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Abstract. Recent advances in computational techniques for K-theory allow
us to describe the K-theory of toric varieties in a new way.

1. Introduction

In this paper, we revisit the K-theory of toric varieties, using the new perspective
afforded by the recent papers [H], [CHSW], [CHW]. These papers provide a impor-
tant new technique for computations in the K-theory of singular algebraic varieties
over fields of characteristic 0, in terms of their homotopy K-theory and cohomolog-
ical data. For such a variety X, the homotopy fiber of K(X)→ KH(X) coincides
up to homotopy with the analogous relative term in the comparison between cyclic
homology and its cdh-fibrant replacement (the result of imposing desent for the cdh
topology). Here, KH(X) denotes the homotopy K-theory of X; see [11].

The KH-theory of an affine toric varieties is just the K-theory of a Laurent
polynomial ring, and is well understood. Even when X is a non-affine toric variety,
KH∗(X) is tractible; we show in Proposition 5.6 that it is a summand of K∗(X).
This allows us to give a short proof in Proposition 5.8 that K0(X) = Z for affine
X. Merkurjev-Panin? I

am still not sure why
Chuck is worried
about Merkurjev-
Panin. I am fairly
sure they only con-
cern themselves
with smooth toric
varieties. –MW

Thus the problem of understanding K∗(X) is reduced to understanding the cyclic
homology of X and its cdh-fibrant version. Because toric varieties admit resolutions
of singularities that are formed in a purely combinatorial manner, it turns out this
is indeed a more accessible problem.

The main goal of this paper is to use these new techniques to give a streamlined
approach to two of Gubeladze’s results concerning the K-theory of toric varieties:
Examples of toric varieties with “huge” Grothendieck groups [5] and the “Nilpotence
Theorem” [6]. Our proof of this theorem is considerable shorter than the original.
On the other hand, our approach and Gubeladze’s are cousins in the sense that
they have a common ancestor: Cortiñas’ proof of the KABI conjecture [1]. too much?

Since varieties are locally smooth in the cdh-topology, it is not surprising that the
cdh-fibrant version of cyclic homology is strongly related to the cdh cohomology
of the sheaf Ωp of Kahler differentials. Theorem 4.1 below shows that the cdh
cohomology of Ωp is computed, for a toric variety X, by the Zariski cohomology of
Danilov’s differentials Ω̃qX . Since the global sections of ΩpX and Ω̃pX can be computed
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explicitely for toric varieties, we are therefore able to find easily examples of toric
varieties with huge Grothendieck groups; see Example 5.12.

Gubeladze’s Nilpotence Theorem (stated and proven in Theorem 6.9 below)
asserts, roughly speaking, that after inverting the action of “dilations”, the K-
theory of a toric variety becomes homotopy invariant. Our Theorem 6.6 shows
that, after inverting the action of dilations, the global sections of Ω̃qX agree with the
Hochschild homology groups HHq(X). By the technique of [CHSW], this quickly
leads to our new proof of Gubeladze’s theorem.

Notation. Throughout this paper, we will adhere to the following notation. Let
N be a free abelian group of rank n < ∞ and let M = N∗ = Hom(N,Z). Define
NR = N ⊗Z R and MR = HomR(NR,R) ∼= M ⊗Z R. For m ∈MR, n ∈ NR, let 〈m,n〉
denote the value of m at n. Finally, let k denote a field of characteristic 0.

2. Review of toric varieties

The material in this section may be found in standard texts, such as [F] or [D].
A strongly convex rational cone in NR is a subset σ ⊂ NR that is a cone spanned

by finitely many vectors in N and that contains no lines. That is, σ = R≥0v1 +
· · ·+ R≥0vk for some v1, . . . , vk ∈ N ⊂ NR and whenever both u and −u belong to
σ, we must have u = 0. Given such a cone σ, let σ∨ ⊂ MR denote the dual cone,
defined to consist of those m ∈MR such that 〈m,−〉 ≥ 0 on σ. Note that σ∨ ∩M
is the abelian monoid (under addition of functions) of linear functions with integer
coefficients on NR whose restrictions to σ are nowhere negative. A face of σ is a
subset τ of the form

sigma-msigma-m (2.1) σ(m) = {n ∈ σ | 〈m,n〉 = 0}

for some m ∈ σ∨. Observe that a face of strongly convex rational cone is again a
strongly convex rational cone. We write τ ≺ σ to indicate that τ is a face of σ.

Recall that k denotes a field of characteristic zero. The affine toric k-variety
associated to a strongly convex rational cone σ is Uσ = Spec k[σ∨ ∩M ]. We write
elements of the monoid ring k[σ∨∩M ] as k-linear combinations of the set of formal
symbols {χm |m ∈ σ∨ ∩M}, so that multiplication in this ring is given on this
k-basis by χm · χm′ = χm+m′ .

A fan in NR is a finite collection of strongly convex rational cones in NR such that
(1) any face of a cone in ∆ is again in ∆ and (2) the intersection of any two cones in
∆ is a face of each. If τ is a face of σ, then Uτ → Uσ is an open immersion, because
the evident map k[σ∨ ∩M ] → k[τ∨ ∩M ] is given by inverting a finite number of
the χm. It follows that for any fan ∆, we may form a scheme X(∆) by patching
together the affine schemes Uσ corresponding to cones σ along the open subschemes
associated to their intersections. We call X(∆) the toric variety associated to ∆.

Orbits. We write TN = Spec k[M ] for the n-dimensional torus associated to N .
Observe that TN acts on each Uσ — equivalently, the ring k[σ∨ ∩M ] is naturally
M -graded with weight m part being k · χm, if m ∈ σ∨, and 0 if m /∈ σ∨. Since
these actions are compatible, the torus TN acts on X(∆).

The orbits of this action are tori, and are in 1–1 correspondence with the the
cones of ∆; thus X(∆) is the disjoint union of the orbits Tτ = orb(τ) corresponding
to the τ ∈ ∆. To describe the orbit Tτ , let Z(τ ∩ N) denote the subgroup of
N generated by τ ∩ N , and let N be the free abelian group N/Z(τ ∩ N). Then
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Tτ ∼= TN . Note that the orbit corresponding to the minimal cone {0} is the dense
open orb(0) = U0, and is naturally isomorphic to TN .

We write V∆(σ) for the closure of orb(σ) in X(∆). The orbits in V∆(σ) are
indexed by the star of σ, Star∆(σ), defined as the set of cones in ∆ containing σ:

V∆(σ) =
∐
σ≺τ

orb(τ).

Each orbit-closure V∆(σ) has the structure of a toric variety. To see this, let N =
N/Z(σ∩N). Then {ε |σ ≺ ε} forms a fan in NR, and the corresponding toric variety
is V∆(σ). The torus TN is a quotient of TN and the inclusion V∆(σ) ⊂ X(∆) is
TN -equivariant, the action of TN on V∆(σ) being induced by the quotient map
TN � TN . In the case where ∆ has a single maximal cone ε, so that σ is a face of
ε, we have

V∆(σ) = Spec k[ε∨ ∩M ∩ σ⊥],

and the closed immersion V∆(σ) ↪→ Uε is given by the ring surjection

Spec k[ε∨ ∩M ] � Spec k[ε∨ ∩M ∩ σ⊥]

sending χm to 0, if m /∈ σ⊥, and to χm, if m ∈ σ⊥.
It is useful to regard the open complement of V∆(σ) in X(∆) as the toric variety

corresponding to the largest sub-fan of ∆ in NR that does not contain τ .
Every toric variety is normal, but need not be smooth. A toric variety X(∆)

is smooth if and only if, for every cone σ in the fan ∆, the minimal lattice points
along the 1-dimensional faces (rays) of σ form part of a Z-basis of N . In particular,
in order for X(∆) to be smooth, the set of rays of each cone must be R-linearly
independent (such a cone is said to be simplicial).

Resolution of Singularities. We will need a detailed description of resolutions of
singularities for toric varieties, which we now recall from [F]. If v ∈ N is contained
in one (or more) of the cones of ∆, one may subdivide ∆ by the ray ρ = R≥0v
through v to form a new fan ∆′ in NR as follows: If τ ∈ ∆ does not contain ρ, then
τ is also a cone of ∆′. For each cone τ ∈ ∆ containing ρ and for each face ν of τ
not containing ρ, ∆′ contains the cone spanned by ρ and ν:

ν̃ := ν + R≥0ρ.

Finally, ρ itself belongs to ∆′. Thus if σ ∈ ∆ is the minimal cone of ∆ containing
ρ, then ∆′ is the disjoint union of ∆ \ Star∆(σ) and Star∆′(ρ).

There is a map of toric varieties X ′ = X(∆′) → X = X(∆) and it is proper,
birational, and equivariant with respect to the action of the torus TN . Starting
with any toric variety X(∆), one can arrive at a desingularization of X(∆) by
performing a finite number of subdivisions of this type.

Suppose ∆′ is the fan obtained by subdividing ∆ by inserting a ray ρ, and let
σ ∈ ∆ be the minimal cone in ∆ containing ρ. Then the description of the orbit-
closures given above makes it clear that

E2E2 (2.2)

V ′ =V∆′(ρ) i′−−−−→ X(∆′)= X ′y yπ
V =V∆(σ) i−−−−→ X(∆)= X
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is an abstract blow-up square. That is, this a pull-back square in which the hor-
izontal arrows are closed immersions and the map on open complements is an
isomorphism:

X(∆′) \ V∆′(ρ)
∼=−→X(∆) \ V∆(σ).

As with any abstract blow-up, the maps {X(∆′)→ X(∆), V∆(σ)→ X(∆)} form a
covering for the cdh-topology. Recall that the torus TN acts on each variety in the
above square and each map in this square is TN -equivariant.

3. Danilov’s sheaves Ω̃p
tOmega

In this section, we introduce the coherent sheaves Ω̃pX , first defined by Danilov
[D, 4.2]. We will see in the next section that their Zariski cohomology groups turn
out to give the cdh-cohomology groups of Ωp.

Given a fan ∆, let ∆(1) denote the collection of rays in ∆; the 1-skeleton of ∆
is the fan ∆(1) ∪ {0} and its toric variety X(1) lies in the smooth locus of X(∆).

Definition 3.1. For a toric k-variety X = X(∆) defined by a fan ∆ in NR, we
define Ω̃pX to be the coherent sheaf on X fitting into the exact sequence

0→ Ω̃pX → OX ⊗Z ∧p(M) δ−→
⊕

ρ∈∆(1)

OV∆(ρ) ⊗Z ∧p−1(M ∩ ρ⊥).

The component of the map δ indexed by ρ sends f⊗(m1∧· · ·∧mp) in OX⊗∧pZ(M)
to

i∗(f)⊗

(∑
i

(−1)i〈mi, nρ〉m1 ∧ · · · ∧ m̂i ∧ · · · ∧mp

)
where i : V∆(ρ) ↪→ X is the canonical closed immersion, and nρ ∈ N is the minimal
lattice point on ρ. By convention, Ω̃0

X = OX .

On the affine Uσ, the ring O(Uσ) is M -graded, so the sections of OX ⊗ ∧pM
are M -graded with ∧pM in weight 0; the weight m summand is k · χm ⊗ ∧pM if
m ∈ σ∨. Since δ is graded, it follows that each Ω̃pX(Uσ) is M -graded.

log-poles Remark 3.2. Sections of Ω̃1
X may be considered as differential forms on X, with

1 ⊗m corresponding to the form d log(χm) = dχm/χm. On a nonsingular cone σ,
we may identify O⊗∧pM with the locally free sheaf Ωp(logD) of differentials with
logarithmic poles along D = ∪V (ρ). This identifies the map δ with the residue
map, so we have Ωp|Uσ ∼= Ω̃p|Uσ .

As shown by Danilov [D, 4.3], the sheaf Ω̃pX is naturally isomorphic to j∗(Ω
p
U ),

where j : U ↪→ X is the immersion of the open subscheme U of smooth points
of X. Applying Remark 3.2 to X(1) ↪→ U , we see that Ω̃pX = j

(1)
∗ (Ωp

X(1)) where
j(1) : X(1) ↪→ X is the evident open immersion.

We will need an explicit description of the M -grading on Ω̃1, or rather on the
module of sections Ω̃1(Uσ) over an affine toric variety Uσ. (See [D, 4.2.3].) When
m ∈ σ∨∩M , its weight m summand is the subspace Ω̃1(Uσ)m = k·χm⊗(M∩σ(m)⊥)
of the weight m summand k · χm ⊗ ∧pM of O(Uσ) ⊗ ∧pM . Here σ(m)⊥ is the
orthogonal complement of the face σ(m) of σ defined in (2.1) by the vanishing of
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m: For m /∈ σ∨, Ω̃1(Uσ)m = 0 because O(Uσ)m = 0. More generally, we have for
m ∈M and p ≥ 0

E1E1 (3.3) Ω̃pX(Uσ)m =

{
k · χm ⊗ ∧p(M ∩ σ(m)⊥) if m ∈ σ∨

0 if m /∈ σ∨.

It is instructive to compare (3.3) to the analogous formula for Ωp(Uσ) and
HHp(Uσ), which are graded by the submonoid σ∨ ∩M of M . There is a natural
map from the module ΩpX of Kähler differentials to Ω̃pX . On Uσ it is the M -graded
map induced by the M -graded map Ωp(Uσ)→ O(Uσ)⊗ ∧p(M) defined by:

E3E3 (3.4) χm0 dχm1 ∧ · · · ∧ dχmp 7→ χm ⊗
(
m1 ∧ · · · ∧mp

)
, m =

∑
mi.

Recall that the orbit-closure V (τ) for the face τ is Spec(k[σ∨ ∩M ∩ τ⊥]).

HH-m Lemma 3.5. For each m ∈ σ∨ ∩M , let V = V (σ(m)) denote the orbit-closure for
the face σ(m) of σ. Then the closed immersion V ⊂ σ induces an isomorphism
HH∗(Uσ)m ∼= HH∗(V )m. In particular, for all p:

ΩpX(Uσ)m = Ωp(V )m

Proof. For convenience, let us set A = σ∨ ∩ M and B = A ∩ σ(m)⊥, so that
Uσ = Spec(k[A]) and V (σ(m)) = Spec(k[B]). The immersion V ⊂ Uσ corresponds
to a surjection k[A]→ k[B], which is split by the evident inclusion ι : k[B]→ k[A].
Hence HH∗(k[B]) is a summand of HH∗(k[A]), and it suffices to show that ι induces
a surjection on the weight m summand of the complex for Hochschild homology.

Now the degree p part of the Hochschild complex for k[A] is k[A]⊗p+1, so the
weight m summand has a basis consisting of the χu0 ⊗ χu1 · · · ⊗ χup where ui ∈ A
and

∑
ui = m. If n ∈ σ(m), then 〈ui, n〉 ≥ 0 and

∑
i〈ui, n〉 = 〈m,n〉 = 0. This

forces each 〈ui, n〉 = 0, i.e., ui ∈ B. Hence k[B]⊗p+1
m = k[A]⊗p+1

m , as claimed. �

orbitBU Lemma 3.6. Every orbit blow-up square (2.2) determines a distinguished triangle
on XZar of the form

Ω̃pX → π∗Ω̃
p
X′ ⊕ i∗Ω̃

p
V → π∗i

′
∗Ω̃

p
V ′ → Ω̃pX [1],

and hence a long exact sequence of Zariski cohomology groups:

· · · → Hq(X, Ω̃p)→ Hq(X ′, Ω̃p)⊕Hq(V, Ω̃p)→ Hq(V ′, Ω̃p)→ Hq+1(X, Ω̃p)→ · · · .

Proof. We have short exact sequences of coherent sheaves

0→ Ω̃p(X,V ) → Ω̃pX → i∗Ω̃
p
V → 0

on X, and 0 → Ω̃p(X′,V ′) → Ω̃pX′ → i∗Ω̃
p
V ′ → 0 on X ′. Applying Rπ∗ to the latter

yields a morphism of distinguished triangles

Ω̃p(X,V ) −−−−→ Ω̃pX −−−−→ i∗Ω̃
p
Vy y y

Rπ∗Ω̃p(X′,V ′) −−−−→ Rπ∗Ω̃pX′ −−−−→ Rπ∗i∗Ω̃pV ′

Danilov proved in [D2, Prop 1.8] that the left vertical map is a quasi-isomorphism,
i.e., that Rjπ∗Ω̃p(X′,V ′) = 0 for j > 0, and Ω̃p(X,V )

'−→π∗Ω̃p(X′,V ′). The distinguished
triangle follows from this in a standard way. �
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ratsing Remark 3.7. Danilov [D, 8.5.1] proved that if π : X ′ → X is a morphism of toric
varieties resulting from a subdivision of the fan, then OX

'−→Rπ∗OX′ , i.e., π∗OX′ =
OX and Riπ∗OX′ = 0 for i > 0. This proves that toric varieties have (at most)
rational singularities.

4. The cdh-cohomology of Ωp for toric varieties

In this short section, we prove Theorem 4.1, that Danilov’s sheaves compute the
cdh-cohomology groups H∗cdh(X,Ωp) for toric varieties.

Thm1 Theorem 4.1. Let X be an arbitrary toric k-variety. There is an isomorphism

H∗Zar(X, Ω̃
p
X) ∼= H∗cdh(X,Ωp)

for all p, natural for morphisms of toric varieties and for the closed embedding of
an orbit-closure of X into X.

Example 4.2. The case ∗ = 0 of Theorem 4.1 is that Ω̃p(X) ∼= H0
cdh(X,Ωp). This

is equivalent to Danilov’s calculation [D2, 1.5] that in (2.2), Ω̃pX
'−→π∗Ω̃pX′ for all p.

For the proof, we recall that H∗cdh(X,Ωp) is just the Zariski hypercohomology
of the complex Ra∗a∗Ωp|X , where a : (Sch/k)cdh → (Sch/k)Zar is the morphism of
sites and |X denotes the restriction from the big Zariski site (Sch/k)Zar to XZar.
The following Mayer-Vietoris lemma is an immediate consequence of [8, 12.1].Does this go here?

RaRpi Lemma 4.3. For every cdh sheaf F , Ra∗F|X ∼= Rπ∗(Ra∗F|Y•).
Recall that we can resolve the singularities of a toric variety via equivariant

blow-up squares of the form (2.2). Iterating the orbit blow-up operations described
in (2.2), as in [2, 6.2.5] we can find a smooth toric cdh-hypercover π : Y• → X.

Probably not crystal
clear to non-experts.
The basic issue: 3.6
deals with “cubical”
resolutions, whereas
the conclusion you
are drawing from it
concerns simplicial
ones. Perhaps there
is a reference that
would help? –MW
How is [HodgeIII]?
-CW

Proof of Theorem 4.1. As in [2, 5.2.6], Lemma 3.6 implies that the maps Ω̃pX →
Rπ∗Ω̃pY• are quasi-isomorphisms. By Remark 3.2, the maps ΩpY• → Ω̃pY• are isomor-
phisms. Hence we have quasi-isomorphisms of complexes of Zariski sheaves:

Rπ∗ΩpY•
'−→Rπ∗Ω̃pY•

'←−Ω̃pX .

Now by [CHW, 2.5], we have ΩpYn
∼= Ra∗a∗Ωp|Yn . Applying Lemma 4.3 to F = a∗Ωp

yields:
Ra∗a∗Ωp|X

'−→ Rπ∗(Ra∗a∗Ωp|Y•) ∼= Rπ∗ΩpY• .

Applying H∗Zar(X,−) yields H∗cdh(X,Ωp) '−→H∗Zar(Y•,Ω
p) ∼= H∗Zar(X, Ω̃

p), an iso-
morphism which is natural in the pair Y• → X. As any two smooth toric hypercov-
ers have a common refinement, the isomorphism Ω̃pX ' Ra∗a∗Ωp|X in the derived
category is independent of Y•. The asserted naturality follows. �

Now recall that every variety is locally smooth for the cdh topology. Hence the
Hochschild homology sheaf HHn has a∗HHn

∼= a∗Ωn. We write Hcdh(X,HH) for
Ra∗a∗ applied to the Hochschild complex, and Hcdh(X,HH(t)) for its summand
in Hodge weight t. We write the Zariski hypercohomology of these complexes as
H∗cdh(X,HH) and H∗cdh(X,HH(t)), respectively. By [CHW, 2.2], Hcdh(X,HH(t)) ∼=
Ra∗a∗Ωt[t]. Hence Theorem 4.1 translates into the following language:

HH/k Corollary 4.4. For every toric variety X, Hn
cdh(X,HH(t)) ∼= Ht+n

Zar (X, Ω̃tX), and

Hn
cdh(X,HH) ∼=

⊕
t≥0

Ht+n
Zar (X, Ω̃tX).



THE K-THEORY OF TORIC VARIETIES 7

The Hochschild homology in 4.4 is taken over any field k of characteristic zero.
Since every toric variety X = Xk over k is obtained by base-change from a toric
variety XQ over the ground field Q, flat base-change yields Ω∗X/k ∼= Ω∗XQ/Q ⊗Q k,
and the Künneth formula yields Ω∗X/Q = Ω∗XQ/k

⊗Q Ω∗k/Q = Ω∗X/k ⊗k Ω∗k/Q. Similar
formulas hold for HH∗(X/Q) and hence for H∗cdh(X,HH(−/Q)).

We define Ω̃tX/Q to be j∗ΩtX/Q. The above remarks imply that Ω̃tX ∼= Ω̃tXQ/Q⊗Qk,

and that there is also a Künneth formula Ω̃∗X/Q
∼= Ω̃∗X ⊗k Ω∗k/Q. Hence we have

have the following variant of the previous corollary.

HH/Q Corollary 4.5. For every toric k-variety X,

Hn
cdh(X,HH(t)(−/Q)) ∼= Ht+n

Zar (X, Ω̃tX/Q) ∼= ⊕i+j=tHt+n
Zar (X, Ω̃iX)⊗k Ωjk/Q,

and
Hn

cdh(X,HH(−/Q)) ∼=
⊕
t≥0

Ht+n
Zar (X, Ω̃tX/Q).

5. K-theory and cyclic homology of toric varieties

Recall from section 3 that Ω̃pX has both a combinatorial definition, and an in-
terpretation as j∗Ω

p
U where j : U ↪→ X is the inclusion of the smooth locus. In

this section, we study the exterior differentiation map d : Ω̃pX → Ω̃p+1
X which arises

as the pushforward of the de Rham differential d : ΩpU → Ωp+1
U . The following

combinatorial description of this map is useful.

Lemma 5.1. ([D, 4.4]) The map d : Ω̃pX → Ω̃p+1
X induced by exterior differentiation

d : ΩpU → Ωp+1
U is the M -graded map which in weight m is kχm ⊗ (m1 ∧ · · · ) 7→

kχm ⊗ (m ∧m1 ∧ · · · ). That is, it is induced by:

(OX(Uσ)m ⊗Z ∧pM) ∼= ∧pM m∧−−→ ∧p+1 M ∼= (OX(Uσ)m ⊗Z ∧p+1M).

Pushing forward the de Rham complex Ω∗U , we see that the Ω̃pX ’s fit together to
form a “log de Rham” complex Ω̃∗X on X. There is a natural map Ω∗X → Ω̃∗X of
complexes, which is an isomorphism on the smooth locus of X. Similarly, pushing
forward the de Rham complex Ω∗U/Q from the smooth locus to X, we obtain a log
de Rham complex Ω̃∗X/Q.

As in [CHSW] and [CHW], Hcdh(X,HC) denotes Ra∗a∗ applied to the cyclic
homology cochain complex, and Hcdh(X,HC(t)) is its summand in Hodge weight
t. The Zariski hypercohomology of these complexes is written as H∗cdh(X,HC) and
H∗cdh(X,HC(t)), respectively, and is called the cdh-fibrant cyclic homology of X.

By [CHW, 2.2], Hcdh(X,HC(t)) ∼= Ra∗a∗Ω≤t[2t], where Ω≤t denotes the brutal
truncation of the de Rham complex. Similarly, we write Ω̃≤tX for the brutal trunca-
tion of the Danilov complex Ω̃∗X . By Theorem 4.1, Hcdh(X,HC(t)) ∼= Ω̃≤tX [2t].

As with Hochschild homology, the cyclic homology in the above paragraph is
taken over k. As in the previous section, we may also consider cyclic homology taken
over the ground field Q, and we also have Hcdh(X,HC(t)(−/Q)) ∼= Ra∗a∗Ω≤t/Q[2t],
again by [CHW, 2.2]. Again by Theorem 4.1, we have an isomorphism in the derived
category: Ra∗a∗Ω≤t/Q ' Ω̃≤tX/Q. Concatenating these identifications, we have:
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cdhHC Proposition 5.2. If X is a toric k-variety, the cdh-fibrant cyclic homology is given
by the formula:

H−ncdh(X,HC) ∼=
⊕

t≥0
H2t−n

Zar (X, Ω̃≤tX ).

and
H−ncdh(X,HC(−/Q)) ∼=

⊕
t≥0

H2t−n
Zar (X, Ω̃≤tX/Q).

HC0-cdh Example 5.3. The case t = 0 of 5.2 yields the formula

HC(0)
n (X) = H−nZar(X,O) '−→H−ncdh(X,O) = H−ncdh(X,HC(0)).

This illustrates the interconnections between the case p = 0 of Theorem 4.1,
Danilov’s calculation in Remark 3.7, and the convention that Ω̃0

X = OX .

These calculations tell us about the algebraic K-theory of toric varieties, via the
following translation of [CHW, 1.6] into the present language.F or FHC? -CW

Definition 5.4. Let FHC [1] denote the mapping cone complex of HC(−/Q) →
Ra∗a∗HC(−/Q); the indexing we use is such that there is a long exact sequence:

· · · → H−n(X,FHC)→ HCn(X/Q)→ H−ncdh(X,HC(−/Q))→ · · · .

FKFHC Theorem 5.5. ([CHW, 1.6]) For every X in Sch/k, there is a long exact sequence

· · · → KHn+1(X)→ H−nZar(X,FHC [1])→ Kn(X)→ KHn(X)→ · · · .

For toric varieties, the sequence (5.5) splits:

Willies Proposition 5.6. For every toric variety X, K∗(X)→ KH∗(X) is a split surjec-
tion. Hence

Kn(X) ∼= KHn(X)⊕H−nZar(X,FHC [1]).

Proof. For each affine cone σ, M(σ) := M ∩ σ⊥ is a free abelian monoid, so Tσ =
Spec(k[M(σ)]) is a torus. We first claim that the inclusion iσ : k[M(σ)] � k[M ∩
σ∨], or Uσ � Tσ, induces an isomorphism on KH-theory, i.e.,

eq:KHTeq:KHT (5.7a) K(Tσ) '−→KH(Tσ) '−→KH(Uσ).

Since (5.7a) factors K(Tσ)→ K(Uσ)→ KH(Uσ), this proves the lemma for Uσ.
Because Tσ is regular, the first map is an isomorphism. For a suitable rational

n ∈ σ, evaluation at n is a monoid map from M ∩ σ∨ to N with kernel M(σ). This
gives k[M ∩ σ∨] the structure of an N-graded algebra with k[M(σ)] in degree zero.
Hence iσ induces an isomorphism KH(k[M(σ)]) ∼= KH(k[M ∩ σ∨]), as claimed.

If τ is a face of σ, we have a commutative diagram
k[M(σ)] −−−−→ k[M ∩ σ∨]

into

y yinto

k[M(τ)] −−−−→ k[M ∩ τ∨].
Thus the isomorphism in (5.7a) is natural in σ, for σ a face of a fan ∆, and so is
the splitting of K(Uσ) → KH(Uσ). Since K(X) is the homotopy limit over ∆ of
the K(Uσ), and similarly for KH(X), the homotopy limit of the splittings provides
a splitting of the map K(X)→ KH(X). �

The remark is not
needed at all in the
proof, but maybe it
makes things clearer

Remark 5.7.1. The proof amounts to the observation that there is an algebraic
homotopy from Uσ onto its smallest orbit orb(σ), and that this homotopy is natural
with respect to face inclusions.
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The sequence (5.5) is compatible with the decomposition arising from the Adams
operations; K(i)

∗ (X) and KH(i)
∗ (X) fit into a long exact sequence with F (i−1)

HC . For
example, it is immediate from Example 5.3 that F (0)

HC(X) is acyclic, proving that
K

(1)
∗ (X) ∼= KH

(1)
∗ (X) for toric varieties. The case ∗ = 0, which is a well known

assertion about the Picard group of normal varieties, has the following extension:

K0 Proposition 5.8. If X = Uσ is an affine toric k-variety, then K0(X) = Z.

Proof. Note that the coordinate ring of Uσ is graded, so KH0(X) = Z. By 5.5,
we need to show that H0(X,FHC) = 0. Since HC−1(X) = 0, we are reduced to
proving that the map

HC0(X)→ H0
cdh(X,HC)

is onto. By 5.2, the target of this map is
⊕

t≥0H
2t
Zar(X, Ω̃

≤t
/Q). Since X is affine, we

have H2t
Zar(X, Ω̃

≤t
/Q) = 0 for all t > 0. Finally, when t = 0 we have

H0
Zar(X, Ω̃

≤0
/Q ) = H0

Zar(X,OX) = HC0(X). �

Remark 5.9. A much better version of this Corollary was proven years ago by
Gubeladze [3]: For a PID R, every finitely projective module over R[A], where A is
a semi-normal, abelian, cancellative monoid without non-trivial units, is free. This
was extended to the case where R is regular by Swan [S].

Of course, the dictionary coming from [CHW] via 5.5 also allows us to say some-
thing about the higher K-theory of toric varieties. Let K(i)

n (X) denote the weight
i part of Kn(X) ⊗ Q with respect to the Adams operations, i.e., the eigenspace
where ψk = ki for all k. We adopt the parallel notation KH(i)

n (X) for the weight i
part of KHn(X).

The absolute cotangent sheaf LX of X/Q has L≥0
X = Ω1

X/Q and H1−n(X,LX) =

HH
(1)
n (X/Q); see [12, 8.8.9]. There is a natural map LX → Ω1

X/Q → Ω̃1
X/Q.

cor3 Corollary 5.10. For any toric k-variety X, we have a distinguished triangle

F (1)
HC → LX → Ω̃1

X/Q → F
(1)
HC [1],

and hence an isomorphism K
(2)
q (X) ∼= KH

(2)
q (X)⊕H2−q

Zar (X,LX → Ω̃1
X/Q).

Proof. The Zariski sheaf HC(1) is the mapping cone of O → LX ; see [12, 9.8.18].
Since Ra∗(a∗O)|X = OX by Remark 3.7, and Hcdh(X,HC(1)) ' (O → Ω̃1

X)[2] by
5.2, it follows that the mapping cone F (1)

HC of HC(1) → Hcdh(X,HC(1)) is also the
mapping cone of LX → Ω̃1

X . This proves the first assertion; the second assertion
follows from this, Proposition 5.6 and [CHW, 1.6], which refines Theorem 5.5. �

The techniques of [CHW] allow us to find examples of toric varieties with “huge”
K0 and K1 groups, in the spirit of Gubeladze [5]. Our toric varieties will have
quotient singularities because all the cones will be simplices; see [F].

hugeK1 Example 5.11. Let N = Z3, and let us to agree to write elements of N as column
vectors and elements of M ∼= Z3 as row vectors. Define τ to be the cone in the xy-

plane of NR = R3 spanned by the vectors e1 =


1
0
0

 and e1 + 2e2 =


1
2
0

. Then Uτ is a
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singular, affine toric k-variety. In fact, Uτ = Spec
(
k[X,Y, Z]/(Y Z −X2)[T, T−1]

)
,

where X = χ(1,0,0), Y = χ(0,1,0), Z = χ(2,−1,0) and T±1 = χ(0,0,±1). This is because
τ∨ ∩M is generated by the vectors (1, 0, 0), (0, 1, 0), (2,−1, 0) and (0, 0,±1).

Let m ∈ M be the vector (1, 0, 0). Its face is τ(m) = {0}, so τ(m)⊥ = M .
We see from (3.3) that Ω̃1(Uτ )m = k ·X ⊗M ∼= k3. The forms dX, XdY/Y and
XdT/T form a basis. On the other hand, Ω1(Uτ )m is the k-vector space spanned
by χud(χv) with u, v ∈ τ∨ ∩M satisfying u+ v = m. It is easy to see that the only
u, v ∈ τ∨∩M satisfying u+v = (1, 0, 0) are when u, v is {(0, 0,−j), (1, 0, j)}. Thus
Ω1(Uτ )m is the 2-dimensional vector space spanned by dX and XdT/T . It follows
that Ω1(Uτ )→ Ω̃1(Uτ ) is not onto in weight m.

Similar reasoning shows that for m = (1, 0, c) we also have Ω̃1(Uτ )m ∼= k3 on
T c dX, T cX dY/Y and T c−1X dT , and that Ω̃1(Uτ )m = Ω1(Uτ ) for all other m.
(It is useful to use the fact that Ω1(Uτ ) is a submodule of Ω̃1(Uτ ) by [9].) Thus
Ω̃1(Uτ )/Ω1(Uτ ) ∼= k[T, T−1]. By the Künneth formula,

coker
{

Ω1(Uτ/Q)→ Ω̃1(Uτ/Q)
} ∼= Ω̃1(Uτ )/Ω1(Uτ ).

As in Proposition 5.6, it is easy to see that KH∗(Uτ ) ∼= K∗(k[T, T−1]). Hence
5.10 implies that K(2)

1 (Uτ ) is isomorphic to a nonzero k-vector space:

K
(2)
1 (Uτ ) ∼= H1

Zar(Uτ ,Ω
1 → Ω̃1) ∼= Ω̃1(Uτ )/Ω1(Uτ ) ∼= k[T, T−1].

huge Example 5.12. We now extend the τ of Example 5.11 to form a fan ∆ consisting of
two 3-dimensional cones σ1, σ2 (together with all of their faces) such that σ1∩σ2 =
τ . Specifically, let σ1 and σ2 be spanned by the two edges of τ together with

v1 =


−1

0
+1

 and v2 =


−1

0
−1

,

respectively. Let X = X(∆), so X = Uσ1 ∪ Uσ2 and Uτ = Uσ1 ∩ Uσ2 . It follows
from 5.6 that KH0(X) = Z⊕ Z and that

K0(X) ∼= Z2 ⊕H1
Zar(X,FHC).

We will show that the right-hand term is nonzero; since it is a k-vector space, it will
follow that K0(X) contains additive group underlying a non-zero k-vector space.
Taking k to be uncountable, for example k = C, we see K0(X) is uncountable.

Because the singular locus of X is 1-dimensional, Hn(X,LX) = Hn(X,Ω1
X) for

n > 0. By Corollary 5.10,

K
(2)
0 (X) = H1

Zar(X,FHC) = H2
Zar(X,Ω

1 → Ω̃1).

From the Mayer-Vietoris sequence for the given cover of X, and Proposition 5.8,
we see that there is an exact sequence

Ω̃1(Uσ1)/Ω1(Uσ1)⊕ Ω̃1(Uσ2)/Ω1(Uσ2)→ Ω̃1(Uτ )/Ω1(Uτ )→ K
(2)
0 (X)→ 0.

By Example 5.11, it suffices to consider the forms T cXdY/Y in weight m = (1, 0, c),
c ∈ Z. Note that τ(m) = {0}. If c > 0 then m ∈ σ∨1 and the element χmdY/Y ∈
Ω̃1(Uσ1) maps to T cX dY/Y ∈ Ω̃(Uτ ). If c < 0 then m ∈ σ∨2 and the element
χmdY/Y ∈ Ω̃1(Uσ1) maps to T cX dY/Y ∈ Ω̃(Uτ ).
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We are left with the form X dY/Y in weight m = (1, 0, 0). Since m /∈ σ∨i for
i = 1, 2, we have Ω̃1(Uσ1)m = Ω̃1(Uσ2)m = 0. This proves the claim that

K
(2)
0 (X) ∼= Ω̃1(Uτ )/Ω1(Uτ )m ∼= k.

As in Gubeladze’s example of toric varieties with “huge” Grothendieck groups,
we can further extend ∆ to obtain a complete fan consisting of simplicial cones ∆,
so that X = X(∆) is a projective closure of X and such that Y = X(∆ − ∆) is
smooth. Since Y and X form an open cover of X, we see that K0(X) also contains
the additive group underlying a non-zero k-vector space.

6. Gubeladze’s Nilpotence Theorem

The main goal of this section is to give a new proof of Gubeladze’s “Nilpotence
Theorem” [6] for the K-theory of toric varieties. This is done in Theorem 6.9.

For a toric variety X = X(∆) with ∆ a fan in NR and integer c ∈ N, define
θc : X(∆) → X(∆) to be the endomorphism of toric varieties induced by the
endomorphism of the lattice N given by multiplication by c. If σ ⊂ NR is a cone,
the map θc : Uσ → Uσ of affine toric k-varieties is induced by the ring endomorphism
of k[σ∨∩M ] that sends χm to χcm. That is, this is the map that raises all monomials
to the c-th power. Observe that if k = Fp and c = p, this is precisely the Frobenius
endomorphism, and it useful to think of θc as a generalization of Frobenius that
exists in the category of toric varieties.

Fix a sequence c = (c1, c2, . . . ) of integers with ci ≥ 2 for all i. If F is a
contravariant functor from toric varieties to abelian groups, we let

F (X)c = lim−→

(
F (X)

θ∗c1−→F (X)
θ∗c2−→· · ·

)
.

Gubeladze’s Nilpotence Theorem asserts that the natural map K∗(X)→ KH∗(X)
induces an isomorphism K∗(X)c → KH∗(X)c for any toric variety X. Our proof
of this theorem involves computing HHq(X)c where HH∗ denotes Hochschild ho-
mology.

Fix a cone σ. As in the proof of Lemma 3.5, the chain complex defining the
Hochschild homology of k[σ∨∩M ] is σ∨∩M -graded with the weight of χm0 ⊗· · ·⊗
χmp defined to be m0 + · · · + mp, and the Hochschild homology groups of Uσ are
σ∨ ∩M -graded k[σ∨ ∩M ]-modules. A fortieri, they are M -graded, with zero in
weight m if m /∈ σ∨. Since θc(χm0 ⊗ · · · ) = χcm0 ⊗ · · · , θc sends the weight m
summand to the weight cm summand.

The Hochschild homology of a non-affine variety is defined by taking Zariski
hypercohomology of the sheafification of the complex defined just as in the definition
of HH∗(R), but with OX ⊗k · · · ⊗k OX in place of R⊗k · · · ⊗k R (see [10, 4.1]).

For a toric variety X = X(∆), we may compute HH∗(X) as follows: Let
σ1, . . . , σm denote the maximal cones in the fan ∆. For each 1 ≤ i0 ≤ · · · ≤ ip ≤ m,
we may form the complex defining the Hochschild homology of the affine toric vari-
ety Uσi0∩···∩σip . We then assemble these into a bicomplex in the usual Čech manner
and take the homology of the associated total complex.

Mgraded Lemma 6.1. For any toric variety X = X(∆), the groups HH∗(X) have a natural
M -grading, and the endomorphism θc maps the weight m summand to the weight
cm summand.
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Proof. We have seen that the Hochschild complexes forming the columns of the bi-
complex are M -graded. Since the ring maps are all M -graded, the Čech differentials
are also M -graded. Since HH∗(X) is the homology of an M -graded bicomplex, it
is M -graded. Since the map θc sends the weight m subcomplex to the weight cm
subcomplex, it has the same effect on homology. �

CechSS Remark 6.1.1. This construction implies that the Čech spectral spectral sequence
is M -graded:

E1
pq =

⊕
i0<···<ip

HHq(Uσi0∩···∩σip )⇒ HHq−p(X).

invert-m Lemma 6.2. Set A = σ∨ ∩ M . If m ∈ A lies on no proper face of σ∨, then
A+ 〈−m〉 = M , and k[A][χ−m] = k[M ].

Proof. Since k[A][χ−m] = k[A+ 〈−m〉], it suffices to prove the first assertion, i.e.,
that every t ∈M is of the form a−Nm for some positive integer N . Fix a nonzero
n ∈ N . The assumption that m lies on no proper face of σ∨ implies that 〈m,n〉 > 0.
Hence 〈t+Nm,n〉 > 0 for n� 0. Since σ ∩N is finitely generated, it follows that
t+Nm ∈ A for N � 0, as claimed. �

lem:scale Lemma 6.3. The map θc : Ωq(Uσ)m → Ωq(Uσ)cm is multiplication by cqχ(c−1)m.

Proof. When
∑
ui = m, θc takes ω = χu0dχu1 ∧ · · · dχuq to cqχmω. �

t-scale Remark 6.3.1. The same proof shows that θc : Ω̃q(Uσ)m → Ω̃q(Uσ)cm is multipli-
cation by cqχ(c−1)m. By (3.3), this is an isomorphism for all c 6= 0.

cOmega Proposition 6.4. For any toric k-variety X, the natural maps (3.4) induce iso-
morphisms, for all q:

Ωq(X)c → Ω̃q(X)c

Proof. We may assume X = Uσ, so that Ωq(X) = Ωqk[A] for A = σ∨∩M . It suffices
to check that the map is an isomorphism in each weight m ∈ Mc; without loss of
generality, one may assume m ∈ M . By Lemma 3.5, (Ωqk[A])m ∼= (Ωqk[B])m, where
B = A ∩ σ(m)⊥. By Lemma 6.3, θc coincides with multiplication by cqχ(c−1)m

both as a map (Ωqk[A])m → (Ωqk[A])cm and as a map (Ωqk[B])m → (Ωqk[B])cm. Hence
the group

Ωq(X)c
m = lim−→

(
(Ωqk[A])m

θc1−→ (Ωqk[A])c1m
θc2−→ · · ·

)
is the weight m part of the localization of Ωqk[B] at χm, i.e., of Ωq(k[B][χ−m]). By
construction, m is not on any proper face of σ(m)∨ ∩ σ(m)⊥. By Lemma 6.2,

Ωq(k[B][χ−m])m ∼= Ωq(k[B + 〈−m〉])m = Ωq(k[T ])m, T = M ∩ σ(m)⊥.

Since T is a free abelian group, (Ωqk[T ])m ∼= ∧
q(T ). Now recall that by Remark

6.3.1 and (3.3) we also have

(Ω̃qk[T ])
c
m
∼= Ω̃q(Uσ)c

m = Ω̃q(Uσ)m ∼= k · χm ⊗ ∧q(T ),

The map (Ωqk[T ))m → (Ω̃qk[T ))m is given by (3.4), and it is an isomorphism by
inspection. �add details?
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In order to prove an analogous result for Hochschild homology, we need to briefly
review the decomposition of Hochschild homology into summands given by the
(higher) André-Quillen homology groups. For more details, we refer the reader to
[7, 3.5] or [12, 8.8].

For a commutative k-algebra R, one forms a simplicial polynomial k-algebra R•
and a simplicial ring map R• → R which is a homotopy equivalence on underlying
simplicial sets. The (higher) cotangent complex L(q)

X/k is defined to be the simplicial
R-module R⊗R•Ω

q
R•

, and the André-Quillen homology groups of R are defined to be

D
(q)
p (R) = Hp(L(q)

X/k). The R-modules D(q)
p (R) are independent up to isomorphism

of the choices made. In general, there is a natural spectral sequence of R-modules

D(q)
p (R) =⇒ HHp+q(R)

and a natural R-module isomorphism D
(q)
0 (R) ∼= ΩqR/k. Since we are assuming

char(k) = 0, this spectral sequence degenerates to give a natural decomposition of
R-modules Do we need this?

Probably not, but
I have not checked
carefully. In any
case, such a decom-
position exists and is
nice to know about.
–MW

HHn(R) ∼=
⊕
p+q=n

D(q)
p (R) = ΩqR/k ⊕

⊕
p+q=n,p>0

D(q)
p (R).

Since the André-Quillen homology groups are functorial for ring maps, the en-
domorphisms θci preserve this decomposition.

AQscale Lemma 6.5. Let Uσ be an affine toric variety. Then the Dq
p(Uσ) are M -graded

modules and, for every m ∈ σ∨ ∩ M , the map θc : Dq
p(Uσ)m → Dq

p(Uσ)cm is
multiplication by cqχ(c−1)m.

Proof. Let A = σ∨∩M and form a simplicial resolution of A by free abelian monoids
A• → A. That is, A• is a simplicial abelian monoid which in each degree is free
abelian and the map of simplicial abelian monoids A• → A is a homotopy equiva-
lence. This is possible by the same basic cotriple resolution used to form simplicial
free resolutions of k-algebras (see [12, 8.6]). For functorial reasons, k[A•]→ k[A] is
a free simplicial resolution of k[A]. We therefore have 8/4 D The way

this equation was
before is correct.
Indeed, this one
makes no sense:
what does Hp(k[A])
even mean? –MW

D(q)
p (k[A]) = Hp(k[A])⊗k[A•] Ωqk[A•]

.

For each n, the ring k[An] is M -graded by the maps δn : An → A ⊂ M . Thus the
simplicial ring k[A•] is also M -graded and the map k[A•]→ k[A] of simplicial rings
preserves this grading. It follows that k[A] ⊗k[A•] Ωqk[A•]

is naturally M -graded,
where the weight of χu0 ⊗ d(χu1) ∧ · · · ∧ d(χuq ) is u0 + δn(u1) + · · · + δn(uq), for
any u0 ∈ A and u1, . . . , uq ∈ An. Hence D(q)

p (k[A]) is an M -graded k[A]-module,
and it is clear that, for any positive integer c, the endomorphism θc of D(q)

p (k[A])
maps the weight m summand to the weight cm summand. To prove that the map

θc : D(q)
p (k[A])m → D(q)

p (k[A])cm

coincides with multiplication by cqχ(c−1)m, it suffices to prove the analogous asser-
tion for the M -graded k[A]-modules k[A]⊗k[An] Ωqk[An]. The proof of this is exactly
like the proof of Lemma 6.3, using ω = χu0 ⊗ dχu1 ∧ · · · ∧ dχuq . �

Thm2 Theorem 6.6. For any toric k-variety X, the natural maps

Ωq(X)c → HHq(X)c

are isomorphisms, for all q.
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Proof. By the spectral sequence in 6.1.1, we may assume that X is affine, say of
the form X = Uσ for some cone σ. Setting A = σ∨∩M , the coordinate ring of X is
k[A]. To establish the isomorphism Ωp(Uσ)c ∼= HHp(Uσ)c it suffices to prove that

D(q)
p (k[σ∨ ∩M ])c = 0

for all p > 0. As in the proof of Proposition 6.4, it suffices to fix an arbitrary
m ∈M and show that the weight m part vanishes. By Lemma 3.5, D(q)

p (k[A])m ∼=
D

(q)
p (k[B])m, where B = A ∩ σ(m)⊥. By Lemma 6.5, θc coincides with multipli-

cation by cqχ(c−1)m both as a map D
(q)
p (k[A])m → D

(q)
p (k[A])cm and as a map

D
(q)
p (k[B])m → D

(q)
p (k[B])cm. Hence the weight m summand

D(q)
p (X)c

m = lim−→

(
D(q)
p (k[A])m

θc1−→ D(q)
p (k[A])c1m

θc2−→ · · ·
)

is the weightm part of the localization ofD(q)
p (k[B]) at χm, i.e., ofD(q)

p (k[B][χ−m]).
Recall that σ(m) ⊂ σ denotes the face of σ (possibly just the origin) on which
m = 0. By Lemma 6.2,

D(q)
p (k[B][χ−m])m ∼= D(q)

p (k[B + 〈−m〉])m = D(q)
p (k[T ])m, T = M ∩ σ(m)⊥.

Since T = M ∩ σ(m)⊥ is a free abelian group, we have

D(q)
p (k[B][

1
χm

]) = D(q)
p (k[T ]) = 0

for all p > 0. This proves that D(q)
p (k[A])c = 0 for all p > 0, proving the theorem.

�

cor2 Corollary 6.7. For any field k of characteristic 0 and any toric k-variety X, we
have a natural isomorphism for all n:

HHn(X/Q)c '−→H−ncdh(X,HH(−/Q))c.

The right hand side in 6.7 denotes Hochschild homology with cdh descent imposed
(and localized by c). (On both sides, we take Hochschild homology over Q.)

Proof. Let us write XQ for the model of X defined over the rationals and Xk = X
for the model over k. We have Xk = XQ ×Spec Q Spec k.

The natural map
HHn(Xk/k)c−→H−ncdh(X,HH)c

is an isomorphism. Since both sides satisfy Zariski descent, this is an immediate
consequence Theorem 4.1 and Theorem 6.6. The Künneth formula for Hochschild
homology, described before Corollary 4.5, gives

HH∗(X/Q)c ∼= HH∗(XQ/Q)c ⊗Q Ω∗k/Q.

In particular, one gets long exact sequences for HH∗(−/Q)c associated to abstract
blow-ups of toric k-varieties. Since the map

HHn(Xk/Q)c ∼= H−ncdh(X,HH(−/Q))c

is an isomorphism whenever X is smooth by [CHW, 2.4], the result holds by induc-
tion and the five-lemma. �
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Corollary 6.8. For any field k of characteristic 0 and any toric k-variety X, and
all n, we have

HCn(X/Q)c ∼= H−ncdh(X,HC(−/Q))c.
Better or worse than
the old proof?Proof. There is a map from the SBI sequence for HH and HC to the SBI sequence

for its cdh-fibrant variant. Applying the exact functor (−)c yields a similar map of
long exact sequences, every third term of which is the isomorphism of Corollary 6.7.
The result now follows by induction on n, since all complexes are cohomologically
bounded above. �

Thm3 Theorem 6.9. For any field k of characteristic 0 and any toric k-variety X, we
have

K∗(X)c ∼= KH∗(X)c.

Proof. Since (−)c is exact, it suffices by Theorem 5.5 to show that H∗Zar(X,FHC)c

vanishes. Again because (−)c is exact, we have a long exact sequence

· · · → Hn
Zar(X,FHC)c → HC−n(X/Q)c → Hn

cdh(X,HC(−/Q))c

The desired vanishing follows from the previous corollary. �

Remark 6.10. In other words, we have given a new proof of (a case of) Gube-
ladze’s “Nilpotence Theorem.” For say X = Uσ is an affine toric variety, and 8/4 K

This entire remark
needs rewriting!
Why only a “case”?
Answer: Gube-
ladze’s Theorem is
more general than
this in that we
proves K∗(k[A]) =
KH∗(k[A]) for any
cancellative abelian
monoid A without
non-trivial units.
A = σ∨ ∩ M is an
example of such a
monoid, but not the
only example, since
this example of A
is “normal” but a
general such A need
not be. It’s possible
(I have not looked
in a while) that
Gubeladze reduces
to this case early on
in his proof. –MW

assume σ ⊂ NR is n-dimensional (where N = Zn), so that the monoid σ∨ ∩M
has no non-trivial units. Then k[σ∨ ∩M ] is N-graded with weight 0 part being
k. Thus KH(X) ' K(Spec k), so that the map K∗(X) → KH∗(X) ∼= K∗(Spec k)
is a split surjection. Gubeladze’s “Nilpotence Theorem” asserts that we have that
(K∗(X)/K∗(Spec k))c = 0, and this is a special case of the above theorem.

Acknowledgements. The third author thanks Joseph Gubeladze and Srikanth
Iyengar for useful conversations that contributed to this paper.
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