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Configurational entropy for adsorbed linear species (k-mers)
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The configurational entropy of interacting linear moleculesr(ers absorbed on a regular lattice is
addressed through analytical as well as numerical methods. The general definitions for
computational exact calculations lefners lattice-gas entropy are presented. In addition, theoretical
basis for accurate analytical estimations of the entropy of reference states are given. The coverage
and temperature dependence of the configurational entropy of interacting adsorbed dimers on one
and two-dimensional lattices are obtained. A novel phase behavionrs lattice-gas is shown

and discussed. @001 American Institute of Physic§DOI: 10.1063/1.1372187

I. INTRODUCTION In this work, the thermodynamics of simple adsorbed
polyatomic gases is addressed through computational as well

Computational as well as analytical accurate calculationgais analytical techniques. A computational methodology for
of configurational entropy and free energy are of major sighighly accurate entropy calculations of interacting adsorbed
nificance to develop a complete picture of generalizedk-mers is introduced, which relies upon the definition of an
lattice-gas thermodynamics of adsorbates. We refer to gerartificial Hamiltonian associated with the system of interest
eralized lattice-gas as the one in which ad-particles are polyfor which the entropy of a reference state can be exactly
atomic, having more than one constituting unit and, henceknown. Thermodynamic integration is then applied to obtain
occupying several lattice sites. the entropy in a given state of the system of interest.

The advantages of Monte Car(biC) methods to calcu- In addition, the general relationship between surface
late thermal averages of physical observables such as tl®@verage and chemical potential in statistical mechanics is
total energy, energy fluctuations, density, etc., are wellteinterpreted as to provide a straightforward way for the cal-
known. However, the calculation of other quantities, like theculation of the entropy of the reference state.
entropy and the free energy, poses a much higher Hereforth, the basis for calculations & in k-mers
difficulty.>? Among the available methods, thermodynamiclattice-gas are presented by means of thermodynamic inte-
integration is widely used and practically applicabfeHdow-  gration from a reference state of an artificial system to a state
ever, in order to obtain the entrop, of a given state, the Of the system of interest through the high temperature region
entropy ,S,, of a reference state must be known. The lack ofof the thermodynamic space. The general definitions of an
know|edge OfSO is a major limitation for the app”cation of artificial SyStem related to the SyStem of interest are given in
thermodynamic integration to many physica| mode|s_ TwoseCS. Il and Ill. A new analytical appI’OXimation to calculate

sented here to calculag for polyatomic gases. accuracy of the method is checked against exact analytical

For a lattice-gas, the more elaborated the model is, thé@lculations in one-dimensional lattices. Then, in Sec. V, the
more difficult it becomes to ge®,, either exactly or by Pehavior of the entropy as a function of coverage and tem-
means of analytical approximations. In particular, the lattice Perature is discussed for dimers.
gas properties d-mers(dimers, trimers, and longer spedgies
are not well-known because of the difficulties arising in thell. LATTICE-GAS MODEL FOR THE ADSORPTION OF
calculation of their thermodynamic functions. POLYATOMIC MOLECULES

Although, adsorption of polyatomic speciés the iso- In our lattice-gas model for adsorption with multisite
morphous problem of binary solution of a polymer phase angccupancy in the monolayer regime, we consider homo-
a monoatomic solventhas been addressed long &doin  npyclear lineak-mers on a lattice with constant connectivity
ideal systems, the correct density dependence of configurgsquare lattices are used in this wprRdsorbate molecules
tional entropy of a simple system such as noninteractingire modeled as a linear array lofdentical units with con-
dimers on a two-dimensional regular lattice is still unknown.stant bond length equal to the lattice consi@rthe k-mers
The properties of interacting particles have been less studieghn only lie flat on the surface occupyikdattice siteseach
in detail and approximations relying on mean-field assumptattice site can only be singly-occupied he surface is rep-
tions are the most usual theoretical treatméns. resented by an array &ff adsorptive sites. The Hamiltonian
of N k-mers adsorbed ol sites at a given temperatufeis

dAuthor to whom correspondence should be addressed. Electronic maigescribed by the occupation Vari_ab|e$ _{i _:_11- .. M},
froma@unsl.edu.ar which can take the values=0 or 1, if the sitel is empty or
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occupied by ak-mer unit, respectively. Assuming that a
k-mer retains its structure upon adsorption and desorption,
the Hamiltonian is given by

w

H=3

2 CiCj_N(k_l)W+ 602 Ci, (1)
(i)’ :

wherew is the nearest neighbdNN) interaction energy cor-
responding to repulsivéttractive interaction forw>0 (w
<0), (i,])’ represents pairs of NN sites, awg is the ad-
sorption energy of &mer unit. The ternN(k—1)w is sub-
tracted in Eq(1) because the summation over all the pairs of
NN sites overestimates the total energy by includiigk
—1) bonds belonging to thE adsorbed dimers. Finally,

is set equal zero for simplicity, without any loss of generaI-F|G- 1. Dimers \=10) adsorbed on a square latticeMdf= 64 sites. Typi-
cal nearest neighbdiNN) units are labeled. This represents the system of

ity. interest(original).

ll. CONFIGURATIONAL ENTROPY FOR ADSORBED , .
K-MERS IN THE CANONICAL ENSEMBLE be evaluated by MC in the canonical ensemblée general

THROUGH THERMODYNAMIC INTEGRATION definition of the artificial re_ference system folloyvs.
Let us assume the original system to be a discrete system
Given a lattice-gas ofN interacting k-mers, each of of N particles onM sites with HamiltonianH(N,M,i)
which occupiesk sites on a regular lattice witM sites at  =E(N,M,i) i evy; whereE(N,M,i)= finite Vi e v, is the

temperaturel, from the basic relationship potential energy in theth configuration among the set of
accessible configurationg. The original system can only
1 . ; L

(9S1dT)y m==(AUIIT)\ m (2) have access to those configurations within the total
- ' amount of configurations i is Gt(N,M) {in a lattice gas

it follows of N monomers with single-site occupancy ™ sites,

G1(N,M)=M!/[NI/(M—=N)D]}.
S(N,M,T)=S(N,M oo)+fT d?u &) The Hamiltonian of the artificial systent],, follows
Y Y - ' from:

S(N,M,T) is readily calculated ifS(N,M,=) (reference :ElizeNflrlcltlt_))n: fli;liteHO',e 'S v(\j/ﬁ];?eelc—:j ;}SdHAiN"\gé{/)e
statd is known, given that the integral in the second term can_. A\ ' *J €V A L

b accurately ssmated by N Smiaon S ot TEI0S © hose e shovetane e
VN,M cannot be exactly calculated fesmer adsorption by P y: g

: L o tions for the original system and the artificial system are
analytical meansit is worth mentioning that only for mono- equal (although yA= y, the energy of the configurations in
atomic lattice-ga$(N,M,<0) is known), in the following we q 9nya=y. 9y 9

present a general numerical methodology to obtain the er;[-he artificial system may be, in general, different from the

tropy of generalized lattice-gas in a reference state one in the original system
Py of genera . ge : ‘ Definition 2: The potential energy of the accessible con-
If an artificial lattice-gas is defined from the system of

interest(henceforth referred to as the original sysjesnch :Lgu:/itllﬁgzﬂ s ya) for the artificial system take the follow-
that it fulfills the condition, g :
SA(N!MvT) | S(N,M,T) EA(NyMyJo):O JOE ’)/A,

= lim

. o (6)
M M EaA(NM,)>0  j#j, jeva.

SA(N,M, )= lim

T T

=3(N,M,), (4) Definition 2 means that a given configurati@the j 5th)
_ _ is selected arbitrarily fromy, and defined as the nondegen-
whereS, and S denote the entropy per site of the artificial erate ground state of the artificial lattice-gas; consequently
and original systems, respectively, then the integral in Eqs,(N,M,0)=0. In practice, the configuratioj can be eas-

(3) can be separated into two terms. Thus, ily chosen.
B 5 T An example for adsorbed dimers follows in order to
S(N,M,T)=Sx(N,M ,oo)+f du/T make this point clear. Let us consider adsorbed dimers on a

square lattice with interaction between NN dimer’s heads as
~ o T _ shown in Fig. 1(original system For this system there is no
=Sa(N,M,0)+ fo dUA/T+ LdU/T’ ) rigorous expression d(N,M,x) for N>0 in the thermo-
dynamic limit (N—c, N/M— constant).
whereU, and U are the mean total energy per site of the  To build up an artificial system fulfilling the Definitions
artificial and original system, respectivelyoth integrals can (1) and(2), we take the following steps:
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FIG. 2. (a) Square lattice ofM =64 sites representing the lattice of the
artificial system; strong and weak sites are symbolized by circles an
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(b)

squares, respectivelyb) Configuration ofN=10 dimers in the lowest en-
ergy state(ground statpaccording to the artificial Hamiltonian of E7).

(i)
(i)
(iii)

(iv)

The number of particles, size and geometry of the

lattice is kept as in the original system.
The interaction energy between NN units is set to
zero.
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FIG. 3. Mean total energy per sitm units of the interaction energy) for
dimers on a square lattice with nearest neighbor interaction energy
fixed coveraged=0.5. (a) Open circles and top x-axis correspond to attrac-
tive dimers. (b) Full circles and bottom x-axis correspond to repulsive
dimers. Simulations were carried out in the canonical ensemble and symbols

represent averages over typically®1BIC configurations, after fo-10°
equilibration steps.

are applied to ensure that the state of minimum energy
is unique. Then, the Hamiltonian of the artificial sys-
tem for this example is given by

M
Ha=2, €Ci+ >, Wy, (7)
i=1 n=1

where ;= es=—1 if the site is strong and;= e
=0 if the site is weak.

Thus, the ground state of the artificial system is the one
shown in Figure ), which is nondegenerate, giving

Sa(N,M,0)=0.

The calculation o8(N, M, T) through Eq(5) is straight-
forward and computationally simple, since the temperature

dependence dfi ,(T) andU(T) is evaluated at constant cov-
erage for various values df following the standard proce-
dure of Monte Carlo simulation in the canonical ensemble
(based on the Metropolis scheteThen, U A(T) andU(T)

are spline-fitted and numerically integrated. It should be
mentioned that) ,(T) and U(T) are obtained by using the

An adsorption energy is introduced for the lattice sitesHamiltonians of Eqs(7) and (1), respectively, in the transi-
(representing, for each site, the interaction betweerion probabilities of the Monte Carlo procedure. Two typical

the lattice and the unit of the dimer adsorbed on it, in
the artificial systery) in such a way that two types of
sites are defined, strong and weak, with energigs
and e, respectively, beings<e,,. For N adsorbed
dimers we choosel? strong sites conveniently on the
lattice. For instance, in Fig.(d) a possible distribu-
tion of strong and weak sites is depicted, where
circles and squares are sites of eneegyand ey,
respectively.

It is assumed that dimers in a particular direction are

energetically favored. This is formally handled by in-
troducing a virtual external field such that the interac-
tion energy between the dimers and the field is
w,=—1 if the nth dimer is vertically aligned and
=0 otherwise(this choice is obviously arbitrayy
Care must be taken if periodic boundary conditions

curves of 1kgT vs U are shown in Fig. 3, for attractive and
repulsive dimers on a square lattice. In order to evaluate the
accuracy of the methodology, we calculate the coverage and
temperature dependence of the entropy of interacting dimers
on one and two-dimensional lattices and compare the results
with analytical solutions and MC results of earlier
studiest®~®

IV. ANALYTICAL APPROXIMATION FOR THE
ENTROPY OF THE REFERENCE STATE:
OCCUPATION BALANCE

The analytical treatment is an alternative way to estimate
the entropy in a reference state. However, one of the bottle-
necks in the estimation &(N,M,T) for polyatomic lattice-
gas is the lack of simple strategies to approximate the
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counting of configurational degeneracy at finite coverageneighbor lattice sitésis, to first ordert* ﬁ(M ﬁ) cM/2
This is one major reason for the relative underdevelopment. (2c— 1)N where the second terms account for the mean

of statistical thermodynamics &t mers.
Here we propose an approximation3dor dimers on a

number of states excluded by the adsorbed dimers on a lat-
tice with connectivityc. Thus,

regular lattice at infinite temperature, based on general argu-

ments leading to very accurate results.
The mean number of particles in the adlayéy,and the

chemical potentialy, are related through the following gen-

eral relationship in the grand canonical ensemble,

dINZ(M,\)
2N

, 8

M

where\ =exp(u/ksT) and E is the grand partition function.
By solving forA 1 in Eq. (8), we get

1/dInE(M,\N)

Nl o

_R(M,\)
M N

A l=

, 9

. _ ~ cM/2—(2¢c—-1) ¢
lim X"t~ lim T:E—(Zc—l),

M — o0

(13

M — o0
where limy_,.2N/M = 6.

The term (Z— 1) overestimates the number of excluded
states because of simultaneous exclusion of neighboring par-
ticles. Then, the approximation can be further refined by con-
sidering the mean number of states that are simultaneously
excluded b)N dimersf(M W) Itis possible to demonstrate
that, in generaIR(M N) cM/2— (20 1)N+L(M N) for
straightk-mers. In addition L(M,N)=N(N=1)L(M,2)/2,

where L(M 2) is the number of states simultaneously ex-
cluded by pairs of dimerévhich can be calculated from the

where the quantityR(M,\) can be proven to be the mean two- body partition function Then, forc=4 it follows

number of states available to a particle Fhsites at\. If

Y.(M,N) and R;(M,N) denote the total number of distin-

guishable configurations dfl particles onM sites and the
number of states available to the { 1)th particle in thath
configuration[out of Y{(M,N)], respectively, then

Y¢(M,N)

Y(M,N+1)= > R(M,N). (10)
i=1

The total number of indistinguishable configurations of

(N+ 1) particles orM sites can be obtained from E@.0) as
Y(M,N)

Yy(M,N+1) Z5"Ri(M,N)
CMN+ D=\ = N+
N )
= NT D! |—El R(M,N)
1 G(M,N)
=01 .21 R(M,N). (11)

The average oR;(M,N) over a grand canonical en-

semble is

R(M\)=(Ri(M,N))=

1 Nm Gt
= [ANE Ri<M,N>]
— N=0 i=1

P4
3
,_.

1
== (N+DANG(M,N+1)
E N=0
A~ Nm N
= N G (M N )——
=} N’=l A’
(12)
as already advanced in E@). N'=N+1, N, is the maxi-

mum number of particles that fit in the lattice, and

Ri(M,N,,)=0.

The advantage of using E() to calculate the coverage
dependence of the fugacity can be visualized by consider-
ing the adsorption of dimers in the monolayer regime.

R[M,\(N)]=R(M,N) for dimers (occupying two nearest

2M—7N+L(M,N)

lim A~1= lim
M — o0 M—oo N
lim =/ 2 7N+9ﬁ(ﬁ_1)
~ lim = - —_
M o0 (2M—-7)
4 7+99+o 62 14
~3 1 (6°). (14
Finally,
At 4 7+9e+ 62 15
~7 202, (15

where the constara= 3/4 is determined from the limit con-
dition A —oo for 6—1.

From the thermodynamic relationship=(JF/JdN)y 1
(F denotes the Helmholtz free enejgyhe entropy per lat-

tice siteS( ) can be evaluated in the limilt— as follows:

A i 1 i S(M,N,T)
—=InA=—— |lm |———
kgT kg M. Tosoo N M
2 |dg(0)
—‘k—B[d—a} (16
Then
S) 1f0 o
k_B__E O|n)\(0 )do’. a7
From Egs.(15) and(17) we obtain
S6) 6 3 (1-6)
k—B—E InZ—InG—Z}— 2 In(1—0)
(A—0)
———In(A-9)
(B+0)I B AI A BI B 18
+t— n( +0)+§n —5InB, (18)
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FIG. 4. Configurational entropy per sitén units of kg) vs the surface

1,0
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014 % =M"m3+M""m2 0=23
— 0,017
S/k,
1E-3 4
Sk=M'ms o=12
1E-4 -+ . .
1E-4 1E3 0,01
M

FIG. 6. Configurational entropy per sit| units ofkg) vs the reciprocal of

coverage for dimers on one-dimensional lattice. Symbols are results frorfhe lattice sizeM ™, for dimers on square lattice #@=1/2 and 6=2/3.
thermodynamic integration using an artificial system as presented in thiSymbols are results from the simulation method presented in Sec. II; full

work; (a) full circles, noninteracting dimersa(kgT=0); (b) full squares,
repulsive dimersw/kgT=3; (c) full triangles, repulsive dimersv/kgT
=10; (d) open squares, attractive dimexgkzT=—3; (c) open triangles,

squares, dimers at=1/2; full circles, dimers a®=2/3. Full lines corre-
spond to exact analytical calculation Bfkg at these particular coverages;
Skg(0=1/2)=M 1 In 8 andS/kg(6=2/3)=M 1 In 3+M~2|n 2.

attractive dimersv/kgT= —10. Lines are exact results from Ref. 12.

whereA=2(y/7/3-1) andB=2(\/7/3+1).

The coverage and temperature dependence of the egpe dimension,3(,T) develops a sharp minimum &t

tropy for attractive and repulsive dimers on one-dimensional 5/3 35 T decreases corresponding to a nondegenerate

apd two-d|menS|qnaI lattices are shown in Figs. 4 and 5 an((:j:;round state~8(2/3,0)=0. No phase transition are related to
discussed below in Sec. IV.

. A this minimum, as it is well-known for one-dimensional
Analytical results from Eq(18) are shown in Fig. 5 and . . : . A
. . lattice-gas with short ranged interactions. As shown in Fig.
compared with the corresponding ones from the thermody- o :
the results from the thermodynamic integration from an

namic integration method with an artificial reference system.4’ e . .
aa[t|f|0|al system agree absolutely with exact calculations re-
8ent|y presentedf

A remarkable agreement between the occupation balance
On the other hand, the two minima for repulsive dimers

proximation and thermodynamic integration is observed.
It is worth pointing out that a similar degree of approxi- S

b g g PP on a square latticéFig. 5 represent a second-order phase

transition  with  critical  temperatures T (6=1/2)

mation within the formalism of the virial expansion yields
~0.33w|/kg and T.(0=2/3)~0.24w|/kg, respectively, in

significantly more limited result foS(6) (also shown in
Fig. 9. full agreement with estimations from finite-size analysis of

order-parameter cumulants.Ground states with zero en-
tropy per site correspond to the ordered structures at
=1/2 and#=2/3, which was confirmed by means of finite-
size analysis, as shown in Fig. 6 for dimerséat 1/2 and
0=2/3. These results show that the predictions of a ground
state with finite entropy per lattice site for=2/3 (and the
appearance of additional minima fér>2/3), presented in
Ref. 15 from transfer matrix approximation, are artifacts of
the calculation technique.

S(6,T) for attractive dimergnearest neighbor interac-

V. RESULTS AND CONCLUSIONS

Attractive interactingk-mers in one dimension show
asymmetry ofS(6,T) with respect tog=0.5 for k>1 and

the overall effect of the attraction is a decreas&f, T) for
all coverage asw|/kgT increases. For repulsive dimers in

0,8 T T T T T

0,64 tiong) is also shown folf >T, andT<T,. It should be noted
N that from the limiting coverages of the linear portion of
S/k 0.4 S(6,T) vs 6 in Fig. 5, the coverages of the phase diagram
lattice-gas/lattice-liquid can be obtained at the given tem-
0,2 perature.
Computational as well analytical methodologies have
0.0 been presented for the calculation of the entropy of the ref-
0,0

erence state. The detailed balance counting strategy appears
to outperform significantly the virial formalism. In addition,
FIG. 5. Idem Fig. 4 for dimers on square lattice. Symbols are results fronf€ thermodynamic integration based on artificial Hamil-
thermodynamic integration as presented héaefull circles, noninteracting ~ tonian is a reliable methodology to gain insight into the criti-
dimers (v/kgT=0); (b) full squares, repulsive dimems/ksT=3; (c) full  ca| properties and phase behavior of complex lattice-gas of
triangles, repulsive dimems/kgT—o0; (d) open squares, attractive dimers short linear adsorbates. New features of adsorbed dimers
w/kgT=—1.45;(e) open triangles, attractive dimengkgT— — . Dashed ’

have been reported from the coverage and temperature de-

line corresponds to virial expansion up to ord#; full line is the result - ; X
from occupation balance meth¢lq. (18)]. pendence analysis of configurational entropy.
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