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Abstract We show that polynomial time randomness of a real number does not de-
pend on the choice of a base for representing it. Our main tool is an ‘almost Lipschitz’
condition that we show for the cumulative distribution function associated to martin-
gales with the savings property. Based on a result of Schnorr, we prove that for any
base r , n · log2 n-randomness in base r implies normality in base r , and that n4-
randomness in base r implies absolute normality. Our methods yield a construction
of an absolutely normal real number which is computable in polynomial time.

Keywords Base invariance · Polynomial time randomness · Analysis · Normality ·
Martingales

1 Introduction

Algorithmic randomness notions are usually defined not for real numbers, but for
their digit representations with respect to a fixed base. The corresponding test defi-
nitions, such as Martin-Löf tests and computable martingales, are given relative to a
fixed finite alphabet, usually the binary alphabet {0,1}. Thus definitions of random-
ness are given for binary sequences.

From a mathematical point of view, the primary objects of interest are real num-
bers. So it is customary to talk about random reals (no matter what the randomness
notion is), though we always think of them as binary sequences. All known notions
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of randomness R can be adapted to any finite alphabet {0, . . . , r − 1} (r ≥ 2). So it
makes sense to ask: what happens if we change the base for representing a real? Is
the real always random in the given sense, independently of the base for representing
it? More formally, we ask whether R is base invariant in the following sense:

if X and Y are infinite sequences over different alphabets that denote the same
real, then X satisfies R iff Y satisfies R.

A base is any natural number greater than 1. For a base r , let Σr = {0, . . . ,

r − 1}. Randomness notions formalize, in one way or another, the intuitive idea of
lack of patterns recognizable in an effective way. For weak notions of randomness,
the property of base invariance can easily fail. Let us discuss some examples.

For finite strings σ and τ over the alphabet Σr , we define occσ (τ ) as the number
of occurrences of σ in τ , that is

occσ (τ ) = ∣
∣
{

i : 0 ≤ i ≤ |τ | − |σ |, σ = τ(i)� . . .�τ
(

i + |σ | − 1
)}∣

∣, (1)

where τ(i) denotes the (i + 1)-th symbol of τ , starting from the left, and ·�· denotes
the concatenation of strings.

Consider the law of large numbers as a very weak randomness notion. While this
concept is too weak to qualify for randomness, it still captures some statistical prop-
erties that random sequences must have. An infinite sequence Z over the alphabet Σr

satisfies the law of large numbers if any symbol in Z is equiprobable, that is, for any
symbol b ∈ Σr we have

lim
n

occb(Z�n)
n

= 1

r
,

where Z�n denotes the first n symbols of Z. The sequence Y = 10101010 . . . over the
alphabet 2 satisfies the law of large numbers. The real which in binary is represented
as 0.Y can be represented as 0.2222 . . . in base 4. Since the sequence 2222 . . . does
not satisfy the law of large numbers, the notion of law of large numbers is not base
invariant.

A stronger notion (but still too weak to qualify as a randomness notion) is Borel
normality [7]. An infinite sequence Z over the alphabet Σr is normal in base r if it
satisfies a general form of the law of large numbers: each string of length n occurs in
Z with limit relative frequency equal to r−n. Formally, Z is normal in base r if

lim
n

occσ (Z�n)
n

= 1

r |σ |

for all finite strings σ over the alphabet Σr . A well-known example of a normal se-
quence is Champernowne’s [11]. It is obtained by concatenating all natural numbers
in base 10, one after the other:

X = 01234567891011121314 . . . (2)

Analogously, one can define Champernowne’s sequences in any base r by concate-
nating all the natural numbers represented in base r . As expected, one ends up with a
sequence which is normal in base r . For the specific case of the sequence X defined
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in (2), it is unknown if its normality is base invariant. That is, let x be the real which
in base 10 is represented as 0.X, and in base s is represented as 0.Y (for some infinite
sequence over Σs ). It is unknown whether Y is always normal in base s, provided s

is not a power of 10. The same applies if one considers Champernowne’s sequence
relative to a base r other than 10. However, it is known that the notion of normality
is not base invariant [20].

We discuss a still stronger concept which, in contrast to the examples above, is
defined directly for reals. A real x is absolutely normal if the following holds for any
base r : if the representation in base r of the value x − �x� is 0.X (for X an infinite
sequence over Σr ), then X is normal in base r . Of course this definition (transferred
to sequences instead of reals) is trivially base invariant.

Although it is conjectured that irrationals such as π , e and
√

2 are absolutely nor-
mal, their normality has not been proved even for a single base. For now, all examples
of absolutely normal numbers are artificial in that they have been specially intro-
duced in order to prove their absolute normality. In [4] and [5] algorithms for con-
structing absolutely normal numbers are introduced, based on Sierpiński’s [23] and
Turing’s [26] works, respectively. In both cases, the constructions are non-feasible.
Recently, Becher, Heiber and Slaman [6] on the one hand, and Lutz and Mayor-
domo [17] on the other gave polynomial time constructions of absolutely normal
numbers.

Let us move on to notions of randomness which are stronger and more robust than
the aforementioned concepts. Robustness implies base invariance under base change.
However, every notion so far required an ad-hoc proof of this fact.

Martin-Löf [18] viewed the notion of statistical test as a special kind of effective
null class. The law of large numbers or normality can be formalized by such statistical
tests. He defined an object to be random if it passes all such tests. Formally a Martin-
Löf test in base r is a uniformly c.e. sequence (Gm)m∈N of open sets over the alphabet
Σr such that for all m, λrGm ≤ r−m, where λr is the uniform measure which assigns
r−|σ | to each basic open cylinder formed by all the infinite extensions of σ over the
alphabet Σr . An infinite sequence Z over the alphabet Σr passes the Martin-Löf
test (Gm)m∈N if Z /∈ ⋂

m Gm, and X is Martin-Löf random in base r if X passes all
Martin-Löf tests in base r .

Schnorr [21] gave a characterization of Martin-Löf randomness based on K , the
prefix Kolmogorov complexity: X is Martin-Löf random iff all its prefixes are al-
gorithmically incompressible. In formal terms, for an infinite sequence X over the
alphabet Σr , X is Martin-Löf random in base r iff there is a constant c such that for
all n, K(X�n) > n−c. Here K is the prefix Kolmogorov complexity based on Turing
machines over the alphabet Σr .

Calude and Jürgensen [10] showed that Martin-Löf randomness is base invariant
via Martin-Löf tests, and Staiger [25] later gave a straightforward proof based on
Schnorr’s characterization via K . A completely different approach is the one followed
by Hertling and Weihrauch [13]. Here a topological concept of randomness is given
directly for reals (instead of representations of them), and then it is shown that this
notion coincides with the classical definition of Martin-Löf randomness.

On the other hand, Brattka, Miller and Nies [8] showed results of the form: an
infinite sequence Z over the alphabet {0,1} is random according to the notion R iff
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each function in a given class (depending on R) is differentiable at the real which
in base 2 is represented as 0.Z. One of the R-notions they considered is that of
computable randomness. Roughly, a sequence Z over the alphabet Σr is computably
random [21, 22] if no computable betting strategy can succeed on Z. Here ‘succeed-
ing’ means to gain, following the strategy, unbounded capital along Z by predicting
the (n + 1)-th symbol of Z, having the information of all the preceding n symbols
of Z. The notion of a betting strategy is formalized by martingales (see Sect. 2 for
the formal definition of computable randomness). The class of Martin-Löf random
sequences is strictly contained in the class of computably random sequences. Brat-
tka, Miller and Nies showed that an infinite binary sequence Z is computably ran-
dom iff each computable nondecreasing function is differentiable at the real that is
represented by 0.Z in base 2. Their methods show base invariance for computable
randomness, grounded on a correspondence between martingales and nondecreasing
functions (see Sect. 5 for more details).

Unlike Martin-Löf randomness, computable randomness can be naturally adapted
to the resource (in particular, time) bounded setting. A sequence Z is t (n)-random if
no rational valued martingale computable in time O(t(n)) succeeds on Z. (By a result
of Schnorr, restricting to rational values is immaterial.) We say that Z is polynomial
time random if Z is nc-random for every c, that is, no polynomial time martingale
succeeds on Z. Polynomial time random sequences have been studied for instance
in [3], where some connections to Lutz’s polynomial time bounded measure [15, 16]
and polynomial genericity [1, 2] are discussed.

We discuss some examples showing the relevance of polynomial time random-
ness. Applied fields such as cryptography rely on pseudo-random generators, which
produce a sequence of bits, yet the rule is hidden. The quality of such pseudo-random
sequences is measured by comparing them to benchmark “truly random” sequences,
and actually it suffices to take polynomial time random sequences. More generally, it
turns out that for most practical applications, the notion of polynomial time random-
ness is sufficient, even though it is much weaker than computable randomness.

On the mathematical side, an informal notion of randomness for sequences of bits
has been used in an essential way in work of Green and Tao [12] showing that the
set of primes has arbitrarily long arithmetic progressions. Inspecting their proofs, one
finds that, again, polynomial time randomness suffices.

Our main result is Theorem 14, which states that polynomial time randomness is
base invariant (Sect. 6). To do this, we first need to state resource bounded versions
of some known results about martingales (Sect. 2); in particular we study how to
construct in an efficient way a betting strategy that does not make the capital grow
too quickly. Then we study an efficient method for approximating the problem of
base conversion for rationals (Sect. 4).

The key idea of the proof is to introduce a feasible version of the methods from
effective analysis to prove base invariance for computable randomness [8]. In this
way we convert a polynomial time betting strategy in a certain base into a polynomial
time betting strategy in another base (Sect. 5).

Finally, using a result of Schnorr relating polynomial martingales with normal
numbers, we give a polynomial construction of an absolutely normal real (Sect. 7).
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2 Preliminaries

A rational in base r is a rational number with finite representation in base r , i.e. a
rational of the form z · r−n, for some z ∈ Z and n ∈N. Let Ratr be the set of rationals
in base r and let Rat≥0

r be the set of non-negative rationals in base r . R and R
≥0 is

the set of reals and non-negative reals respectively.
We denote Σ∗

r , Σn
r and Σω

r the set of finite strings, strings of length n, and infinite
sequences over the alphabet Σr , respectively. If σ, τ ∈ Σ∗

r then σ�τ is the concatena-
tion of σ and τ , |σ | denotes the length of σ , and for i ∈ {0, . . . , |σ |−1}, the (i +1)-th
symbol of σ is denoted σ(i). We use the same notation in case σ ∈ Σ∞

r . By σ 
 τ

we denote that σ is a prefix of τ , and by σ ≺ τ we denote that σ is a strict prefix
of τ . We use the same notation in case τ ∈ Σω

r . We define [σ ] = {X ∈ Σω
r : σ ≺ X}.

For X ∈ Σω
r we denote X �n the string formed by the first n symbols of X, that is,

X(0), . . . ,X(n − 1).
We represent q ∈ Ratr by the pair 〈σ, τ 〉, where σ and τ are strings in Σ∗

r rep-
resenting the integer and fractional part of q , respectively. If p,q ∈ Ratr have both
length n then p + q can be calculated in time O(n), and p · q can be calculated in
time O(n · log2 n). Also, if z ∈ Z has length m then p · rz can be calculated in time
O(n + m).

If σ ∈ Σ∗
r then 〈0.σ 〉r represents the rational in [0,1] whose representation in base

r is 0.σ , i.e.

〈0.σ 〉r =
|σ |−1
∑

i=0

σ(i) · r−i−1.

If Z ∈ Σω
r , then 〈0.Z〉r represents the real in [0,1] whose expansion in base r is Z,

i.e.

〈0.Z〉r =
∑

i∈N
Z(i) · r−i−1.

The letter t will always denote a time bound such that t (n) ≥ n.

Definition 1 For r ∈ N, r > 1, a supermartingale in base r is a function M : Σ∗
r →

R
≥0 such that

r · M(σ) ≥
∑

b∈Σr

M(σ�b) (3)

for all σ ∈ Σ∗
r . A martingale is a supermartingale where we turn the inequality of

Eq. (3) into an equality. M is a t (n)-martingale in base r if M is Rat≥0
r -valued and

M is computable in deterministic time O(t(n)).
We say that M succeeds on Z ∈ Σω

r iff lim supn M(Z �n) = ∞. A sequence
Z ∈ Σω

r is t (n)-random in base r if no t (n)-martingale in base r succeeds on Z.
A sequence Z ∈ Σω

r is polynomial time random in base r if for all c ≥ 1, no nc-
martingale in base r succeeds on Z.

Since we cannot process real numbers directly, we will approximate them.
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Definition 2 Let M : Σ∗
r → R

≥0. A computable function M̂ : Σ∗
r × N → Rat≥0

r

such that |M̂(σ, i) − M(σ)| ≤ r−i is called a computable approximation of M . The
complexity of M̂ on argument (σ, i) is measured in |σ | + i. A t (n)-computable ap-
proximation is a computable approximation which is computable in deterministic
time O(t(n)).

The following result is a generalization of [3, Lemma 2.1] to any base. It states
that any real-valued supermartingale M which has a computable approximation M̂

can be transformed into a Ratr -valued supermartingale which succeeds on all the
points M succeeds on, and has the same time complexity as M̂ .

Lemma 3 If M is a supermartingale in base r with a t (n)-computable approxima-
tion then there is a t (n)-supermartingale N in base r such that N ≥ M .

Proof Let M̂ be a t (n)-computable approximation of M . Let N be the supermartin-
gale defined as follows: N(σ) = M̂(σ, |σ |) + r2 · r−|σ |. Since M̂ is Ratr -valued, it
is clear that N also is. We have

M(σ) + (

r2 − 1
) · r−|σ | ≤ N(σ) ≤ M(σ) + (

r2 + 1
) · r−|σ |. (4)

N is a supermartingale in base r because

∑

b∈Σr

N(σ�b) ≤ r · (r2 + 1
) · r−|σ |−1 +

∑

b∈Σr

M(σ�b)
(

by (4)
)

≤ r ·
(

r2 + 1

r
· r−|σ | + M(σ)

)

(M is a supermartingale)

≤ r · ((r2 − 1
) · r−|σ | + M(σ)

)
(

r2 + 1

r
≤ r2 − 1 for all r ≥ 2

)

≤ r · N(σ)
(

by (4)
)

Working in base r , the calculation of r2 · r−|σ | = r−|σ |+2 can be done in time O(|σ |).
Then N(σ) is computed in time O(|σ | + t (|σ |)) = O(t(|σ |)). �

The following result is a generalization of [19, Proposition 7.1.6], due to Schnorr,
to any base, together with an analysis of the time complexity. Roughly speaking, it
says that one can dominate a computable Ratr -valued supermartingale by a com-
putable Ratr -valued martingale with a linear loss in time complexity.

Lemma 4 For every t (n)-supermartingale M in base r there is an n · t (n)-martingale
N in base r such that N ≥ M .

Proof For σ ∈ Σ∗
r , let

d(σ ) = M(σ) − r−1 ·
∑

b∈Σr

M(σ�b),
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which is a non-negative rational in base r . Define

N(σ) = M(σ) +
∑

τ≺σ

d(τ ),

which also is rational in base r . It is clear that N ≥ M . We verify the martingale
condition:

∑

b∈Σr

N(σ�b) = r ·
∑

τ
σ

d(τ ) +
∑

b∈Σr

M(σ�b) (def. of N)

= r · d(σ ) + r ·
∑

τ≺σ

d(τ ) +
∑

b∈Σr

M(σ�b)

= r ·
(

M(σ) +
∑

τ≺σ

d(τ )

)

(def. of d)

= r · N(σ) (def. of N)

Now d(σ ) is computable in time O(t(|σ |)), and so N(σ) is computable in time
O(|σ | · t (|σ |)). �

3 The Time Bounded Savings Property

In general, if M is a supermartingale in base r then M(σ) ≤ M(∅) · r |σ | for any
σ ∈ Σ∗

r . This upper bound can, in fact, be reached for prefixes of a given sequence.
For instance

M(σ) =
{

r |σ | if all symbols of σ are 0

0 if σ contains a symbol >0

is a martingale in base r and M(0n) = rn for any n ≥ 0. So in general the capital
that the player has following the strategy induced by M can rise (and drop) very fast.
We will need to work with supermartingales that keep the player from increasing his
capital very quickly.

We say that a supermartingale M in base r has the savings property if there is
c > 0 such that for all τ, σ ∈ Σ∗

r , if τ � σ then M(σ) − M(τ) ≤ c.
While a general supermartingale M(σ) can grow exponentially in the length of σ ,

one with the savings property can only grow linearly.

Proposition 5 Suppose M is a supermartingale in base r with the savings property
via c. Then for all σ ∈ Σ∗

r we have M(σ) ≤ (r − 1) · c · |σ | + M(∅).

Proof We proceed by induction on the length of σ . For σ = ∅ it is straightforward.
For the inductive step,

M(σ�b) ≤ r · M(σ) −
∑

d∈Σr,d �=b

M(σ�d) (M is a supermartingale)
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≤ r · M(σ) − (r − 1) · (M(σ) − c
)

(M has the savings property)

= (r − 1) · c + M(σ)

≤ (r − 1) · c + (r − 1) · c · |σ | + M(∅) (by the inductive hypothesis)

= (r − 1) · c · |σ�b| + M(∅).

This concludes the proof. �

The following result on savings property is folklore for the case of computable
martingales (for a published reference, see [8]). Here we give a time bounded version.

Lemma 6 (Time bounded savings property) For each t (n)-[super]martingale L in
base r there is an n · t (n)-[super]martingale M in base r which has the savings
property and succeeds on all the sequences that L succeeds on.

Proof Let m be such that L(∅) ≤ rm and define L′(σ ) = L(σ)/rm. It is clear that
L′ is a t (n)-martingale in base r , L′(∅) ≤ 1 and L′ succeeds on the same sequences
as L. Then without loss of generality we assume that L(∅) ≤ 1.

Let E(∅) = L(∅), G(∅) = 0. For each b ∈ Σr and σ ∈ Σ∗
r , let

αb(σ ) = L(σ�b) · E(σ)/L(σ)

E(σ�b) =
{

αb(σ )/r if αb(σ ) > r

αb(σ ) otherwise

G(σ�b) =
{

G(σ) + αb(σ ) · (r − 1)/r if αb(σ ) > r

G(σ) otherwise

It can be shown by induction on the length of σ that both E and G are Rat≥0
r -valued,

and that E(σ) ≤ r (since L(σ�b)/L(σ) ≤ r). Define M : Σ∗
r → Rat≥0

r as M =
E + G. It is straightforward that M(σ�b) = E(σ�b) + G(σ�b) = αb(σ ) + G(σ).
So if L is a martingale [resp. supermartingale] then

∑

b∈r M(σ�b) = r ·M(σ) [resp.
∑

b∈r M(σ�b) ≤ r · M(σ)]. For every τ � σ , G(τ) ≥ G(σ) and hence M(σ) −
M(τ) ≤ E(σ) − E(τ) ≤ E(σ) ≤ r , so M : Σ∗

r → Rat≥0
r is a [super]martingale in

base r with the savings property via r .
Both E and G (and hence M) have a recursive definition. To calculate the

complexity bound for computing M(σ), we first unravel the definitions of E(σ)

and G(σ). To do so, we need to identify the prefixes σ̃�b of σ where αb(σ̃ ) > r .
Let σ ∈ Σn

r and let Iσ be the sequence i1 < · · · < ikσ such that ij is the length of
the j -th prefix σ̃�b of σ which makes αb(σ̃ ) go beyond r . More formally, Iσ is the
maximal sequence i1 < · · · < ikσ such that for all j = 1, . . . , kσ we have 0 ≤ ij < n

and ασ(ij )(σ �ij ) > r . �

Fact 7 E(σ) = L(σ)/rkσ and G(σ) = (r − 1) · ∑kσ

j=1 L(σ �ij +1)/rj .
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Proof By induction in n. If n = 0 then it is clear that kσ = 0 and then E(∅) = L(∅)

and G(∅) = 0. For the induction, suppose σ = σ̃�b ∈ Σn+1
r , where b ∈ r .

If αb(σ̃ ) ≤ r then Iσ̃ = Iσ , so kσ̃ = kσ . On the one hand,

E(σ) = L(σ) · E(σ̃ )/L(σ̃ ) (def. of E)

= L(σ)/rkσ̃ (ind. hyp.)

= L(σ)/rkσ (kσ̃ = kσ ).

On the other hand,

G(σ) = G(σ̃ ) (def. of G)

= (r − 1) ·
kσ∑

j=1

L(σ �ij +1)/rj (ind. hyp., kσ̃ = kσ and σ̃ ≺ σ).

If αb(σ̃ ) > r then Iσ = i1 < · · · < ikσ̃
< ikσ , where kσ = kσ̃ + 1 and ikσ = n. On the

one hand,

E(σ) = L(σ) · E(σ̃ )

r · L(σ̃ )
(def. of E)

= L(σ)/rkσ̃ +1 (ind. hyp.)

= L(σ)/rkσ (kσ̃ + 1 = kσ ).

On the other hand,

G(σ) = (r − 1) · L(σ)/rkσ̃ +1 + G(σ̃ ) (def. of G)

= (r − 1) · L(σ)/rkσ̃ +1 + (r − 1) ·
kσ̃∑

j=1

L(σ �ij +1)/rj (ind. hyp. and σ̃ ≺ σ)

= (r − 1) ·
kσ∑

j=1

L(σ �ij +1)/rj (kσ̃ + 1 = kσ ; also ikσ = n, so σ �ikσ +1= σ).

This concludes the proof of Fact 7.
Since ij is the least i such that L(σ �i+1) > rj , one can compute Iσ in time O(n ·

t (n)). By Fact 7 we can compute E(σ) ∈ Ratr and G(σ) ∈ Ratr in time O(n · t (n)).
We conclude that M is an n · t (n)-[super]martingale in base r .

Finally, if L succeeds on Z ∈ Σω
r then limn kZ�n

= ∞. Since

G(Z�n) ≥
kZ�n∑

j=1

L(Z�ij +1)/rj

and L(Z�ij +1) > rj we have G(Z�n) > kZ�n
and hence lim supn G(Z�n) = ∞. Then

M succeeds on Z. �
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4 Base Conversion with Small Error

Given arbitrarily long prefixes of the fractional expansion of a given real in base
s does not allow us to effectively determine a prefix of the fractional expansion of
the same real represented in base r . Indeed, there are bases s and r for which there
is no functional Γ : N → Σr such that for X ∈ Σω

s , Y ∈ Σω
r Γ X is total and if

〈0.X〉s = 〈0.Y 〉r then Γ X = Y . For instance, take s = 3 and r = 2. Observe that
〈0.1∞〉3 = 1/2 and for every k ∈N, 〈0.1k0〉3 < 1/2 and 〈0.1k2〉3 > 1/2. If there was
such a functional then for some k we would have Γ 1k

(0) ↓∈ Σ2 and for all τ ∈ Σ∗
3

Γ 1kτ (0) = Γ 1k
(0). If Γ 1k

(0) = 0 then Γ 1k2(0) = 0 but 〈0.Γ 1k2〉2 > 1/2 and this
is a contradiction. Analogously, if Γ 1k

(0) = 1 then Γ 1k0(0) = 1 but 〈0.Γ 1k0〉2 <

1/2, which is also a contradiction. Hence in this case we are unable to effectively
determine the first bit of Y .

However, we can approximate a rational in base s with a rational in base r within
a given error. For τ ∈ Σ∗

s and i ∈ N, let bc−
s,r (τ, i) be the string σ in Σ∗

r of minimal
length such that

0 ≤ 〈0.τ 〉s − 〈0.σ 〉r < r−i , (5)

and let bc+
s,r (τ, i) be the string σ in Σ∗

r of minimal length such that

0 ≤ 〈0.σ 〉r − 〈0.τ 〉s < r−i .

Let X ∈ Σω
s and Y ∈ Σω

r be such that 〈0.X〉s = 〈0.Y 〉r . The fact that bc−
s,r (X�n,

i) = σ does not imply that σ ≺ Y . For instance, take X = 12 . . . , s = 3, r = 2 and
i = 2. One can verify that bc−

s,r (X�1, i) = 01 though Y �1= 1 because 〈0.Y 〉r > 1/2.
Of course, the same happens to bc+

s,r . It is worth mentioning that Staiger [25, Remark
on p. 461] provides a different approach to base conversion. He defines a function
h : Σ∗

s → Σ∗
r × Σ∗

r such that if h(X �n) = (σ 1
n , σ 2

n ) then either σ 1
n ≺ Y or σ 2

n ≺ Y .
Furthermore, the length of each σn

i increases with n. This function h can be seen as
a non-deterministic (more precisely, two-valued) conversion from reals in base r to
reals in base s.

Observe that the length of bc+
s,r (τ, i) is at most i, and the same for bc−

s,r (τ, i). The
time complexity of bc+

s,r or bc−
s,r on argument (τ, i) is measured in n = |τ | + i.

Theorem 8 bc−
s,r and bc+

s,r are computable in time O(n2).

Proof We show the result for bc−
s,r ; the case for bc+

s,r is analogous. Observe that
by definition, |bc−

s,r (τ, i)| ≤ i. In Algorithm 1 we introduce a simple procedure to
determine σ = bc−

s,r (τ, i).
It is clear that Algorithm 1, computes σ = bc−

s,r (τ, i). Since |σ | ≤ i, the main loop
is carried out at most i many times. To determine a better time complexity, in Algo-
rithm 2 we refine the procedure. We use representations in base r to store the values
of the integer variables a, b, c and d , and to calculate the arithmetic operations. The
value of 〈0.σ 〉r is represented as a fraction a

b
, which is constant along the execution.
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Algorithm 1: Simple approximation of a rational in base s with a rational in
base r

input: τ ∈ Σ∗
s and i ∈N

output: σ ∈ Σ∗
r , σ = bc−

s,r (τ, i)

σ := ∅
while 〈0.τ 〉s − 〈0.σ 〉r > r−i do

Find the largest x ∈ Σr such
that 〈0.σ�x〉r ≤ 〈0.τ 〉s

σ := σ�x

Algorithm 2: Efficient approximation of a rational in base s with a rational in
base r

input: τ ∈ Σ∗
s and i ∈N

output: σ ∈ Σ∗
r , σ = bc−

s,r (τ, i)

a := ∑|τ |−1
i=0 s|τ |−i−1 · τ(i) and b := s|τ |

σ := ∅
c := 0 and d := 1
while c

d
< a

b
− r−i do

invariant a
b

= 〈0.τ 〉s; c
d

= 〈0.σ 〉r
Find the largest x ∈ Σr such that c·r+x

d·r ≤ a
b

σ := σ�x

c := c · r + x

d := d · r

The successive approximations of 〈0.σ 〉r are represented as a fraction c
d

, where d is
always a power of r . Each time σ is extended by a new symbol of Σr , the values of
c and d are adequately updated to maintain the invariant 〈0.σ 〉r = a

b
.

We can initially compute a and b in time O(n). The loop condition involves the
value a

b
− r−i , which is constant and can be computed (just once) in time O(n). As in

Algorithm 1, the main loop is carried out at most i times. The sizes of the variables c

and d during the computation are O(i). Hence the comparison c
d

< a
b

− r−i , as well
as the comparison c·r+x

d·r ≤ a
b

can be carried out in time O(n). We conclude that the
algorithm runs in time O(n2). �

5 Martingales and Base Conversion

In this section we follow [8]. In Sect. 5.1 we introduce the background needed, and
in Sect. 5.2 we show how to efficiently compute a key function depending on a given
martingale.
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5.1 Background

Each martingale M in base r induces a measure μM on the algebra of clopen sets
defined by

μM

([σ ]) = M(σ)

r |σ | ,

for σ ∈ Σ∗
r . Via Carathéodory’s extension theorem this measure can be extended to

a Borel measure on Cantor space, and if μM is atomless (i.e. no point has positive
measure), we can also think of it as a Borel measure on [0,1]. Under this view, μM

is determined by

μM

(

I r
σ

) = M(σ)

r |σ | , (6)

where for any σ ∈ Σ∗
r we define

I r
σ = [〈0.σ 〉r , 〈0.σ 〉r + r−|σ |].

We say that a martingale is atomless if μM is atomless. Observe that if M has the
savings property then it is atomless. Indeed, suppose M has the savings property via
c. By Proposition 5, for any σ ∈ Σn

r we have μM(I r
σ ) ≤ r−n · ((r − 1) · c · n + M(∅))

and this goes to 0 as n goes to infinity. Hence μM is atomless.
In [8] Brattka, Miller and Nies begin by recalling the well-known correspondence

between atomless martingales and nondecreasing continuous functions. The cumula-
tive distribution function associated with μM , denoted by cdfM(x) : [0,1] → [0,1],
is defined as follows:

cdfM(x) = μM

([0, x)
)

. (7)

It can be shown that if M is atomless then cdfM is nondecreasing and continuous. If
f is a nondecreasing function with domain containing [0,1] ∩Q and s is a base then
martsf : Σ∗

s → R is defined as follows:

martsf (τ ) = f (〈0.τ 〉s + s−|τ |) − f (〈0.τ 〉s)
s−|τ | .

It can also be shown that martsf is a martingale in base s.
We will use two results of [8]. One is the relationship between the functions cdf

and mart:

Proposition 9 ([8, Fact 3.5]) Let s be a base and let f be a nondecreasing continuous
function on [0,1] such that f (0) = 0. Then cdfmartsf

= f .

The second result is the following characterization:

Theorem 10 ([8, Theorem 3.6]) Suppose M is a martingale in base r with the sav-
ings property, and z ∈ [0,1] is not a rational in base r . Then M succeeds on the r-ary
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expansion of z iff

lim inf
h→0

cdfM(z + h) − cdfM(z)

h
= ∞. (8)

(Note that the above expression is DcdfM(z), the lower derivative at z.)
These results yield the following lemma, which, in a slightly different formulation,

was used in [8, Theorem 3.7] to prove that computable randomness is base invariant.
In Sect. 6 we will use it to show that polynomial time random is base invariant.

Lemma 11 Let r and s be bases and suppose M is a martingale in base r with the
savings property. Let N : Σ∗

s → R
≥0 be the following martingale in base s:

N(τ) = martscdfM
(τ) = cdfM(〈0.τ 〉s + s−|τ |) − cdfM(〈0.τ 〉s)

s−|τ | . (9)

Suppose X ∈ Σω
r and Y ∈ Σω

s are such that 〈0.X〉r is not a rational in base r , 〈0.Y 〉s
is not a rational in base s, and 〈0.X〉r = 〈0.Y 〉s . If M succeeds on X then N succeeds
on Y .

Proof Let z = 〈0.X〉r = 〈0.Y 〉s . Since z is neither a rational in base r nor a rational
in base s, X ∈ Σω

r and Y ∈ Σω
s are unique. If M succeeds on X, by the left-to-

right implication of Theorem 10 applied to M and z, we have that condition (8) is
true for M . Observe that f = cdfM is nondecreasing, continuous and f (0) = 0. By
Proposition 9, cdfN = cdfM and so condition (8) is also true for N instead of M . By
the right-to-left implication of Theorem 10 applied to N and z, we conclude that N

succeeds on Y . �

5.2 Computing the Cumulative Distribution Function

We analyze the time complexity of computing cdfM when M is a martingale in base
r with the savings property. The value of cdfM(x) is defined for reals x ∈ [0,1], but
for our purposes it suffices to compute cdfM restricted to Ratr . By the definition of
cdfM we have that cdfM � Ratr is a function [0,1] ∩ Ratr → Ratr .

We first show that if M has the savings property then cdfM satisfies an ‘almost
Lipschitz’ condition.

Proposition 12 Let M be a martingale in base r with the savings property. Then
there are constants k, ε > 0 such that for every x, y ∈ [0,1], if y − x ≤ ε then

cdfM(y) − cdfM(x) ≤ −k · (y − x) · log(y − x).

Proof We actually show the following. If M has the savings property via c then for
0 ≤ x < y ≤ 1 we have

cdfM(y) − cdfM(x) ≤ (r + 1) · (y − x) · ((r − 1) · c · (1 − logr (y − x)
) + M(∅)

)

.
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Let n ∈ N be the least such that r−n < y − x, and let p be the least rational of
the form p = i · r−n such that x ≤ p + r−n. Let q be the minimum between 1 and
(i + r + 1) · r−n.

Suppose q = (i + r + 1) · r−n < y. Then y − x > (i + r + 1) · r−n − (i + 1)r−n =
r−(n−1) and this contradicts the choice of n. Then y ≤ q , and hence [x, y] ⊆ [p,q].
Now

cdfM(y) − cdfM(x) ≤ cdfM(q) − cdfM(p)

= μM [p,q] (by (7))

=
min (r,rn−i−1)

∑

j=0

μM

([

(i + j) · r−n, (i + j + 1) · r−n
])

≤ (r + 1) · r−n · ((r − 1) · c · n + M(∅)
)

.

The last inequality stems from the fact that each term in the sum is of the form r−n ·
M(σ) for some σ ∈ Σn

r . Since M has the savings property, by Proposition 5, each
such term is at most r−n · ((r − 1) · c · n + M(∅)).

Since r−(n−1) ≥ y − x, we have n ≤ 1 − logr (y − x), and since r−n ≤ y − x, this
yields the required inequality. �

Lemma 13 Let M be a t (n)-martingale in base r with the savings property. Then
cdfM restricted to rationals in base r is a rational in base r . Also, if 〈0.σ 〉r (σ ∈ Σn

r )
is a rational in base r , one can compute the r-ary representation of cdfM(〈0.σ 〉r ) in
time O(n · t (n)).

Proof If σ ∈ Σn
r then, according to the condition (6) over μM we have

cdfM
(〈0.σ 〉r

) = μM

([

0, 〈0.σ 〉r
])

=
n−1
∑

i=0

σ(i)−1
∑

b=0

μM

(

I r
(σ�i )

�b

)

=
n−1
∑

i=0

σ(i)−1
∑

b=0

M((σ �i )�b)

ri+1

=
n−1
∑

i=0

r−i−1 · h(i),

where

h(i) =
σ(i)−1
∑

b=0

M
(

(σ �i )�b
)

.

It is clear that h(i) is computable in time O(t(i + 1)) using r-ary representation for
the output. On the other hand,

∑n−1
i=0 rn−i−1 · h(i) can be computed in time O(n ·

t (n)). We conclude that cdfM is computable in time O(n · t (n)). �
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6 Polynomial Time Randomness is Base Invariant

In this section we show our main result: polynomial time randomness is base invari-
ant. Through a different argument and without the analysis of the time complexity, a
preliminary version of this result can be found in [24].

Theorem 14 Let k ≥ 1. If Y ∈ Σω
s is nk+3-random in base s and X ∈ Σω

r is such
that 〈0.X〉r = 〈0.Y 〉s then X is nk-random in base r . In particular, polynomial time
randomness is base invariant.

Proof We will actually show the following stronger result.

Suppose t is a time function such that t (O(n)) = O(t(n)), that is, for every
c > 0 there is d such that t (c · n) ≤ d · t (n) for every n. If Y ∈ Σω

s is t (n) · n3-
random in base s and X ∈ Σω

r is such that 〈0.X〉r = 〈0.Y 〉s , then X is t (n)-
random in base r .

This implies the statement of the theorem by letting t (n) = nk . Observe that any
function t with t (O(n)) = O(t(n)) is bounded by a polynomial.

If 〈0.Y 〉r is rational then Y is eventually periodic and hence computable in linear
time. Define N : Σ∗

s → Rat+
s as follows:

N(τ) =
{

s|τ | if τ ≺ Y

0 otherwise

It can be shown that N satisfies the martingale condition in base s and that N is com-
putable in linear time, so Y is not t (n) · n3-random. Hence the statement is trivially
true when 〈0.Y 〉r is rational. Assume, then, that 〈0.Y 〉s = 〈0.X〉r is irrational.

For F a martingale in base r and G a martingale in base s, we say that G is an r

to s base conversion of F in case the following holds: if F succeeds on X ∈ Σω
r , and

Y ∈ Σω
s is such that 〈0.X〉r = 〈0.Y 〉s is irrational, then G succeeds on Y . The main

lemma is the following. �

Lemma 15 Let t be a time function such that t (O(n)) ∈ O(t(n)). For any t (n)-
martingale M in base r with the savings property there is a (real-valued) martingale
N in base s such that N is an r to s base conversion of M , and N has an n · t (n)-
computable approximation.

Assuming the lemma, we proceed by contradiction. Suppose that X is not t (n)-
random in base r . Let M be a t (n)-martingale in base r which succeeds on X. Then
by Lemma 6 there is an n · t (n)-martingale M̃ in base r with the savings property
that succeeds on all the sequences M succeeds on, in particular on X. By Lemmas 15
and 3 there is an n2 · t (n)-supermartingale in base s which is a base conversion of M̃ ,
so in particular M̃ succeeds on Y . By Lemma 4. there is an n3 · t (n)-martingale in
base s which succeeds on Y , and then Y is not n3 · t (n)-random. This establishes the
theorem.
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Proof of Lemma 15 Without loss of generality, we assume M(∅) ≤ 1. Let X ∈ Σω
r

and Y ∈ Σω
s be such that z = 〈0.X〉r = 〈0.Y 〉s is irrational. We show that if M suc-

ceeds on X then there is a martingale N in base s which succeeds on Y and has an
n · t (n)-computable approximation.

Define the real martingale N : Σ∗
s →R

≥0, in base s, as in (9):

N(τ) = s|τ | · (cdfM(q) − cdfM(p)
)

,

where p = 〈0.τ 〉s and q = 〈0.τ 〉s + s−|τ |. Observe that neither 〈0.X〉r nor 〈0.Y 〉s are
rationals in base r or s. By Lemma 11, N succeeds on Y .

The rest of the proof is devoted to showing that N has an n · t (n)-computable
approximation. To compute the value of N(τ), we need to calculate cdfM(q) and
cdfM(p). By Lemma 13 we know how to efficiently compute cdfM(x), when x is
a rational in base r . Since p and q are rationals in base s, we first need to approx-
imate them with rationals p̃ and q̃ in base r that are sufficiently close to p and q

respectively. To do this, we use the s to r base conversion functions bc−
s,r and bc+

s,r

introduced in Sect. 4. Then we approximate cdfM(p) with cdfM(p̃) and cdfM(q)

with cdfM(̃q). We will use the ‘almost Lipschitz’ condition of Proposition 12 to
show that these are good approximations. Since N has to be approximated by ra-
tionals in base s but cdfM(p̃) and cdfM(̃q) are rationals in base r , we finally approx-
imate them with rationals in base s using the r to s base conversion functions bc−

r,s

and bc+
r,s .

Here are the details of the construction. Let k > 0 be such that r ≤ sk and for every
x, y ∈ [0,1], if y − x ≤ r−k then

cdfM(y) − cdfM(x) ≤ −rk · (y − x) · log(y − x). (10)

The existence of k is guaranteed by Proposition 12. Given τ ∈ Σ∗
s and i ∈ N, define

v = k · (i + |τ | + 3
) + k.

Step 1 Approximating p with p̃ and q with q̃ . Let τ̃− ∈ Σ∗
r and p̃ ∈ Ratr ∩ [0,1]

be defined by τ̃− = bc−
s,r (τ,2v + 1) and p̃ = 〈0.̃τ−〉r . If q < 1 and τ+ ∈ Σ

|τ |
s

is such that q = 〈0.τ+〉s , then let τ̃+ = bc+
s,r (τ

+,2v + 1), and let q̃ ∈ Ratr ∩
[0,1] be defined by q̃ = 〈0.̃τ+〉r . If q = 1, let q̃ = 1. Note that p̃ ≤ p < q ≤ q̃ .

Step 2 Approximating cdfM(q) − cdfM(p) with cdfM(̃q) − cdfM(p̃). �

Fact 16 0 ≤ cdfM(p) − cdfM(p̃) ≤ s−(i+|τ |+3) and 0 ≤ cdfM(̃q) − cdfM(q) ≤
s−(i+|τ |+3).

Proof Let δ = p − p̃ and let ε = r−v . Since δ < ε2/r ≤ ε2/2 then ε
2δ

> 1
ε

> − log ε.
For all z, z

2 > log z, and then ε
δ
− log ε

δ
> ε

2δ
> − log ε, so ε

δ
> log ε

δ
− log ε = − log δ.

Therefore −δ · log δ < ε and by the ‘almost Lipschitz’ condition (10) and the fact that
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Fig. 1 Approximation of N(τ) (steps 1 and 2) when τ = 1, s = 3 and r = 2

δ ≤ r−k we conclude

cdfM(p) − cdfM(p̃) ≤ −rk · δ · log δ

< rk · ε
= r−k·(i+|τ |+3)

≤ s−(i+|τ |+3)
(

rk ≥ s
)

.

The argument for q and q̃ is analogous.
Let D = cdfM(̃q) − cdfM(p̃) ∈ Ratr ∩ [0,1]. It is clear that D ≥ cdfM(q) −

cdfM(p) and from Fact 16 we conclude D − (cdfM(q)− cdfM(p)) ≤ 2 · s−(i+|τ |+3) ≤
s−(i+|τ |+2). Let ρ ∈ Σ∗

r be such that D = 〈0.ρ〉r . For complexity issues, we next
shorten the r-ary representation of D. Let

D′ = 〈

0.
(

ρ �k·(i+|τ |+2)

)〉

r
∈ Ratr .

Since 0 ≤ D − D′ ≤ r−k·(i+|τ |+2) ≤ s−(i+|τ |+2), then we have

∣
∣D′ − (

cdfM(q) − cdfM(p)
)∣
∣ ≤ s−(i+|τ |+1). (11)

Figure 1 illustrates Steps 1 and 2.

Step 3 Approximating D = cdfM(̃q) − cdfM(p̃) with rationals in base s.
We now approximate D′ = 〈0.ρ′〉r ∈ Ratr with a rational in base s. Define
β = bc−

r,s(ρ
′, i + |τ | + 1) ∈ Σ∗

s . Since 0 ≤ 〈0.β〉s − D′ < s−(i+|τ |+1), from
(11) we conclude

∣
∣〈0.β〉s − (

cdfM(q) − cdfM(p)
)∣
∣ ≤ s−(i+|τ |). (12)

Finally define N̂(τ, i) = s|τ | · 〈0.β〉s ∈ Rats . Since N(τ) = s|τ | · (cdfM(q) −
cdfM(p)), from (12) we obtain |N̂(τ, i) − N(τ)| ≤ s−i .
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For the complexity analysis, let n = |τ |+ i. The value of v can be obtained in time
O(n). By Theorem 8 the values of τ̃− and τ̃+ can be computed in time O(m2), where
m = |τ | + 2v + 1 ∈ O(n), so τ̃− and τ̃+ can be computed in time O(n2). Since the
length of τ̃− and τ̃+ are at most 2v + 1 ∈ O(n), then, by Lemma 13 and the fact that
t (O(n)) ∈ O(t(n)), the r-ary representation of cdfM(〈0.̃τ+〉r ) and cdfM(〈0.̃τ−〉r ) are
computed in time O(n · t (n)), the same as their difference D = 〈0.γ 〉s . The compu-
tation of D′ = 〈0.γ ′〉s can be done in time O(n), and since |γ ′| is O(n), the compu-
tation of β takes O(n2) steps. In summary, Step 1 can be done in time O(n), Step 2
in time O(n · t (n)) and Step 3 in O(n2). Since t (n) ≥ n, in total, the procedure takes
time O(n · t (n)). �

This concludes the proof of Lemma 15 and Theorem 14.

7 Polynomial Time Martingales and Normality

In [22] Schnorr showed that if Z ∈ Σω
2 is n2-random in base 2 then Z satisfies the

law of large numbers. He concluded that n2-randomness implies normality in base 2.
We adapt in two ways Wang’s version [27] of Schnorr’s proof that all n2-random
sequences in base 2 satisfy the law of large numbers. Firstly, we consider any base;
secondly, we generalize it to the notion of normality.

Theorem 17 If Z is n · log2 n-random in base r then Z is normal in base r .

Proof We suppose that Z is not normal in base r and we define an n · log2 n-
martingale L which succeeds on Z. In fact, we show that there is β > 1 such that
L(Z�n) > βn for infinitely many n.

Recall the definition of occσ (τ ) in (1). Let c ∈ Σr and α ∈ Σ∗
r such that α�c is a

string of minimal length for which it is not the case that limn→∞ occα�c(Z �n)/n =
r−|α|−1. Define

occα� c̄(σ ) =
∑

d∈Σr\{c}
occα�d(σ ).

By the choice of α, there is ε > 0 such that one of the following is true:

(∃∞n
) occα�c(Z�n)

n
> r−|α|−1 + ε (13)

(∃∞n
) occα�c(Z�n)

n
< r−|α|−1 − rε. (14)

Since occα(σ ) ≤ 1 + ∑

b∈Σr
occα�b(σ ) = 1 + occα�c(σ ) + occα�c̄(σ ), in case (14)

we have that there are infinitely many n such that

occα�c̄(Z�n)
n

>
occα(Z�n) − 1

n
− r−|α|−1 + rε

= occα(Z�n) − 1

n
− r−|α| + (r − 1)r−|α|−1 + rε.
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By construction, α�c is of minimal length. Thus for almost all n we have

occα(Z�n) − 1

n
− r−|α| > −ε,

and so there are infinitely many n such that occα� c̄(Z�n)/n > (r − 1) · (r−|α|−1 + ε).
Suppose n is such that occα�c̄(Z�n) > n · (r − 1) · (r−|α|−1 + ε). Since occα�c̄(Z�n)
is a sum of r − 1 terms, one of them must be greater than n · (r−|α|−1 + ε). Thus
there exists d ∈ Σr \ {c} such that for infinitely many n we have occα�d(Z �n)/n >

r−|α|−1 + ε. Hence without loss of generality we may assume that (13) holds.
Let δ be so that δ/(r − 1) ∈ Rat≥0

r and

lim sup
n

occα�c(Z�n)
n

>
1 + δ

r |α|+1
. (15)

Let p = 1 + δ and q = 1 − δ
r−1 . Note that p,q ∈ Rat≥0

r . Define L : Σ∗
r → Rat≥0

r as
follows:

L(λ) = 1

L(σ�b) =

⎧

⎪⎨

⎪⎩

L(σ) if α is not a suffix of σ

p · L(σ) if α is a suffix of σ , and b = c

q · L(σ) if α is a suffix of σ , and b �= c

It is clear that for all σ ∈ Σ∗
r , we have

L(σ) = pocc
α�c

(σ ) · qocc
α� c̄

(σ ). (16)

�

Fact 18 L is a Rat≥0
r -valued martingale in base r .

Proof By the choice of δ it is clear that L is Rat≥0
r -valued. Clearly, if α is not a

suffix of σ , then
∑

i∈Σr
L(σ i) = ∑

i∈Σr
L(σ ) = r · L(σ). Suppose that α is a suffix

of σ , then

∑

i∈Σr

L(σ�i) = (1 + δ) · L(σ) +
∑

j∈Σr\{c}

(

1 − δ

r − 1

)

· L(σ)

= (1 + δ) · L(σ) + (r − 1 − δ) · L(σ)

= r · L(σ).

This shows that L is a martingale in base r . �

Fact 19 L is computable in time O(n · log2 n).

Proof In (16), both p and q are fixed rationals in base r and α is a fixed string
in Σ∗

r . Given σ ∈ Σn
r , it is clear that L(σ) can be represented with O(n) many
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symbols of Σr . Given σ , one can calculate the unary representation of occα�c(σ )

and occαc̄(σ ) in linear time. For a fixed rational x, the method of exponentiation by
repeated squaring computes xm with a loop that is carried out O(logm) times, as
follows:

xm =
{

(x2)
m
2 if m is even

x · (x2)
m−1

2 if m is odd

In the i-th iteration, the algorithm performs a fixed number of multiplications and
additions of rationals of size O(m/2i ). Hence the cost of the i-th operation is
O(m/2i · log2(m/2i )) ≤ O(m/2i · log2 m). In total, the time needed to compute xm

is
∑

i≤O(logm)

O
(

m/2i · log2 m
) ≤ O

(

m · log2 m
)

.

Finally, the multiplication of pocc
α�c

(σ ) with qocc
α� c̄

(σ ) takes time O(n · log2 n). In
total we compute L(σ) in time O(n · log2 n). �

Fact 20 L succeeds on Z.

Proof Since occα� c̄(σ ) ≤ occα(σ ) − occα�c(σ ) and logq is negative, from (16) we
have

logL(Z�n) ≥ occα�c(Z�n) · logp + [

occα(Z�n) − occα�c(Z�n)
] · logq

= occα(Z�n) · logq + occα�c(Z�n) · (logp − logq).

By taking the lim sup we obtain

lim sup
n

logL(Z�n)
n

≥ lim sup
n

occα(Z�n)
n

· logq + occα�c(Z�n)
n

· (logp − logq)

= logq

r |α| + (logp − logq) · lim sup
n

occα�c(Z�n)
n

>
logq

r |α| + (logp − logq) · 1 + δ

r |α|+1
(by the choice of δ (15))

= 1

r |α|+1
·
(

(1 + δ) · log(1 + δ) + (r − δ − 1)

· log

(

1 − δ

r − 1

))

= �,

where the first equality (second line) comes from the minimality of α�c.
It can be shown that for any ε ∈ (0,1) and any x ≥ 1 we have

(1 + ε) · log(1 + ε) + (x − ε) · log(1 − ε/x) > 0.
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Taking ε = δ and x = r − 1 we conclude � > 0, and this means that there exist in-
finitely many n such that logL(Z�n)/n > �, that is L(Z�n) > 2�·n. �

This completes the proof of Theorem 17.
By combining Theorem 17 with Lemma 6 we conclude that if Z ∈ Σω

r is not
normal in base r then there is an n2 · log2 n-martingale with the savings property
which succeeds on Z. We can actually show:

Proposition 21 If Z ∈ Σω
r is not normal in base r then there is an n2-martingale in

base r with the savings property that succeeds on Z.

Proof We combine the ideas from the proof of Theorem 17 with the proof of
Lemma 6. Suppose Z ∈ Σω

r is not normal in base r and define L, α, p, q and c

as in the proof of Theorem 17. The function L̃ : Σ+
r → Rat≥0

r defined by

L̃(σ�b) =

⎧

⎪⎨

⎪⎩

1 if α is not a suffix of σ

p if α is a suffix of σ , and b = c

q if α is a suffix of σ , and b �= c

is computable in linear time because α ∈ Σ∗
r is fixed. Note that L̃(σ�b) =

L(σ�b)/L(σ).
Let E, G and M be as in the proof of Lemma 6. Using L̃ we can rewrite its

definitions:

E(∅) = L(∅) = 1 E(σ�b) =
{

L̃(σ�b)
r

· E(σ) if E(σ) > r

L̃(σ�b)

L̃(σ�b) · E(σ) otherwise

G(∅) = 0 G(σ�b) =
{

G(σ) + (r−1)·L̃(σ�b)
r

· E(σ) if E(σ) > r

L̃(σ�b)

G(σ) otherwise

Since r is constant, by the definition of L̃, we have that L̃(σ�b)/r , r/L̃(σ�b) and
(r − 1) · L̃(σ�b)/r are constant values (i.e. they do not depend on σ ). Then the
comparison E(σ) > r/L̃(σ�b) can be done in linear time. Thus, one can compute E

and G, and so M , in quadratic time. By Lemma 6, M succeeds on all the sequences
that L does, and then M succeeds on Z. �

It follows from Hitchcock and Mayordomo [14, Corollary 3.3] that any polyno-
mial time random is absolutely normal. We show that n4-randomness suffices:

Corollary 22 Suppose Z ∈ Σω
r is such that no n3-supermartingale in base r suc-

ceeds on Z. Then z = 〈0.Z〉r is absolutely normal. In particular, if Z is n4-random
in base r then z is absolutely normal.

Work in preparation of Lutz and Mayordomo [17] shows that in fact the result can
be improved to n2-randomness.
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Proof By contradiction, suppose that the real z = 〈0.Z〉r is not absolutely normal.
Then there is a base s and Y ∈ Σω

s such that z = 〈0.Y 〉s and Y is not normal in base s.
By Proposition 21 there is an n2-martingale M in base s with the savings property that
succeeds on Y . By Lemma 15, there is a martingale in base r with an n3-computable
approximation which succeeds on Z. By Lemma 3 there is an n3-supermartingale in
base r which also succeeds on Z. This establishes the first statement of the theorem.
The second one follows from Lemma 4. �

8 An Absolutely Normal Number in Polynomial Time

In the following result we improve the time bound of [3, Theorem 2.3].

Proposition 23 There is Z ∈ Σω
r computable in time O(nk+2 · log3 n) such that no

nk-supermartingale in base r succeeds on Z. In particular Z is nk-random.

Proof Fix a time constructible nondecreasing and unbounded function h, suppose
t is time constructible, and let p(x) = x · logx. We actually construct a sequence
Z ∈ Σω

r which is computable in time O(n2 · logn · p(h(|�logn�|) · t (n))), and such
that no t (n)-supermartingale succeeds on Z. The statement of the proposition follows
by taking t (n) = nk and h(n) = n.

We first give an effective enumeration (Gi)i∈N of all t (n)-supermartingales in base
r with initial capital 1 and bound the time complexity of this enumeration. Take an
enumeration of all Turing machines defined over the alphabet Σr , and define Φi as
the function partially computable by the i-th Turing machine of such enumeration.
We may view Φi as a partial function Σ∗

r → Rat≥0
r .

Let

Φ̃i(σ ) =
{

Φi(σ )[h(|i|) · t (|σ |)] if Φi(σ )[h(|i|) · t (|σ |)] ↓
0 otherwise

Define G :N× Σ∗
r → Rat≥0

r as follows:

G(i, σ ) =

⎧

⎪⎨

⎪⎩

1 if σ = ∅
Φ̃i(σ ) if σ = τ�b for b ∈ Σr , and

∑

j∈Σr
Φ̃i(τ

�j) ≤ r · G(i, τ )

0 otherwise

Let Gi(σ ) = G(i, σ ). It can be shown that for all i, Gi is a Rat≥
r -valued supermartin-

gale in base r with Gi(∅) = 1. �

Fact 24 G(i, σ ) is computed in time O(|σ | · p(h(|i|) · t (|σ |))).

Proof Let |σ | = n and |i| = m. Since h and t are time constructible, one can compute
h(m) in time O(h(m)) and t (n) in time O(t(n)). Then the multiplication h(m) ·
t (n) can be done in time O(|h(m)| · |t (n)|). The simulation of Φ̃i(σ ) takes time
O(p(h(m) · t (n))) and then G(i, σ ) is computed in time O(n · p(h(m) · t (n))). �
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Fact 25 Suppose F is a t (n)-supermartingale such that F(∅) = 1. Then there is e

such that F = Ge .

Proof Suppose d > 0 such that for all σ ∈ Σr , the computation of F(σ) halts in at
most d · t (|σ |) many steps. We can choose e with F(σ) = Φe(σ ) for all σ with time
bound d · t (|σ |), and d < h(|e|). Then Φe = Φ̃e = Ge . �

Let (ni)i∈N be a strictly increasing computable sequence of natural numbers such
that ni > i. Define Ĝi : Σ∗

r → R
≥0 by

Ĝi(σ ) =
{

r−i − r−(i+1) if |σ | ≤ ni

r−2·ni · Gi(σ ) otherwise

Fact 26 Ĝi is a supermartingale in base r .

Proof We verify that
∑

b∈Σr
Ĝi(σ

�b) ≤ r · Ĝi(σ ). The only non-trivial case is when
|σ | = ni :

∑

b∈Σr

Ĝi(σ
�b) =

∑

b∈Σr

r−2·ni · Gi(σ
�b) (def. of Ĝ)

≤ r−2·ni+1 · Gi(σ ) (Gi is a supermartingale)

≤ r · r−ni
(

Gi(∅) = 1 and |σ | = ni

)

≤ r · r−i/2 (i < ni)

≤ r · (r−i − r−(i+1)
)

= r · Ĝi(σ ) (def. of Ĝ)

�

For any σ ∈ Σ∗
r , let

H(σ) =
∑

i

Ĝi(σ ).

Note that if |σ | ≤ n0 then H(σ) = 1, and if nj < |σ | ≤ nj+1 then

H(σ) = r−(j+1) +
∑

i≤j

r−2·ni · Gi(σ ). (17)

It is clear that H is a supermartingale, and by (17), it is Rat≥0
r -valued. From now on,

let us fix ni = ri .

Fact 27 If σ ∈ Σn
r then H(σ) is computable in time O(n · logn · p(h(|�logn�|) ·

t (n))).
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Algorithm 3: Leftmost non-ascending path given by H

input: n ∈ N

output: ζn ∈ Σn
r

ζn := ∅
for i = 1 to n do

Find least b ∈ Σr such that H(ζn) ≥ H(ζn
�b)

ζn := ζn
�b

Proof Suppose nj < |σ | ≤ nj+1. Observe that j ≤ logn. By Fact 24, for each i ≤ j ,
the value v = Gi(σ ) can be obtained in time O(n · p(h(|j |) · t (n))). Computing the
value of ni in unary (which takes time O(n · logn)) allows us to compute the value of
r−2·ni ·v with O(n) many shift operations on v. The sum in (17) has j +1 ≤ 1+ logn

many terms, so in total we need O(n · logn · p(h(|�logn�|) · t (n))). �

By (17), and Fact 25, if F is a t (n)-supermartingale in base r then there are c, d >

0 such that c + d · F ≤ H . So if Z ∈ Σω
r is such that lim supn H(Z�n) < ∞ then no

t (n)-supermartingale in base r succeeds on Z. In particular, Z is t (n)-random. One
can define Z as the leftmost non-ascending path given by H , i.e., given n define let
ζn be the output Algorithm 3 with input n, and define Z = ⋂

n[ζn].
The complexity of Algorithm 3 on input n is measured in n. By Fact 27 the time

needed to compute Z�n is O(n2 · logn · p(h(|�logn�|) · t (n))).

Corollary 28 There is Z ∈ Σω
r which is computable in time O(n5 · log3 n) such that

〈0.Z〉r is absolutely normal.

Proof By Proposition 23, there is Z ∈ Σω
r which is computable in time O(n5 · log3 n)

for which no n3-supermartingale in base r succeeds on. By Corollary 22, 〈0.Z〉r is
absolutely normal. �

9 Open Questions

For many of our results it may be possible to improve time bounds. For instance, in
Theorem 8 we showed a method for approximating rationals in a given base with
rationals in another.

Question 29 Is it possible to compute bc−
s,r (σ ) in less than quadratic time?

In Theorem 14 we proved that polynomial time randomness is base invariant. In
fact, we showed that nk+3-randomness in a given base implies nk-randomness in
another base.

Question 30 Is it possible to lower the ‘+3’, or even show that nk-randomness is
base invariant (for large enough k)?
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Any improvement in this direction would be transferred to the complexity of the
construction of an nk-random sequence, and, in particular, to the complexity of com-
puting an absolutely normal number.

In Theorem 17 we showed that n · log2 n-randomness in base r implies normality
in base r . As we explained in the proof of this result, one can ‘count’ the number of
occurrences of a block of symbols in a given string in linear time.

Question 31 Does linear-randomness in base r imply the law of large numbers in
base r , or even normality in base r?

A sequence (yi)i∈N of reals in [0,1] is uniformly distributed if for each interval
[u,v] ⊆ [0,1], the proportion of i < N with yi ∈ [u,v] tends to v − u as N → ∞.
More formally,

lim
N→∞

|{i < N | yi ∈ [u,v]}|
N

= v − u.

For a real x let frac(x) denote the fractional part x − �x�.

Definition 32 Let r be any rational number greater than one. We say that x ∈ [0,1]
is normal in base r if the sequence (frac(x · rn))n∈N is uniformly distributed in [0,1].

For every r the set of reals which are normal in base r has measure 1. Observe that
this definition applies to reals in [0,1], while the definition of normality given in the
introduction (the one used along this work) applies to sequences of symbols in Σr .
It is not hard to see that for any integer r > 1, and any X ∈ Σω

r , 〈0.X〉r is normal in
base r iff X is normal in base r . Hence a real x is absolutely normal if it is normal
in all integer bases >1. Let us say x is rationally normal if it is normal in all rational
bases >1.

In the following we discuss the fact that rational normality is stronger than abso-
lute normality, even though it still has measure 1. This is a special case of a result by
Brown, Moran and Pearce [9, Theorem 2]. Sets A,B ⊆ (1,∞) are called multiplica-
tively independent (m.i.) if there are no a ∈ A,b ∈ B, r, s ∈ N such that ar = bs . For
instance, A = N \ {0,1} and B = {3/2} are m.i. The result of Brown et al. says that
given m.i. sets of algebraic numbers, every real is the sum of four numbers that are
normal for all bases in A, but none in B . In particular, there are uncountably many
reals that are absolutely normal, but not normal for the base 3/2.

By our result that polynomial time randomness is base invariant (Theorem 14), it
makes sense to talk about polynomial time reals in [0,1]: a real x ∈ [0,1] is polyno-
mial time random if whenever x = 〈0.X〉r for some integer r > 1, we have that X is
polynomial time random in base r .

In Corollary 22 we showed that every polynomial time random real is absolutely
normal. An affirmative answer to the following would extend this result.

Question 33 Is every polynomial time random real rationally normal?
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