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arbitrarily long sequences of consecutive integers and is Q-sparse. On the other hand,
according to Corollary 1 there exist ultra-log-light sets that are not Q-sparse.
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The Least Prime in
Certain Arithmetic Progressions

Juan Sabia and Susana Tesauri

Dirichlet’s theorem states that, if a and n are relatively prime integers, there are in-
finitely many primes in the arithmetic progression n + a, 2n + a, 3n + a, . . . . How-
ever, the known proofs of this general result are not elementary (see [1, 10, 12], for
example). Linnik [4, 5] proved that, if 1 ≤ a < n, there are absolute constants c1 and
c2 so that the least prime p in such a progression satisfies p ≤ c1nc2 , but his proof
is not elementary either. There are several different proofs of Dirichlet’s theorem for
the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover, the bound
p < n3n for the least prime satisfying p ≡ 1 (mod n) is given.

Our aim is to use an elementary argument, which also shows that there are infinitely
many primes ≡ 1 (mod n), to prove that the least such prime lies below (3n − 1)/2.

For n = 2, the result is obvious, so let n be an integer, n > 2. Let �n(x) denote the
nth cyclotomic polynomial. That is,

�n(x) =
n∏

a=1
(a,n)=1

(
x − e2π ia/n

)

is the polynomial of degree φ(n) whose zeros are the primitive nth roots of unity. It is
well known that �n(x) is a monic, irreducible polynomial with integer coefficients.

Our proof is based on the following observation: For any integer b, the prime factors
of �n(b) are either prime divisors of n, or are ≡ 1 (mod n). Moreover, if n > 2, any
prime divisor of n can divide �n(b) only to the exponent 1; that is, its square does not
divide �n(b).
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Granting the observation, let us prove that the least prime ≡ 1 (mod n) is ≤
(3n − 1)/2. Note that �n(3) is an integer whose absolute value is

|�n(3)| =
n∏

a=1
(a,n)=1

∣∣3 − e2π ia/n
∣∣ > 2φ(n) ≥

∏

q|n
q,

where the product above is over the distinct primes dividing n, and the final inequality
follows because φ(n) ≥ ∑

q|n(q − 1) and 2q−1 ≥ q. From our observation and this
lower bound, it follows that �n(3) must be divisible by some prime not dividing n,
and that prime is necessarily ≡ 1 (mod n). Finally, �n(3) divides (3n − 1)/(3 − 1),
and so we know that there is some prime ≡ 1 (mod n) below (3n − 1)/2.

This same argument can be used to prove there are infinitely many primes ≡
1 (mod n): Suppose p1, . . . , pr are such primes; then �n(

∏r
i=1 pi ) is relatively prime

to
∏r

i=1 pi , so any prime ≡ 1 (mod n) in the factorization of �n(
∏r

i=1 pi ) must be
different from p1, . . . , pr .

We now prove our observation. Suppose p | �n(b), and so p | (bn − 1). Thus the
order of b (mod p) is a divisor of n. If it is exactly n then, since the order has to divide
p − 1, we have p ≡ 1 (mod n), as desired.

Suppose that the order is not exactly n. In this case, for some prime divisor
q of n we must have p | (bn/q − 1). The cyclotomic polynomial �n(x) divides
(xn − 1)/(xn/q − 1) = 1 + xn/q + · · · + xn(q−1)/q . By Gauss’s Lemma the quotient
is a polynomial with integer coefficients. Thus �n(b) divides (bn − 1)/(bn/q − 1)

= 1 + bn/q + · · · + bn(q−1)/q . Now by assumption bn/q ≡ 1 (mod p), and so
(bn − 1)/(bn/q − 1) ≡ q (mod p); however (bn − 1)/(bn/q − 1) is also a multiple
of �n(b) which is a multiple of p. Therefore we have q ≡ 0 (mod p), or in other
words p = q is a divisor of n.

It remains lastly to show that if q is a prime divisor of n > 2, and q | �n(b) for
some b, then q2 � �n(b). From our argument above we know that bn/q = 1 + cq for
some integer c, and using the binomial theorem bnj/q ≡ 1 + cjq (mod q2) so that

bn − 1

bn/q − 1
= 1 + bn/q + · · · + bn(q−1)/q ≡ q + cq

q(q − 1)

2
(mod q2).

If q is odd then the above is ≡ q (mod q2) and therefore q2 cannot divide �n(b). If
q = 2 then the above is ≡ 2(1 + c) (mod 4), and we are done unless c is odd. In that
case bn/2 ≡ 3 (mod 4), from which it follows that b and n/2 are odd. But if n/2 is odd
then �n(b) is a divisor of

∑n/2−1
i=0 (−b)i , which is odd, and thus this last case cannot

arise.
The observation that we have used in our proof is quite old: according to Ribenboim

[8], variants of this were shown by Legendre in 1830. In terms of algebraic number
theory, it is simply the fact that the non-inert primes in the nth cyclotomic field are the
primes dividing n (which ramify), and the primes that are ≡ 1 (mod n) (which split
completely).
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A Simple Continuous Bijection from Natural
Sequences to Dyadic Sequences

Oliver Deiser

1. INTRODUCTION. Surprising bijections have been constructed between spaces
thought to be too different in nature to allow one-to-one correspondences. In his sem-
inal paper of 1878, Georg Cantor constructed a bijection between the real line R and
the plane R2, revealing the intuition of “two variables” as too crude to define the notion
of dimension. The lack of continuity of Cantor’s mapping was noted immediately by
Richard Dedekind, but continuous counter-intuitive results were found, too: in 1890
Giuseppe Peano and David Hilbert constructed continuous surjections from the closed
real unit interval I = [0, 1] to I 2, now known as Peano curves. But Peano curves lack
injectivity, and finally Luitzen Brouwer showed in 1911 that they have to: there is no
continuous bijection between Rn and Rm (or I n and I m) whenever n �= m. Brouwer’s
proof uses special topological properties of the continuum. In the 1920s, Karl Menger,
Pavel Urysohn and others developed a general theory of topological dimension. The
reader might consult [3], [4], or [6] for the history of the many different paths origi-
nating from Cantor’s initial discovery. Spanning half a century, this single topic inter-
estingly mirrors the development of modern mathematics.

In contrast to Brouwer’s result, there are many continuous bijections if we switch
from the “analog” reals R to the “digital” Baire space N consisting of all infinite se-
quences of natural numbers, equipped with the infinite product topology of the discrete
topology on N. N is homeomorphic to the irrational numbers via continued fractions.
It is easy to see that N is homeomorphic to N n for all n ≥ 1, and N is even homeo-
morphic to N N. Moreover, Wacław Sierpiński proved in 1929 a remarkable theorem,
which in its modern general form reads: if X is any nonempty perfect Polish space,
then there is a continuous bijection from N to X . (See [7, pp. 40, 357]. A Polish space
is a topological space which has a countable dense subset and which is complete with
respect to a metric generating the topology. A space is perfect if it has no isolated
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