theorem of
this work.

Theorem 1.1. Let G be a second countable LCA group, L and B be uniform
lattices in G and G respectively, with B C L. For each set of functional data F =
{f1, fay s fm} € L*(G) and each n € N, n < m, there exists {11, ...,1n} C L*(G)
such that

for all T-invariant subspaces V of L*(G) with length(V ) < n.
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Remark 1.1. Observe that, in the previous statement, some of the generators
{1, ..., ¥n} may be zero. In this case, the length of Sr{v1, ..., ¥n} would be strictly
smaller than n.

The proof of Theorem [[T] will follow the ideas originally developed in [I] for
approximating data in L?(R?) by shift-invariant subspaces of finite length, and
which have also been used in [6] [3].

We reduce the problem of finding the collection {11, ..., %, }, whose existence is
asserted in Theorem [[T] to solve infinitely many approximation problems for data
in a particular Hilbert space of sequences. This is accomplished with the help of
an isometric isomorphism Hrp that intertwines the unitary representation II with
the characters of I'. This isometry Hr generalizes the fiberization map of [4] used
in [1], and has the properties of a Helson map as defined in [2](Definition 7). The
definition and properties of Hr are given in Section

The reduced problems are then solved by using Eckart-Young theorem as stated
and proved in [I] (Theorem 4.1). The solutions of all of these reduced problems are
patched together to finally obtain the proof of Theorem [[T]in Section

2. AN ISOMETRIC ISOMORPHISM

Let G be a second countable LCA group, L a uniform lattice in G, and B C L' a
uniform lattice in G (see definitions in Section[Il). With T' = L x B, each T'-invariant
subspace V' of L?(G) is of the form

L*(@)

V = Sr(A) :=span{T Mgy : o € A, ({,5) € T'}
for some countable set A C L?(G). Therefore
V=S.({Mgp:pc A pBecB})

is also an L-invariant subspace, that is Ty f € V for all £ € L whenever f € V. The
theory of shift-invariant spaces on LCA groups, as developed in [7], can be applied
to this situation. R

Let T, . C G be a measurable cross-section of G/L*. The set T, . is in one to
one correspondence with the clements of G/L*, and {Ty. +A: A € L*} is a tiling
of G. R

Let f(w) := [, f(2)(x, w)dx denote the unitary Fourier transform of f € L?(G)N
L'(G) and extended to L?(G) by density. By Proposition 3.3 in [7] the mapping
T : L3(G) — L*(Ty.,(?(L})) given by

(21) yf(w) = {f(w + )‘)}AGLJ—u f € L2(G)7

is an isometric isomorphism. Moreover, since V' C L*(G) is an L-invariant space,
it has an associated measurable range function

J :Tyr — {closed subspaces of (*(L1)}
such that (See Theorem 3.10 in [7])

(2.2) J(w) =span{T (Map)(w) : B € B, p € A}E ) ,aeweTr.

Using the definition of .7 given in (1), for each 8 € B and each ¢ € L?(G) we
have

(23) T (Mpp)(w) = {Mpp (@ + N}hrerr = {B@+A— B hrers = ta(Tow))
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where tg : (2(Lt) — (2(L%) is the translation of sequences in ¢2(L+) by elements
of f € B, that is tg({a(N)}acrr) = {a(A — B)}aerr - Therefore, .7 intertwines the
modulations { Mg} sep with the translations by B on ¢2(L1).

By equations (22) and 23), for a. e. w e Ty,

J(w) = span {tg(Tp(w)): B € B, p € A}

Therefore, J(w) is a B-invariant subspace of L2(L*). We can apply the theory
of shift-invariant spaces as developed in [7] to the discrete LCA group L* and its
uniform lattice B. -

Let B+ be the annihilator of B in the compact group L+ C G, that is

(2.4) BY={beLL: (b B)=1V5c B}

Observe that BJ- is finite, because it is a discrete subgroup of a compact group.

Q(LJ.)

Let Tg1 C L™ be a measurable cross-section of LL/B'L The set Tz is in one
to one correspondence with the elements of LL/Z':v’l and {Tgi +b:be Bt} isa
tiling of LL.

Examp1e21 . LetG:R,L:ZandB:nZCLL:ZCHA%.Since

L =7~ [0,1), ¢ € B+ if and only if £ € [0,1) and €2™"* = 1 for all k € Z.

Hence
n—1
ey }.

1
1 _ L
B —{O,n. -

1 ~
We can take T = [0, —). Notice that as a subgroup of R the annihilator of B is
n

1
—7Z.
n

Example 2.2. Let p,¢ € N, d = pq, and G = Zg = {0,1,...,d — 1}. Let
L={0,p,2p,...p(¢—=1)} ={np:n=0,...,q— 1} = Z,. Its annihilator lattice is

:{Ae{o,1,...,d—1}:e2”i%”:1vn:o,...,q—1}
={0,¢,2q,...qp—1)} ={kq: k=0,...,p—1} = Z,,.

A fundamental set Ty . for L in G ~ Zg is Ty = {0,...,q — 1} ~ Z,. The
characters w € L+ = {homomorphisms : L+ — T} of this group are of the form (see
e.g. [§] Lemma 5.1.3) w,(\) = MY NeLt forve {g 0=0,...,p—1} = Z
Suppose now that p = rs for some r,s € N, and let B C L+ be
B=1{0,rq,2rq,...,(s—L)rq} ={jrq:j=0,....,s — 1} = Z

The annihilator of B in LL thus reads

f ibjrg
BL:{bE{—:sz,...,p—l}:e2mbr’ =1Vj=0, .,s—l}
q
2 -1
:{0727;87"'78(rq )}:{hfh: ) 776_1};:7Z7‘

A fundamental set in L1 = {£:0=0,...,p—1} for B- is
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By Proposition 3.3 in [7], the mapping % : (2(Lt) — L*(Tg.,¢*(B1)) given by
A {aMher)t) = {{aN}rers)” (E+b)}vens

(2.5) = ) aN(E+bN) :

1
AL beBL

is an isometric isomorphism. Moreover, each B-invariant subspace J(w), w € T 1,
has an associated measurable range function

J(w,-) : Tgr — {closed subspaces of ¢£*(B*)},

442 BJ.
such that for almost every t € T, J(w,t) = span {# (T p)(w))(t) : ¢ € A} =
From the definition of .7 given in (Z1]) and the definition of # given in (2.3]) we
obtain

(2.6) H(T)@)() =< Y Flw+ N+ :
AEL* beBL

when f € L?(G), w € Tpr, and t € Ty
For f € L*(G), w € G, and t € G define

(2.7) Zf(w,t) =Y flw+ NN,

AELL

the Zak transform of fwith respect to the lattice L. Observe that in terms of this
map, H# (70)(w))(t) = {Zf(w,t +b) byes-

To simplify the statement of the next theorem we write X for the character
on G associated to f € B, that is Xg : G — T with Xg(z) = (z,0) for all
x € G. Similarly X, will denote the character on G associated to ¢ € L, that is
X;: G — T with Xy(w) = ({,w) for all w € G.

Theorem 2.1. Let G be a second countable LCA group, L and B be uniform lattices
in G and G repectively, with B C L*. Let T = L x B and for f € L*(G), w € Ty 1,
and t € Tgy define

(2.8) Hrf(w,t) ={Zf(w,t + b) }rep-

Then

1) The map Hy intertwines I1 with the characters of T, that is HrII(¢,8)f =
X_¢X_gHrf forall f € L*(G),0 € L, € B.

2) The map Hr defined in [Z8) is an isometric isomorphism from L*(G) onto
L2(TLJ. X TBL,€2(BJ—)).

Proof. For each b € B+, the definition of Z given in ) and the properties of the
Fourier transform give

ZI(B) f(w,t+0) = > TeMaf(w+ A+ b,
AEAL

= > Cwt+Nfw+r-B)E+bA).
AeAL
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Using that (¢,\) = 1 and the change of variables A — f = X' € L' yields

ZI(B) f(w,t+b) = Cw) > Flw+N)E+b,N+5).
NeAL

Using that (¢t + b, 5) = (¢, 8) - (b, 8) = (¢, 5) we obtain
ZI((, B) f(w,t+b) = Cw) 5) > Flw+X)E+b,N)

NeAL
= X_ (W X_s(1)Zf(w,t+b).

This proves 1). To prove 2) observe that by the definition of Hr given in (28]
together with (Z8) and (1) we have

Hrf(w,t) = H (T f(w)(?) .

That Hr is an isometry now follows from the fact that .7 and % are isometries
in their respective spaces.

We need to prove that Hr is onto. Since # : ¢2(L*) — L?(Tg.,(*(B1)) is an
isometric isomorphism between Hilbert spaces, by Lemma [£1]in the Appendix, the
map

Qu : LA(Tpo, A(LY)) — L3 (Ty o, L*(Tge, (*(B1))
given by
Qux f)(w) = H (f(W), fe LTy, (L))

is an isometric isomorphism. Moreover, by Fubini’s theorem, the Hilbert spaces
L3(Ty,., L*(Tg.,02(BY)) and L*(Tp. x Tg., L*(?(B1)) are also isomorphic and
the isomorphism is given by ®(f)(w,t) = f(w)(t), for f € L*(Ty1, L?(Tgy,0?(B1)).

Let now F € L?(Ty. x Ty, L?(¢*(B+)). Choose g € L?(Ty.,¢*(L*)) such that
®oQx(g) = F. Hence

F(w,t) = @0 Qu(g)(w,t) = Qu(g9)(w)(t) = A (9(w))().
Choose now f € L?(G) such that 7 (f) = g. Then
Hr f(w,t) = 2(T f(w))(t) = F(w, ).
This finishes the proof of the theorem. (I

Example 2.3. For the cyclic group of Example 2] recall that, for f € C¢

d—1
~ 1 gw
flw)=— flg)e @, wel0o,...,d—1}.
d =0
For t € Ty = {0, %, , S;1 , the Zak transform (Z77) thus reads
= iy —omrikat = 1 = omidlwthka) _gnjkat
Zf(w,t) =) flw+kg)e = —de(g) L »
k=0 k=0 g=0
1 d—1 QTFZWTW d—1
—2mid¥ —2mid¥
= — e d K + t = — t e d K
;i f(9) (9 +qt) Nz flg—qt) (9)
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p—1 .
_ eL ..
where K (g ( 27”9) = { p Zf g . This gives
kzzo 0 if g¢L &

Zf(w,t) 271-1 Zf n—qt 2mp

Before embarking in the proof of Theorem [[LT] which will be accomplished in
Section [Bl we need an additional result.

Let V = Sp(A) be a T-invariant subspace of L?(G), where A C L?(G). For each
(w,t) € Tyr x Ty, consider the range function

Jy : Ty x Tgr — {closed subspaces of £*(B+)}
given by

02(BY)
(2.9) Jy(w, t) :=span {Hrp(w,t) : ¢ € A} .
Proposition 2.1. With V = Sr(A) as above, let Py, (. +) be the orthogonal pro-
jection of £2(B*) onto Jy(w,t). Then, for all f € L*(G) and (w,t) € Tyo x Tgo,

HrPspa)f(w,t) = Py (w,o)(Hr f(w, 1)) .

Proof. Observe first that, since Hr is an isometric isomorphism between Hilbert
spaces, then

(2.10) HrPs;(a) = P s Hr-

The set D := {X; X3 : ({,8) € T'} of characters of I' is a determining set for
LY(Ty. x Tg1) in the sense of Definition 2.2 in [5], because

/ flw, )X (W) Xp(t)dwdt =0=f =0 YV fe L' (T x Tgo).
TLJ_ xXT,
Indeed, this is Fourier uniqueness theorem since 771 and Tz. are relatively com-
pact.

By 1) of Theorem 2] for all f € L*(G), Hr(TtMpf) = X_¢X_g(Hrf). Thus,
Hrp(Sr(A)) is D-multiplicative invariant in the sense of Definition 2.3 in [5]. Indeed,
if XyXp €D, F € Hr(Sr(A)) writing Hr f = F we have

XgXﬁF = XgXﬁ(HFf) = HF(T,nggf) S HF(SF(A))

By Theorem 2.4 in [B], Jy is a measurable range function. By Proposition 2.2 in

5],
Prir(seay) (Hr f)(w, 1) = Py (w0 (Hr f(w, 1)) .-
The result now follows from (Z10). O

3. SOLUTION TO THE APPROXIMATION PROBLEM

This section is dedicated to the proof of Theorem [Tl Let F = {f1,..., fm} C
L?(G) be a collection of functional data. With the notation of Theorem [T} for each
n < m we need to find {¢1,...,9,} C L?(G) such that E(F; Sr{tr,...,¥,}) <
E(F;V) for any I'-invariant subspace V of L?(G) of length less than or equal n.
The definition of E(F;V) is given in () and for convenience of the reader we
recall it here.

EFV) =Y It = Pvhillize

Jj=1
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For a.e. (w,t) € Ty x Tge consider
Hp(F)(w,t) := {Hr fi(w, 1), .., Hr fm(w, 1) }
Let Gz r(w,t) be the m x m C-valued matrix whose (i, ) entry is given by
(Grr(w,t)li,; = (Hrfi(w,t), Hr f;(w, 1)) e 51) -

The matrix Gr r(w,t) is hermitian and its entries are measurable functions defined
on 11 x Tri. Write

/\1(w,t) Z /\g(w,t) Z ,Z /\m(w,t) Z 0

for the eigenvalues of G r(w,t). By Lemma 2.3.5 in [I0] the eigenvalues \;(w, t),
i = 1,...,m, are measurable and there exist corresponding measurable vectors
yilw,t) = (yi1(w,t),...,yim(w,t)) that are orthonormal left eigenvectors of the
matrix Gz p(w,t). That is,

(3.1) Yi(w, t) Grr(w,t) = Ni(w, 1) yi(w,t), i=1,...,m.
For n < m, define ¢1(w,1),...,qu.(w,t) € (2(B+) by
(32) qi(wvt) = 51‘(%15)2%,3‘(%0 HFfj(wvt) 1= 15"'7”3
j=1

where

1 . .
5i(w,t) = Ai(w,t) if )\Z(W,t) 75 0
0 otherwise.

By the Eckart-Young Theorem (see the version stated and proved in Theorem
4.1 of M), {q1(w,t),...,qn(w,t)} is a Parseval frame for the space it generates
Q(w,t) :=span{qi(w,t),...,qn(w,t)} and Q(w,t) is optimal in the sense that

E(HF(]:)(wv t); Q(wvt)) = Z ”Hf‘fi(wv t) - PQ(w,t)HF(fi)(w7t)”?z(lgj_)
=1

(33) <) | Hrfilw,t) = PoHr(F)(w, t)l[f2se) = E(Hr (i) (w,£); Q')

i=1
for any @’ subspace of £2(B+) of dimension less than or equal to n. Moreover,
(34) E(Hp(F)(w, 1); Q(w, 1)) = > Ai(w,1).

i=n+1

Before continuing with the proof, let us relate the pointwise errors that appear
in (33) to the error defined in (L)) for I-invariant subspaces.

Proposition 3.1. For V = Sp(A) as in Proposition 2],
eFv) = [ [ B w0 e,
TLL TBL

where Jy (w,t) is defined in (2.9).
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Proof. By 2) of Theorem] Hr is an isometry from L?(G) onto the space L?(T,1 x
Ty, ?(B1)). Therefore,

EFV)= It —Pviiliae

j=1

=> | Hrf; - HrPy fillieer, |y, 250y

j=1
= Z/ / |Hr fj(w,t) = HrPy fi(w, 1) 51 dtdw.
=1 Tpo BLL
By Proposition 2.T],

E(F;V) / / ZHHng w,t) =Py () (Hr fj(w, 75))”@?(13‘L dtdw

:/ / E(Hr (F)(w, t); Jy (w, 1)) dtde 0
B, .

O

Let us now continue with the proof of Theorem [[Il By definition ([B.2)), each
¢i(w,t) is measurable and defined on T x Tg: with values in ¢2(B+). Moreover,

lgi(w, O)l|Z25r) = (gi(w, 1), 4i(w, 8)) 251

= i(w,t)? Z Z Zyi7j(w, ) Zfj(w, t+0b) Zfs(w,t +b)yis(w,t)
beBL j=1 s=1

— Gi(w,t)QZyi,j(w t) Z Zfj(w,t), Zfs(w,t))e23ryYi,s(w, 1) .
s=1

In matrix form,

~ —
llgi (@, O)ll72 51y = Fi(w, )*yi(w, 1) Gz r(w, 1) yi(w, t) .

By (1), the orthonormality of the vectors y;(w,t), and the definition of 7;(w,t),
we have

s (@, D)7y = Tiw, 8)*Ni(w, 1) lys(w, DI < 1.
Since Tr 1 and Tg: have finite measure, we conclude that for i = 1,...,n, ¢; €
L?(Ty. x Ty, 0?(BY)). The mapping Hr is onto by part 2) of Theorem Bl
Therefore there exist ¢; € L?(G) such that
HF(‘/%):QH Zzlvan
It remains to show that the space W := Sp(i1,...,1,) is the optimal one as

required in the statement of Theorem [[.1]
By Proposition BTl

E(F;W) = / / E(Hr(F)(w, 1); Jw (@, 1)) dtd.
By B3) and the definitions of ¥, Jw (w,t) = Q(w,t). Therefore, we can write,

(3.5) E(FW) / / F)(w,); Q(w, 1)) dtdw .
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Let now V = Sr(¢1,...,¢r), 7 < n, be any I'-invariant subspace of length less
than or equal n. Since Jy (w,t) has dimension less than or equal n, B3] gives

E(FW) < /T /T E(Hp(F)(w,1): Jy (w,1)) didew = E(F; V),

where the last equality is due to Proposition Bl Moreover, by (3.5]) and (3.4

E(FW) = i /TLL /TBL Ai(w, t)dwdt.

i=n+1

This finishes the proof of Theorem [I.1] O

4. APPENDIX

We give the proof of the following Lemma that has been used in Section [ to
prove part 2) of Theorem 211

Lemma 4.1. Let o : Hy — Hy be an isometric isomorphism between the Hilbert
spaces Hy and Hy. For a measure spaces (X,du) the map Q, : L*(X,H;) —
L?(X,Hy) given by (Q,f)(z) = o(f(z)) is also an isometric isomorphism.

Proof. Let f be a measurable vector function in L?(X,Hy), that is, for every y € H;
the scalar function x — (f(z),y)m, is measurable. We must prove that Qf is also
a measurable vector function in L?(X,Hy). For z € Hy we have

< Qf(a:),z SH,=< O'(f(ft)),z SH, =< f(:E),O’* (Z) >H, -

Since 0*(2) = 0 1(2) is a general element of Hj, this shows that @ f is measurable.
Moreover, for f,g € L?(X,H,),

< QFfQ9 > 12~ /X < o(f(@)),0(g(@)) >u, du(z)
:‘/X < f((E), (g(i[]) >H1 du(.’l]) =< fvg >L2(X,H1) .

This shows that if f € L*(X,H1), Q. f € L*(X,Hz) and that Q, is and isometry.
Finally, it is easy to see that R : L*(X,Hy) — L?(X,H;) defined by Rg(x) =
o~ 1(g(z) is the inverse and the adjoint of Q. Therefore, @, is onto. O
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