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Abstract: Polyhydroxyalkanoates (PHA) are renewable alternatives to traditional oil-derived poly-
mers. PHA can be produced by different microorganisms in continuous culture under specific media
composition, which makes the production process both promising and challenging. In order to
achieve large productivities while maintaining high yield and efficiency, the continuous culture needs
to be operated in the so-called dual nutrient limitation condition, where both the nitrogen and carbon
sources are kept at very low concentrations. Mathematical models can greatly assist both design
and operation of the bioprocess, but are challenged by the complexity of the system, in particular
by the dual nutrient-limited growth phenomenon, where the cells undergo a metabolic shift that
abruptly changes their behavior. Traditional, non-structured mechanistic models based on Monod
uptake kinetics can be used to describe the bioreactor operation under specific process conditions.
However, in the absence of a model description of the metabolic phenomena inside the cell, the
extrapolation to a broader operation domain (e.g., different feeding concentrations and dilution rates)
may present mismatches between the predictions and the actual process outcomes. Such detailed
models may require almost perfect knowledge of the cell metabolism and omic-level measurements,
hampering their development. On the other hand, purely data-driven models that learn correlations
from experimental data do not require any prior knowledge of the process and are therefore unbiased
and flexible. However, many more data are required for their development and their extrapolation
ability is limited to conditions that are similar to the ones used for training. An attractive alternative
is the combination of the extrapolation power of first principles knowledge with the flexibility of
machine learning methods. This approach results in a hybrid model for the growth and uptake rates
that can be used to predict the dynamic operation of the bioreactor. Here we develop a hybrid model
to describe the continuous production of PHA by Pseudomonas putida GPo1 culture. After training,
the model with experimental data gained under different dilution rates and medium compositions,
we demonstrate how the model can describe the process in a wide range of operating conditions,
including both single and dual nutrient-limited growth.

Keywords: artificial intelligence; bioprocess modelling; hybrid models; machine learning; PHA
production

1. Introduction

Plastic production has grown steadily in the last 70 years and is expected to increase
even further as global population increases [1]. This puts a significant stress on the envi-
ronment for several reasons: first, plastics are oil-derived polymers, which depend on a
very extractive activity that is not only non-renewable but also potentially harmful to the
environment [2]. Secondly, many traditional plastics are non-degradable under natural
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conditions and accumulate in the environment [3]. These materials have to be either recy-
cled (which requires not only energy but also a lot of workforce required for classification,
processing and administration), burned for energy recycling (contributing to CO2 increase
in the atmosphere) or stored (which requires an increasing amount of space) [4]. As a
result, plastics can be found polluting all sort of biomes, the oceans being a particularly
concerning one [5].

Under this scenario, biopolymers have been proposed as a green alternative to tradi-
tional plastics: they are both renewable (can be produced from natural feedstocks, such
as sugars and organic acids) and biodegradable (they can be decomposed by microorgan-
isms) [6]. Polyhydroxyalkanoates (PHA) are biopolyesters produced by microorganisms
that serve them as carbon and energy source [7]. Under certain (stressful) conditions,
PHA is produced and stored inside the cells to be later recycled when needed. A typical
case is nitrogen limitation, where a low concentration of this nutrient in the medium will
induce PHA production. Thus, cells growing inside a bioreactor can be manipulated to
produce biopolymers that, in turn, can be purified and processed to serve as replacement
to synthetic plastics [8,9]. However, even though PHA production has been known for
many years, very few industrial processes using this technology are in operation. The
main reason for this is mostly economic: plastic production from oil and gas derivatives is
cheaper than its green alternative. If oil and gas prices remain low, biopolymer production
would remain challenging unless production costs are reduced. Even if their production
is promoted using tax incentives, the increasing demand for plastics would require any
bio-based production to have a high productivity.

During the last decades, great effort has been put to extend the field of Process System
Engineering (PSE) to the bioprocess industry [10]. PSE is a field of research that aims to
apply mathematical tools to solve scientific and engineering problems of complex pro-
duction systems [11]. Design, optimization and control are key activities in any process
operation that may be fundamental to achieve economic feasibility. In fact, the applica-
tion of PSE is ubiquitous in the chemical and petrochemical industry. In the context of
biopolymers production, PSE may be a valuable tool to achieve the same levels of produc-
tivity and production costs of their synthetic counterpart. However, biological processes
are more complex than chemical ones due to several reasons: cell metabolism involves
thousands of chemical reactions with internal regulation; there is a great deal of intrinsic
variability in production runs and the number of available measurements is very limited
compared to the number of variables involved. Thus, the implementation of PSE principles
to biomanufacturing is considerably more challenging in comparison to the traditional
chemical industry.

Important advances have been done in this direction [12,13]. Mathematical models,
which lay at the core of this paradigm, have benefited a lot from the combination of several
disciplines, ranging from biotechnology, chemical engineering and data science [14,15].
Mechanistic models that describe the metabolic behavior of the microorganism are available
for several PHA producing strains [16–20]. Unfortunately, these models involve systems
of equations with several parameters that may require almost complete knowledge of the
metabolic network and complex analytical methods (e.g., omic measurement) to estimate
them. Furthermore, the extrapolation from predictions about the cell metabolism to the
behavior of the cells inside of a bioreactor may be challenging. Non-structured macroscopic
models based only on the available measurements in the bioreactor medium (nutrients,
biomass, PHA content, etc.) may be easier to develop and even more robust within the
experimental region where they were derived [21–23]. However, finding a proper structure
(i.e., equations representing the physicochemical and biological principles) that covers a
wide range of operating conditions is hard to achieve. On the other hand, data-driven
models do not need to assume any principles, since they are purely based on correlations
found on data. Thus, they are not biased by prior knowledge [24]. However, the amount of
data needed to build these models is usually larger and, more important, extrapolations of
the models to previously unseen operating conditions is usually not accurate. In between
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these approaches, hybrid models combine the fundamental knowledge of mechanistic
models together with the flexibility of data-driven models [25]. The term “hybrid” is
generally used with different meanings, and there is not a unique formulation of hybrid
models but several versions. In this work, the type of hybrid models considered are the
ones that include a traditional formulation of the mass balances of the several species,
replacing one or more terms of the balances with machine learning models trained from
experimental data [26]. This is a promising approach that has been around for several
decades, but it gained momentum in the last years due to the developments in Artificial
Intelligence (AI), Data Science, and computational power [27]. Hybrid models for PHA
production with different structures have been tested with success for batch and fed-batch
systems [28].

In this work, a hybrid model of a continuous bioreactor for the production of PHA is
proposed. Pseudomonas putida strain GPo1 (ATCC 29347 formerly known as Pseudomonas
oleovorans GPo1) efficiently converts octanoate into PHA under dual nutrient-limited
growth conditions: both nitrogen and carbon are consumed up to limiting concentrations
in the medium [9]. This operation mode is very important in order to achieve economic
feasibility of the production process but is also very challenging from the modeling side
because nutrient concentrations in the dual limitation region are difficult to measure, as
they are present only in traces. This complicates the identification of the correct determinis-
tic functions for growth and uptake rates in a wide range of concentrations and operation
conditions. However, the mechanistic backbone of the hybrid model coupled with an AI
method to learn the growth and uptake kinetics is successful in reproducing the bioreac-
tor operation at several process conditions inside and outside the dual nutrient-limited
growth regime.

2. Materials and Methods
2.1. Experimental Setup

Two different datasets available in the literature were used in this work to train
and test the proposed hybrid model. The experimental setups are very similar: they
consist of a continuous bioreactor with a feeding stream containing a concentrated carbon
source (sodium octanoate) and a nitrogen source (ammonium sulfate) being part of the
remaining medium components. The carbon to nitrogen ratio in the medium feed (Cin/Nin)
is modulated by setting different flow rates of the two feed pumps. Concomitantly, a harvest
stream, where culture broth is continuously removed together with residual nutrients,
bacteria and PHA (see Figure 1) keeps the culture volume in the bioreactor constant.
Samples were taken periodically, and pH, temperature, dissolved oxygen and volume were
controlled and kept at reference values. The same strain, P. putida GPo1 ATCC 29347 is
used in both cases.

The first dataset (DS1) was taken from a series of chemostat experiments [29]. Five
different dilution rates (D = 0.05, 0.1, 0.2, 0.3 and 0.4 h−1), were tested with several values
of the feeding composition Cin/Nin, in order to cover three growth regimes: nitrogen
limitation, carbon limitation, and dual limitation. The remaining experimental conditions
were identical among all the runs. The working volume of the system was 2 L and it
was operated as a chemostat. The temperature and pH setpoints were 30 ◦C and 7.1,
respectively. For each dilution rate, different steady state conditions were established
before samples were taken. These samples were collected in ice-cooled 50 mL Falcon
tubes and centrifugated. The supernatant was frozen at −20 ◦C until further analysis,
whereas the biomass pellet was freeze-dried for PHA analysis. The cell dry weight was
determined with a filter method as described in the original publication [29]. This method
retrieved the total biomass that included both the PHA-free biomass as well as the PHA
mass. The cellular PHA content was determined by gas chromatography (GC) according to
the method proposed by Lageveen et al. [30], and the difference between the total biomass
and the PHA mass yields was the PHA-free (residual) biomass Xr. The supernatant was
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analyzed to determine the concentrations of ammonium, with the indophenol method
described by Scheiner [31], and octanoate using GC [29].
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Figure 1. Scheme of the bioreactor setup used in both experimental datasets. Sodium octanoate and
ammonium sulfate were used as the only carbon and nitrogen sources, respectively. A harvest stream
removed culture broth to keep the liquid volume constant. Dissolved oxygen (DO), temperature (T),
and pH were controlled at a setpoint.

In the second dataset (DS2) [32], the bioreactor was operated in transient mode: The
dilution rate was fixed (D = 0.3 h−1) and the Cin/Nin ratio of the feeding stream was changed
over time without letting the culture achieve steady state. No other experimental conditions
were changed between experiments. The working volume of this bioreactor was 1.5 L, the
temperature setpoint was 30 ◦C and the pH setpoint was 7.0 (0.1 units below DS1). The
sampling method and determinations were similar to the ones in DS1, but ammonium and
octanoate were measured using on-line analyzers based on those techniques.

Details about the setups, protocols and methods can be found in the original publica-
tions [29,32].

2.2. Process Model

Four main species concentrations are used to describe the state of the system: PHA-
free biomass of bacteria Xr, poly(3-hydroxyalkanoate) P, carbon C, and nitrogen N (as
the equivalent amount of carbon and nitrogen being part of the fed nutrients). The con-
centrations are expressed in g/L unless stated otherwise. As it was previously stated,
the bioreactor can be operated in different regimes depending on the system state and
process conditions

A simplified reaction network for PHA production by P. putida GPo1 using ammonia
and octanoate as nutrients is presented in Figure 2. The cell takes up carbon and nitrogen
from the culture broth in order to produce more Xr and PHA. Nitrogen uptake qn is
directly related to biomass growth while carbon can undergo three different pathways,
each one represented by an uptake rate: growth qg, accumulation (PHA formation) qc
and maintenance qm. Finally, the PHA production rate qp is proportional to the carbon
accumulation rate qc. Based on this network, the mass balances for the 4 species are
formulated in Equations (1)–(4):

dXr

dt
=
(
rg − D

)
Xr (1)

dC
dt

= (Cin − C) D −
(
qC fn + qm + qg

)
Xr (2)

dN
dt

= (Nin − N) D − qN Xr (3)
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dP
dt

= qp fn Xr − P D (4)

While some assumptions about the reaction network had to be made to formulate the
mass balances, the mathematical expression for the growth, uptake and production rates are
yet to be defined. A traditional Monod-type formalism can be used as a first approximation:

rg = µg
C

C + KC1

N
N + KN

(5)

qC = µC
C

C + KC2
(6)

The specific growth rates µg and µC are the maximal values used for the Xr and PHA
formation, respectively. A differentiation was made between the Monod constants for
growth (KC1) and PHA formation (KC2), whereas KN is used only for the nitrogen affinity of
PHA-free biomass. C and N represent the carbon and nitrogen concentrations in the culture
broth, respectively. The term fn accounts for the inhibition of the accumulation and PHA
production in the presence of nitrogen in the culture broth. The PHA inhibition constant kfn
represents the threshold concentration of nitrogen required to trigger PHA accumulation:

fn =
k f n

N + k f n
(7)

The remaining rates can be calculated using the stoichiometric biomass formation
yields Yx/c and Yx/n, the PHA formation yield Ypha/c, as well as the maintenance coefficient
(mc) as follows:

qg =
rg

Yx/c
(8)

qN =
rg

Yx/n
(9)

qp = qC Ypha/c (10)

qm = mC (11)

The maintenance rate qm was considered a constant, and the PHA formation yield
Ypha/c was split into two limiting values, Yg

pha/c and Ylim
pha/c, in order to give qp enough

flexibility to fit the small PHA production present during the growth phase:

Ypha/c = Yg
pha/c +

(
Yg

pha/c − Ylim
pha/c

)
fn (12)

The system of equations presented in Equations (1)–(12) includes a set θ of 11 pa-
rameters that need to be fitted from experimental data. The fitting problem involves the
minimization of the Mean Square Error (MSE) function, presented in Equation (12):

MSE = ∑
n

∑
j

∑
i

yexp
i,j,n − ymod

i,j,n (θ)

σj,n

2

(13)

where yexp
i,j,n is the experimental measurement of species j at time ti in experiment n, while

ymod
i,j,n is the corresponding model prediction that depends on the model parametrization.

The standard deviation σj,n for the experimental measurements in each experiment is used
for normalization.
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Figure 2. Simplified reaction network for biomass growth and polyhydroxyalkanoates (PHA) pro-
duction of P. putida GPo1. Abbreviations (large caps mean concentrations, in g/L, in culture broth
and small caps uptake and reaction rates): N: available nitrogen, C: available carbon, Xr: PHA-free
(residual) biomass, P: PHA in culture broth, qn: nitrogen uptake, qg: carbon uptake for growth of
Xr, rg: specific growth rate of PHA-free biomass, qc: carbon uptake for PHA formation, qm: carbon
uptake for maintenance energy, qp: PHA production.

2.3. Hybrid Model Algorithm

Even when Monod-type kinetic models are good approximations for bioreactor operation
in certain conditions, these simple representations do not include the cell’s inner regulatory
mechanisms and its complex metabolic reactions. Thus, the model presented in Section 2.2.
is not complex enough to capture the behavior of the system under a wide range of process
conditions. Different approaches can be taken, e.g., using a detailed model for the growth and
uptake rates. This would require more knowledge about the metabolic network of the system
and how the cells interact with the environment. A more pragmatic approach is the hybrid
modeling approach. Instead of assuming explicit expressions for the growth, carbon uptake,
and production rates, neural networks are able to derive them from data:

rg = NN1 (14)

qC = NN2 (15)

qp = NN3 (16)

Here, NNk is the k-th output of a single neural network. The mass balances and the
remaining rates are equal to the ones previously presented in Section 2.2. Thus, the hybrid
model can be formulated as:

dXr

dt
= (NN1 − D) Xr (17)

dC
dt

= (Cin − C) D −
(

NN2
k f n

N + k f n
+ mS +

NN1

YC

)
X (18)

dN
dt

= (Nin − N) D − NN1

YN
Xr (19)

dP
dt

= NN3
k f n

N + k f n
Xr − P D (20)

This model includes a multi-output neural network as well as some constant model
parameters. The training of the neural network is not straightforward, as the inputs and
outputs are not easily available from data. The values of C and N during dual nutrient
limitation are below the detection limit of the analytical methods. Furthermore, without
these values, the rates cannot be calculated directly using the mass balances. An alternative
method like the one presented in Narayanan et al. [33] can be used to calculate the rates
indirectly, training the neural network’s weights and biases explicitly (i.e., by minimizing
Equation (13)). However, the number of parameters increases rapidly with the number of
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layers and neurons, and the method can be computationally too intense and thus expensive
if a big architecture is required. An alternative is presented here.

As it was stated in Section 2.2., the mechanistic model is not able to fit the whole range of
experimental conditions with a unique set of parameters θ (the Monod-type expressions are
simple approximations that do not consider complex metabolic phenomena that may arise
under a wide range of nutrient concentrations). However, the model performs well when
fittings are made only for individual experiments. The regression of that experiment returns
not only the specific set of parameters but also the calculated values for the concentrations
of all the species, even during dual nutrient limitation. By doing so, the growth, uptake,
and production rates can be calculated using Equations (5), (6) and (9) with the specific set of
parameters θn and the calculated concentrations of the nutrients. The remaining parameters
can be fitted from the complete dataset. The algorithm is presented in Table 1.

Table 1. Hybrid model algorithm.

• Inputs: Data set DS, Dilution rates D, Monod-type kinetic mechanistic model
• Fit the mechanistic model to the complete dataset DS to get the nominal set of parameters θ0
• For each experiment with a given dilution rate D:

# Re-fit the model parameters related to the growth, uptake, and production rates (use
nominal values from θ0 for the remaining parameters) to get a specific set of parameters θn

# Simulate the experiment, obtaining the nutrient concentrations C and N
# Calculate rg, qc, and qp using Equations (5), (6) and (10) with the specific set of

parameters θn and the simulated values of C and N
# Compile all the values [D, C, N, rg, qc, qp]

• Train a Neural Network (NN) that maps [D, C, N] to [rg, qc, qp]
• Output: Hybrid model, Nominal parameters θ0, Specific parameters θn

Since hybrid models rely on learning from experimental data, usually they require a
larger dataset than purely mechanistic models. When integrating the differential equations,
the system reaches a state for which no data in the training set do exist and, therefore, the
neural network may return considerable errors in the predicted rates, which will, in turn,
have an effect on the mathematical integration step. If the system deviates further from the
expected behavior, it may reach new unseen conditions, continuing in a feedback loop. This
is usually not the case for mechanistic models, where the structures of the kinetic expressions
ensure a stable integration under any process conditions. The performance of the hybrid
model can be significantly improved by data augmentation. Artificial data can be created
using the mechanistic model to fill the state space for which there is no experimental data
available. This way, if the system reaches one of these states during integration, the neural
network will make its predictions based on the artificial data, making the process more robust.
The algorithm presented in Table 2 shows how to combine the individual models for the
existing experiments in order to create artificial data for augmentation of the existing dataset.

Table 2. Model-based augmentation algorithm.

• Inputs: Dataset DS, Dilution rates D, Monod-type kinetic mechanistic model
• Fit the mechanistic model to the complete dataset DS to get the nominal set of parameters θ0
• For each experiment with a given dilution rate D:

# Re-fit the model parameters related to the growth, uptake and production rates (use
nominal values from θ0 for the remaining parameters) to get a specific set of parameters θn
• For any new dilution rate D* not contained in DS:

# Interpolate the specific parameters between dilution rates:
θn∗ =(θn+1−θn−1)

Dn+1−Dn−1
(D∗ − Dn−1) + θn−1

# Simulate the experiment using the interpolated parameters θn∗ and process conditions
D*, Nin, and Cin

# Augment DS with the simulated values of t, Xr, C, N, P and process conditions D*, Nin,
and Cin
• Output: Augmented Dataset DS*
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Here, the augmentation of the dataset was performed by simulating new experiments
with different dilution rates to mimic the original experimental design: the dilution rate
was kept constant while the Cin/Nin ratio changed. A different augmentation approach
can be used to generate more artificial data, as long as it covers the state space efficiently.

2.4. Dual Limitation Region Modeling

The dual limitation region is usually presented in the literature as Cin/Nin vs. D plots,
indicating the combination of variables that, after achieving steady state, will reach dual
nutrient limitation [34]. In principle, it can be described by both types of mathematical
models. It is worth noting that the values of both N and C never reach zero (otherwise, the
growth rates would have a value of zero as well, and there would be a wash out of the
bioreactor), so the limiting values that describe the boundary of the growth regimes have
to be fixed arbitrarily at a small residual value. If the culture results in values for C and N
equal or below both of these limiting values, then culture conditions can be considered as
being part of the dual nutrient-limited growth regime.

For the case of a continuous culture operated under steady state (chemostat) condi-
tions, the left terms of Equations (1)–(3) would be equal to zero. For carbon limited growth,
the carbon concentration would reach Clim and by consideration of the feed concentration
of nitrogen Nin, as well as Equations (1)–(3), (7)–(9) and (11) the following expressions
are derived:

rg = D (21)

(Cin − Clim) D =

(
qC

k f n

N + k f n
+ mC +

D
Yx/c

)
Xr (22)

(Nin − N) Yx/n = Xr (23)

From there, the carbon limitation regime can be defined in terms boundary Cin/Nin
values of the process conditions:

Cin
Nin

=
Clim
Nin

+

(
qC

k f n

N + k f n
+ mS +

D
Yx/c

)
(Nin − N)Yx/n

Nin D
(24)

To solve Equation (23), Equation (20) should be solved first to obtain the value of N,
fixing the carbon concentration as Clim. So far, no expressions have been given for rg and qc.
Either Equations (5) and (6) can be chosen for the mechanistic model, or Equations (14) and
(15) for the hybrid model. In the case of the mechanistic model an explicit expression for
Equation (21) can be found, but for the hybrid it has to be solved implicitly.

The same procedure can be applied to the boundary of the nitrogen-limited growth regime:

Cin
Nin

=
C

Nin
+

(
qC

k f n

Nlim + k f n
+ mS +

D
Yx/c

)
(Nin − Nlim)Yx/n

Nin D
(25)

In this case, solving Equation (21) yields the value of C, fixing the nitrogen concentra-
tion as Nlim. Again, both models can be used for the growth and uptake rates.

Finally, it is worth noting that the value of Nin is assumed as constant in
Equations (24) and (25). This is done in concordance with the bibliography, where these
curves are shown as two-dimensional plots for experiments where Nin is constant always
at the same value. As can be seen from the equations, the relationship of the ratio Cin/Nin
with the dilution rate D depends on the nitrogen concentration in the feed Nin.

2.5. Model Implementation

All models and algorithms were implemented in Matlab 2020b in an Intel Core i5-9500
CPU. The system of differential equations was solved using function “ode15s”. Mechanistic
models were fitted by minimizing Equation (11) with function “patternsearch”, initializing
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multiple times from different starting points to avoid local minima (also known as a multi-
ple shooting method). The Neural Networks were fitted using function “feedforwardnet”.

3. Results and Discussion

Following the method proposed in Section 2, the first dataset DS1 was used to fit
the mechanistic model nominal parameters θ0. The experimental data for all experiments
together with the mechanistic model predictions are presented in Figure 3. As can be seen,
the model performs well for most of the runs and species, but it struggles to get the carbon
concentration close to the carbon-limited growth regime. This is crucial to describe dual
nutrient limitation, which is one of the purposes of the model due to its importance for an
optimal bioreactor operation.
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Figure 3. Mechanistic model predictions and experimental data for the five experiments of DS1.
P. putida GPo1 cultures achieved steady states at different Cin/Nin ratios. Each experiment corresponds
to a set dilution rate: (a) D = 0.05 h−1 (b) D = 0.1 h−1 (c) D = 0.2 h−1 (d) D = 0.3 h−1 (e) D = 0.4 h−1.

The nominal model parameters together with an estimation of their 95% confidence in-
tervals are presented in Table 3. The parameter distributions are not particularly widespread.
However, there are certain experimental conditions that the model fails to simulate. This
is likely due to limitation in the flexibility of the model, i.e., it is a problem of the model
structure rather than a problem of the accuracy of the parameter estimation.
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Table 3. Nominal model parameters and their estimated 95% confidence intervals.

Parameter Value CI Units

µg 4.499 × 10−1 [4.483; 4.700] × 10−1 h−1

µC 2.413 × 10−1 [2.175; 3007] × 10−1 h−1

KC1 4.278 × 10−4 [3.864; 4.675] × 10−4 g/L
KC2 6.382 × 10−3 [0.578; 6.948] × 10−2 g/L
KN 9.372 × 10−4 [0.848; 1.024] × 10−3 g/L
mC 2.536 × 10−2 [2.300; 2.770] × 10−2 h−1

k f n 9.656 × 10−3 [0.877; 1.000] × 10−2 g/L
Yx/c 1.183 [1.102; 1.335] g/g
Yx/n 7.074 [6.501; 7.097] g/g

Yg
pha/c 3.992 × 10−1 [3.671; 4.000] × 10−1 g/g

Ylim
pha/c 6.022 × 10−1 [4.355; 6.027] × 10−1 g/g

Next, the hybrid model approach was applied to the same dataset. Each individual
experiment was fitted and the unique set of parameters θn was obtained. The model-based
augmentation algorithm (presented in Table 2) was run to obtain artificial datapoints for
dilution rates ranging from 0.025 h−1 to 0.445 h−1, with a step increase of 0.001 h−1. The
augmented dataset was then used to train the hybrid model with the algorithm presented
in Table 1. The selected neural network was a feedforward net with 4 layers of 5 nodes.
The dataset split for training/validation/test was 90/5/5%. The features of the network
were C, N and D, with outputs being rg, qc and qp. The hybrid model predictions are shown
in Figure 4. It clearly outperforms the mechanistic model. Especially, it can be seen that the
carbon concentration predictions in the supernatant follow the real data much closer in
the case of the hybrid model. This can be seen particularly clear in the second experiment
(D = 0.1 h−1), presented in Figures 3b and 4b.

A comparison of both models is presented in Table 4. The absolute root mean squared
error (RMSE) and the R2 coefficient are presented for each species and each model. It can be
seen that while for Xr and N the performances are similar, for C and PHA the Hybrid model
has smaller RMSE and R2 closer to 1, which indicates a better performance, in agreement
with the visual comparison of the fittings in Figures 3 and 4.

The performance of the hybrid model was then tested with an independent dataset,
DS2. None of the experiments in this dataset was used to fit the model, so it could be used
for external validation. Instead of operating at steady state, the feeding profiles in these
sets of experiments change dynamically in time. Furthermore, the nitrogen concentration
in the feed was kept at 0.15 g/L, the same as in DS1, but it changes in two of the three
experiments of DS2. Despite these differences in the bioreactor operation, the hybrid model
manages to predict the outcome of the experiments accurately. The predictions of the
model and the experimental data are plotted in Figure 5.

Even though the model performed well in general, there were some discrepancies
between the predictions and the experimental data. In experiments 2 and 3 (Figure 5b,c),
there was an offset between the predicted and the measured free biomass. The reasons
may be related to the data used for training the model: The experiments were performed
under a unique concentration of nitrogen in the feed. Since the PHA-free biomass concen-
tration strongly depends on the nitrogen fed to the bioreactor (as can be seen for example
in Equation (23)), the lack of different feeding conditions in the training set may have
hampered the extrapolation capabilities of the model, especially for biomass.

Both the mechanistic and the hybrid model were then used to describe the dual nutrient
limitation regime in a Cin/Nin vs. D plot with the method described in Section 2.4. The values
of Nin, Nlim and Clim had to be fixed arbitrarily. They were chosen to be Nin = 0.15 g/L,
Nlim = 0.02 g/L and Clim = 0.03 g/L in order to be comparable with results shown in [34]
and the analytical methods used therein. The predictions of the mechanistic and the hybrid
models for DS1 are shown in Figure 6a,b, respectively. The dual nutrient limitation regime
is presented as the gray area, while the black dots represent the experimental conditions
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where dual limitation starts and terminates. The mechanistic model predicted smoother
curves, with the expected shape for a Monod-type kinetic model. However, it did not
perform well for some of the dilution rates (especially D = 0.1 h−1), predicting a wider dual
C, N limitation regime. The hybrid model, on the other hand, performed very well for all
the dilution rates, as could be expected since one of its main objectives was to accurately
fit the carbon and nitrogen concentrations. However, it is worth noting that the shape
of the model for unseen conditions (those that have not been tested experimentally) was
found to not be as smooth as with the mechanistic model. This effect was mainly due to
the imputation algorithm used to generate artificial data, which linearly combines different
parametrizations to simulate the additional experimental conditions. If the amount of
data for different conditions increases, the hybrid model will improve its performance,
resembling more and more the experimental results. This is an important feature of the
hybrid model: it is flexible enough to add new data by retraining the neural network, which
would correct the predictions in the regions near the new experiments. The mechanistic
model, on the other hand, will have to find a compromise between all the experiments with
a unique set of parameters that is already having troubles predicting the existing ones.
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Figure 4. Hybrid model predictions and experimental data for the five experiments of DS1. Each
experiment corresponds to a constant dilution rate: (a) D = 0.05 h−1 (b) D = 0.1 h−1 (c) D = 0.2 h−1

(d) D = 0.3 h−1 (e) D = 0.4 h−1.
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Figure 5. Hybrid model predictions and experimental data for the three transient experiments of
DS2. All experiments operated at D = 0.3 h−1 but each one, (a) Experiment 1, (b) Experiment 2, and
(c) Experiment 3, had a different Cin/Nin dynamic profile (see the original publication for details [32]).
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Table 4. Nominal model parameters and their confidence intervals.

Mechanistic Model Hybrid Model

RMSE [g/L] R2 RMSE [g/L] R2

Xr 0.1060 0.9255 0.1037 0.9288
C 0.1243 0.8520 0.0367 0.9871
N 0.0080 0.9790 0.0076 0.9810

PHA 0.1737 0.6628 0.0857 0.9179
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4. Conclusions

A hybrid model was proposed for the operation of a bioreactor containing the PHA
producing P. putida strain GPo1. The model uses a neural network to account for the growth,
uptake, and production rates. Since these quantities cannot be measured directly, Monod-
type kinetic expressions are used as support to calculate them. Once the neural network is
trained, it is used together with mass balances for the main species in order to describe the
dynamics of the process under a wide range of operating conditions. The hybrid model
performed very well, especially in describing the carbon and nitrogen concentrations,
which is key for the description of the dual nutrient-limited growth regime.

The hybrid model presented in this work includes several interesting features and
advantages over traditional mechanistic models. The flexibility of the neural network
together with the robustness provided by first principles (mass balances and stoichiometric
transformations) allows the hybrid model to fit experiments with different process con-
ditions without overfitting, as is shown by the good predictions in the external dataset.
Fundamental knowledge about the system can be embedded through the kinetic models
used to calculate the rates in the individual experiments (then generalized by the neural net-
work). Furthermore, the assistance of the individual mechanistic models also allows for the
calculation of hidden states that cannot be easily measured, like the nutrient concentrations
for the dual-limited growth regime.

The hybrid model used here is focused on the dependency of the growth and uptake
rates with regards to the feeding conditions and nutrient concentrations. However, different
process variables like temperature, pH, or other medium components can be added to
the neural networks to study their impact on growth and PHA production (given that the
experimental data contains enough variations in their values). Furthermore, the influence
of the type of carbon source (e.g., amount of C atoms per molecule) on the polymer structure
or properties can be built into the model, provided that the data is available. Of course,
more complex models will be more challenging to develop, but probably the production of
the experimental data will be more limiting than the modeling effort.

Finally, it is worth mentioning that other machine learning models can be used instead
of Neural Network to learn the rates from data. Neural networks present some very useful
features (they are very flexible, allow for multi-output responses, are easy to retrain with new
data) and are perhaps the most popular method used in hybrid modeling. However, advances
are being done in hybrid models with other methods (such and Gaussian Process or Supported
Vector Machines) that may present interesting alternatives that should be investigated.

Process System Engineering principles and methods are expected to play a bigger role
in bioprocessing in the near future. Mathematical models like the ones presented in this
work are important tools that will help to render environmentally friendly technologies
more productive, robust, and economically sustainable.
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